1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
|
/*
* indexamajig.c
*
* Index patterns, output hkl+intensity etc.
*
* (c) 2006-2010 Thomas White <taw@physics.org>
*
* Part of CrystFEL - crystallography with a FEL
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <getopt.h>
#include <hdf5.h>
#include <gsl/gsl_errno.h>
#include <pthread.h>
#include <sys/time.h>
#include "utils.h"
#include "hdf5-file.h"
#include "index.h"
#include "peaks.h"
#include "diffraction.h"
#include "diffraction-gpu.h"
#include "detector.h"
#include "sfac.h"
#include "filters.h"
#include "reflections.h"
#include "thread-pool.h"
#include "beam-parameters.h"
#include "symmetry.h"
enum {
PEAK_ZAEF,
PEAK_HDF5,
};
/* Information about the indexing process which is common to all patterns */
struct static_index_args
{
pthread_mutex_t *gpu_mutex; /* Protects "gctx" */
UnitCell *cell;
int config_cmfilter;
int config_noisefilter;
int config_writedrx;
int config_dumpfound;
int config_verbose;
int config_alternate;
int config_nearbragg;
int config_gpu;
int config_simulate;
int config_polar;
int config_sanity;
int config_satcorr;
int config_sa;
int config_closer;
float threshold;
float min_gradient;
struct detector *det;
IndexingMethod indm;
IndexingPrivate *ipriv;
const double *intensities;
const unsigned char *flags;
const char *sym; /* Symmetry of "intensities" and "flags" */
struct gpu_context *gctx;
int gpu_dev;
int peaks;
int cellr;
double nominal_photon_energy;
/* Output stream */
pthread_mutex_t *output_mutex; /* Protects the output stream */
FILE *ofh;
};
/* Information about the indexing process for one pattern */
struct index_args
{
/* "Input" */
char *filename;
struct static_index_args static_args;
/* "Output" */
int indexable;
int sane;
};
/* Information needed to choose the next task and dispatch it */
struct queue_args
{
FILE *fh;
char *prefix;
struct static_index_args static_args;
int n_indexable;
int n_sane;
char *use_this_one_instead;
};
static void show_help(const char *s)
{
printf("Syntax: %s [options]\n\n", s);
printf(
"Process and index FEL diffraction images.\n"
"\n"
" -h, --help Display this help message.\n"
"\n"
" -i, --input=<filename> Specify file containing list of images to process.\n"
" '-' means stdin, which is the default.\n"
" -o, --output=<filename> Write indexed stream to this file. '-' for stdout.\n"
"\n"
" --indexing=<method> Use 'method' for indexing. Choose from:\n"
" none : no indexing (default)\n"
" dirax : invoke DirAx\n"
" template : index by template matching\n"
" -g. --geometry=<file> Get detector geometry from file.\n"
" -b, --beam=<file> Get beam parameters from file (provides nominal\n"
" wavelength value if no per-shot value is found in\n"
" the HDF5 files.\n"
" -p, --pdb=<file> PDB file from which to get the unit cell to match.\n"
" Default: 'molecule.pdb'.\n"
" -x, --prefix=<p> Prefix filenames from input file with <p>.\n"
" --peaks=<method> Use 'method' for finding peaks. Choose from:\n"
" zaef : Use Zaefferer (2000) gradient detection.\n"
" This is the default method.\n"
" hdf5 : Get from /processing/hitfinder/peakinfo\n"
" in the HDF5 file.\n"
"\n"
"\nWith just the above options, this program does not do much of practical use."
"\nYou should also enable some of the following:\n\n"
" --near-bragg Output a list of reflection intensities to stdout.\n"
" When pixels with fractional indices within 0.1 of\n"
" integer values (the Bragg condition) are found,\n"
" the integral of pixels within a ten pixel radius\n"
" of the nearest-to-Bragg pixel will be reported as\n"
" the intensity. The centroid of the pixels will\n"
" be given as the coordinates, as well as the h,k,l\n"
" (integer) indices of the reflection. If a peak\n"
" was located by the initial peak search close to\n"
" the \"near Bragg\" location, its coordinates will\n"
" be taken as the centre instead.\n"
" --simulate Simulate the diffraction pattern using the indexed\n"
" unit cell. The simulated pattern will be saved\n"
" as \"simulated.h5\". You can TRY to combine this\n"
" with \"-j <n>\" with n greater than 1, but it's\n"
" not a good idea.\n"
" --write-drx Write 'xfel.drx' for visualisation of reciprocal\n"
" space. Implied by any indexing method other than\n"
" 'none'. Beware: the units in this file are\n"
" reciprocal Angstroms.\n"
" --dump-peaks Write the results of the peak search to stdout.\n"
" The intensities in this list are from the\n"
" centroid/integration procedure.\n"
"\n"
"\nFor more control over the process, you might need:\n\n"
" --cell-reduction=<m> Use <m> as the cell reduction method. Choose from:\n"
" none : no matching, just use the raw cell.\n"
" reduce : full cell reduction.\n"
" compare : match by at most changing the order of\n"
" the indices.\n"
" --check-sanity Check that indexed locations approximately correspond\n"
" with detected peaks.\n"
" --filter-cm Perform common-mode noise subtraction on images\n"
" before proceeding. Intensities will be extracted\n"
" from the image as it is after this processing.\n"
" --filter-noise Apply an aggressive noise filter which sets all\n"
" pixels in each 3x3 region to zero if any of them\n"
" have negative values. Intensity measurement will\n"
" be performed on the image as it was before this.\n"
" --unpolarized Don't correct for the polarisation of the X-rays.\n"
" --no-sat-corr Don't correct values of saturated peaks using a\n"
" table included in the HDF5 file.\n"
" --no-sa Don't correct for the differing solid angles of\n"
" the pixels.\n"
" --threshold=<n> Only accept peaks above <n> ADU. Default: 800.\n"
" --min-gradient=<n> Minimum gradient for Zaefferer peak search.\n"
" Default: 100,000.\n"
"\n"
"\nIf you used --simulate, you may also want:\n\n"
" --intensities=<file> Specify file containing reflection intensities\n"
" to use when simulating.\n"
" -y, --symmetry=<sym> The symmetry of the intensities file.\n"
"\n"
"\nOptions for greater performance or verbosity:\n\n"
" --verbose Be verbose about indexing.\n"
" --gpu Use the GPU to speed up the simulation.\n"
" --gpu-dev=<n> Use GPU device <n>. Omit this option to see the\n"
" available devices.\n"
" -j <n> Run <n> analyses in parallel. Default 1.\n"
"\n"
"\nOptions you probably won't need:\n\n"
" --no-check-prefix Don't attempt to correct the --prefix.\n"
" --no-closer-peak Don't integrate from the location of a nearby peak\n"
" instead of the position closest to the reciprocal\n"
" lattice point.\n"
);
}
static struct image *get_simage(struct image *template, int alternate)
{
struct image *image;
struct panel panels[2];
image = malloc(sizeof(*image));
/* Simulate a diffraction pattern */
image->twotheta = NULL;
image->data = NULL;
image->det = template->det;
image->flags = NULL;
image->f0_available = 0;
image->f0 = 1.0;
/* Detector geometry for the simulation
* - not necessarily the same as the original. */
image->width = 1024;
image->height = 1024;
image->det->n_panels = 2;
if ( alternate ) {
/* Upper */
panels[0].min_x = 0;
panels[0].max_x = 1023;
panels[0].min_y = 512;
panels[0].max_y = 1023;
panels[0].cx = 523.6;
panels[0].cy = 502.5;
panels[0].clen = 56.4e-2; /* 56.4 cm */
panels[0].res = 13333.3; /* 75 microns/pixel */
/* Lower */
panels[1].min_x = 0;
panels[1].max_x = 1023;
panels[1].min_y = 0;
panels[1].max_y = 511;
panels[1].cx = 520.8;
panels[1].cy = 525.0;
panels[1].clen = 56.7e-2; /* 56.7 cm */
panels[1].res = 13333.3; /* 75 microns/pixel */
image->det->panels = panels;
} else {
/* Copy pointer to old geometry */
image->det->panels = template->det->panels;
}
image->lambda = ph_en_to_lambda(eV_to_J(1.8e3));
image->features = template->features;
image->filename = template->filename;
image->indexed_cell = template->indexed_cell;
image->f0 = template->f0;
/* Prevent muppetry */
image->cpeaks = NULL;
image->n_cpeaks = 0;
return image;
}
static void simulate_and_write(struct image *simage, struct gpu_context **gctx,
const double *intensities,
const unsigned char *flags, UnitCell *cell,
int gpu_dev, const char *sym)
{
/* Set up GPU if necessary.
* Unfortunately, setup has to go here since until now we don't know
* enough about the situation. */
if ( (gctx != NULL) && (*gctx == NULL) ) {
*gctx = setup_gpu(0, simage, intensities, flags, sym, gpu_dev);
}
if ( (gctx != NULL) && (*gctx != NULL) ) {
get_diffraction_gpu(*gctx, simage, 24, 24, 40, cell);
} else {
get_diffraction(simage, 24, 24, 40,
intensities, NULL, flags, cell, 0,
GRADIENT_MOSAIC, sym);
}
record_image(simage, 0);
hdf5_write("simulated.h5", simage->data, simage->width, simage->height,
H5T_NATIVE_FLOAT);
}
static void process_image(void *pp, int cookie)
{
struct index_args *pargs = pp;
struct hdfile *hdfile;
struct image image;
struct image *simage;
float *data_for_measurement;
size_t data_size;
char *filename = pargs->filename;
UnitCell *cell = pargs->static_args.cell;
int config_cmfilter = pargs->static_args.config_cmfilter;
int config_noisefilter = pargs->static_args.config_noisefilter;
int config_writedrx = pargs->static_args.config_writedrx;
int config_dumpfound = pargs->static_args.config_dumpfound;
int config_verbose = pargs->static_args.config_verbose;
int config_alternate = pargs->static_args.config_alternate;
int config_nearbragg = pargs->static_args.config_nearbragg;
int config_gpu = pargs->static_args.config_gpu;
int config_simulate = pargs->static_args.config_simulate;
int config_polar = pargs->static_args.config_polar;
IndexingMethod indm = pargs->static_args.indm;
const double *intensities = pargs->static_args.intensities;
const unsigned char *flags = pargs->static_args.flags;
struct gpu_context *gctx = pargs->static_args.gctx;
const char *sym = pargs->static_args.sym;
image.features = NULL;
image.data = NULL;
image.indexed_cell = NULL;
image.id = cookie;
image.filename = filename;
image.cpeaks = NULL;
image.n_cpeaks = 0;
image.det = pargs->static_args.det;
STATUS("Processing '%s'\n", image.filename);
pargs->sane = 0;
pargs->indexable = 0;
hdfile = hdfile_open(filename);
if ( hdfile == NULL ) {
return;
} else if ( hdfile_set_first_image(hdfile, "/") ) {
ERROR("Couldn't select path\n");
return;
}
hdf5_read(hdfile, &image, pargs->static_args.config_satcorr,
pargs->static_args.nominal_photon_energy);
if ( config_cmfilter ) {
filter_cm(&image);
}
/* Take snapshot of image after CM subtraction but before
* the aggressive noise filter. */
data_size = image.width*image.height*sizeof(float);
data_for_measurement = malloc(data_size);
if ( config_noisefilter ) {
filter_noise(&image, data_for_measurement);
} else {
memcpy(data_for_measurement, image.data, data_size);
}
switch ( pargs->static_args.peaks )
{
case PEAK_HDF5 :
/* Get peaks from HDF5 */
if ( get_peaks(&image, hdfile) ) {
ERROR("Failed to get peaks from HDF5 file.\n");
return;
}
break;
case PEAK_ZAEF :
search_peaks(&image, pargs->static_args.threshold,
pargs->static_args.min_gradient);
break;
}
/* Get rid of noise-filtered version at this point
* - it was strictly for the purposes of peak detection. */
free(image.data);
image.data = data_for_measurement;
if ( config_dumpfound ) {
dump_peaks(&image, pargs->static_args.ofh,
pargs->static_args.output_mutex);
}
/* Not indexing nor writing xfel.drx?
* Then there's nothing left to do. */
if ( (!config_writedrx) && (indm == INDEXING_NONE) ) {
goto done;
}
/* Calculate orientation matrix (by magic) */
if ( config_writedrx || (indm != INDEXING_NONE) ) {
index_pattern(&image, cell, indm, pargs->static_args.cellr,
config_verbose, pargs->static_args.ipriv);
}
/* No cell at this point? Then we're done. */
if ( image.indexed_cell == NULL ) goto done;
pargs->indexable = 1;
/* Sanity check */
if ( pargs->static_args.config_sanity
&& !peak_sanity_check(&image, image.indexed_cell, 0, 0.1) ) {
STATUS("Failed peak sanity check.\n");
goto done;
} else {
pargs->sane = 1;
}
/* Measure intensities if requested */
if ( config_nearbragg ) {
output_intensities(&image, image.indexed_cell,
pargs->static_args.output_mutex,
config_polar, pargs->static_args.config_sa,
pargs->static_args.config_closer,
pargs->static_args.ofh, 0, 0.1);
}
simage = get_simage(&image, config_alternate);
/* Simulate if requested */
if ( config_simulate ) {
if ( config_gpu ) {
pthread_mutex_lock(pargs->static_args.gpu_mutex);
simulate_and_write(simage, &gctx, intensities, flags,
image.indexed_cell,
pargs->static_args.gpu_dev, sym);
pthread_mutex_unlock(pargs->static_args.gpu_mutex);
} else {
simulate_and_write(simage, NULL, intensities, flags,
image.indexed_cell, 0, sym);
}
}
/* Finished with alternate image */
if ( simage->twotheta != NULL ) free(simage->twotheta);
if ( simage->data != NULL ) free(simage->data);
free(simage);
/* Only free cell if found */
cell_free(image.indexed_cell);
done:
free(image.data);
free(image.flags);
image_feature_list_free(image.features);
free(image.cpeaks);
hdfile_close(hdfile);
}
static void *get_image(void *qp)
{
char line[1024];
struct index_args *pargs;
char *rval;
struct queue_args *qargs = qp;
/* Initialise new task arguments */
pargs = malloc(sizeof(struct index_args));
memcpy(&pargs->static_args, &qargs->static_args,
sizeof(struct static_index_args));
/* Get the next filename */
if ( qargs->use_this_one_instead != NULL ) {
pargs->filename = malloc(strlen(qargs->prefix) +
strlen(qargs->use_this_one_instead) + 1);
snprintf(pargs->filename, 1023, "%s%s", qargs->prefix,
qargs->use_this_one_instead);
qargs->use_this_one_instead = NULL;
} else {
rval = fgets(line, 1023, qargs->fh);
if ( rval == NULL ) return NULL;
chomp(line);
pargs->filename = malloc(strlen(qargs->prefix)+strlen(line)+1);
snprintf(pargs->filename, 1023, "%s%s", qargs->prefix, line);
}
return pargs;
}
static void finalise_image(void *qp, void *pp)
{
struct queue_args *qargs = qp;
struct index_args *pargs = pp;
qargs->n_indexable += pargs->indexable;
qargs->n_sane += pargs->sane;
free(pargs->filename);
free(pargs);
}
int main(int argc, char *argv[])
{
int c;
struct gpu_context *gctx = NULL;
char *filename = NULL;
char *outfile = NULL;
FILE *fh;
FILE *ofh;
char *rval = NULL;
int n_images;
int config_noindex = 0;
int config_dumpfound = 0;
int config_nearbragg = 0;
int config_writedrx = 0;
int config_simulate = 0;
int config_cmfilter = 0;
int config_noisefilter = 0;
int config_gpu = 0;
int config_verbose = 0;
int config_alternate = 0;
int config_polar = 1;
int config_sanity = 0;
int config_satcorr = 1;
int config_sa = 1;
int config_checkprefix = 1;
int config_closer = 1;
float threshold = 800.0;
float min_gradient = 100000.0;
struct detector *det;
char *geometry = NULL;
IndexingMethod indm;
char *indm_str = NULL;
UnitCell *cell;
double *intensities = NULL;
unsigned char *flags;
char *intfile = NULL;
char *pdb = NULL;
char *prefix = NULL;
char *speaks = NULL;
char *scellr = NULL;
int cellr;
int peaks;
int nthreads = 1;
int i;
pthread_mutex_t output_mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t gpu_mutex = PTHREAD_MUTEX_INITIALIZER;
char prepare_line[1024];
char prepare_filename[1024];
IndexingPrivate *ipriv;
struct queue_args qargs;
struct beam_params *beam = NULL;
double nominal_photon_energy;
int gpu_dev = -1;
char *sym = NULL;
/* Long options */
const struct option longopts[] = {
{"help", 0, NULL, 'h'},
{"input", 1, NULL, 'i'},
{"output", 1, NULL, 'o'},
{"gpu", 0, &config_gpu, 1},
{"no-index", 0, &config_noindex, 1},
{"dump-peaks", 0, &config_dumpfound, 1},
{"peaks", 1, NULL, 2},
{"cell-reduction", 1, NULL, 3},
{"near-bragg", 0, &config_nearbragg, 1},
{"write-drx", 0, &config_writedrx, 1},
{"indexing", 1, NULL, 'z'},
{"geometry", 1, NULL, 'g'},
{"beam", 1, NULL, 'b'},
{"simulate", 0, &config_simulate, 1},
{"filter-cm", 0, &config_cmfilter, 1},
{"filter-noise", 0, &config_noisefilter, 1},
{"verbose", 0, &config_verbose, 1},
{"alternate", 0, &config_alternate, 1},
{"intensities", 1, NULL, 'q'},
{"symmetry", 1, NULL, 'y'},
{"pdb", 1, NULL, 'p'},
{"prefix", 1, NULL, 'x'},
{"unpolarized", 0, &config_polar, 0},
{"check-sanity", 0, &config_sanity, 1},
{"no-sat-corr", 0, &config_satcorr, 0},
{"sat-corr", 0, &config_satcorr, 1}, /* Compat */
{"no-sa", 0, &config_sa, 0},
{"threshold", 1, NULL, 't'},
{"min-gradient", 1, NULL, 4},
{"no-check-prefix", 0, &config_checkprefix, 0},
{"no-closer-peak", 0, &config_closer, 0},
{"gpu-dev", 1, NULL, 5},
{0, 0, NULL, 0}
};
/* Short options */
while ((c = getopt_long(argc, argv, "hi:wp:j:x:g:t:o:b:y:",
longopts, NULL)) != -1) {
switch (c) {
case 'h' :
show_help(argv[0]);
return 0;
case 'i' :
filename = strdup(optarg);
break;
case 'o' :
outfile = strdup(optarg);
break;
case 'z' :
indm_str = strdup(optarg);
break;
case 'q' :
intfile = strdup(optarg);
break;
case 'p' :
pdb = strdup(optarg);
break;
case 'x' :
prefix = strdup(optarg);
break;
case 'j' :
nthreads = atoi(optarg);
break;
case 'g' :
geometry = strdup(optarg);
break;
case 't' :
threshold = strtof(optarg, NULL);
break;
case 'y' :
sym = strdup(optarg);
break;
case 'b' :
beam = get_beam_parameters(optarg);
if ( beam == NULL ) {
ERROR("Failed to load beam parameters"
" from '%s'\n", optarg);
return 1;
}
break;
case 2 :
speaks = strdup(optarg);
break;
case 3 :
scellr = strdup(optarg);
break;
case 4 :
min_gradient = strtof(optarg, NULL);
break;
case 5 :
gpu_dev = atoi(optarg);
break;
case 0 :
break;
default :
return 1;
}
}
if ( filename == NULL ) {
filename = strdup("-");
}
if ( strcmp(filename, "-") == 0 ) {
fh = stdin;
} else {
fh = fopen(filename, "r");
}
if ( fh == NULL ) {
ERROR("Failed to open input file '%s'\n", filename);
return 1;
}
free(filename);
if ( outfile == NULL ) {
outfile = strdup("-");
}
if ( strcmp(outfile, "-") == 0 ) {
ofh = stdout;
} else {
ofh = fopen(outfile, "w");
}
if ( ofh == NULL ) {
ERROR("Failed to open output file '%s'\n", outfile);
return 1;
}
free(outfile);
if ( sym == NULL ) sym = strdup("1");
if ( speaks == NULL ) {
speaks = strdup("zaef");
STATUS("You didn't specify a peak detection method.\n");
STATUS("I'm using 'zaef' for you.\n");
}
if ( strcmp(speaks, "zaef") == 0 ) {
peaks = PEAK_ZAEF;
} else if ( strcmp(speaks, "hdf5") == 0 ) {
peaks = PEAK_HDF5;
} else {
ERROR("Unrecognised peak detection method '%s'\n", speaks);
return 1;
}
free(speaks);
if ( intfile != NULL ) {
ReflItemList *items;
int i;
items = read_reflections(intfile, intensities,
NULL, NULL, NULL);
flags = new_list_flag();
for ( i=0; i<num_items(items); i++ ) {
struct refl_item *it = get_item(items, i);
set_flag(flags, it->h, it->k, it->l, 1);
}
if ( check_symmetry(items, sym) ) {
ERROR("The input reflection list does not appear to"
" have symmetry %s\n", sym);
return 1;
}
delete_items(items);
} else {
intensities = NULL;
flags = NULL;
}
if ( pdb == NULL ) {
pdb = strdup("molecule.pdb");
}
if ( prefix == NULL ) {
prefix = strdup("");
} else {
if ( config_checkprefix ) {
prefix = check_prefix(prefix);
}
}
if ( nthreads == 0 ) {
ERROR("Invalid number of threads.\n");
return 1;
}
if ( indm_str == NULL ) {
STATUS("You didn't specify an indexing method, so I won't"
" try to index anything.\n"
"If that isn't what you wanted, re-run with"
" --indexing=<method>.\n");
indm = INDEXING_NONE;
} else if ( strcmp(indm_str, "none") == 0 ) {
indm = INDEXING_NONE;
} else if ( strcmp(indm_str, "dirax") == 0) {
indm = INDEXING_DIRAX;
} else if ( strcmp(indm_str, "template") == 0) {
indm = INDEXING_TEMPLATE;
} else {
ERROR("Unrecognised indexing method '%s'\n", indm_str);
return 1;
}
free(indm_str);
if ( scellr == NULL ) {
STATUS("You didn't specify a cell reduction method, so I'm"
" going to use 'reduce'.\n");
cellr = CELLR_REDUCE;
} else if ( strcmp(scellr, "none") == 0 ) {
cellr = CELLR_NONE;
} else if ( strcmp(scellr, "reduce") == 0) {
cellr = CELLR_REDUCE;
} else if ( strcmp(scellr, "compare") == 0) {
cellr = CELLR_COMPARE;
} else {
ERROR("Unrecognised cell reduction method '%s'\n", scellr);
return 1;
}
free(scellr); /* free(NULL) is OK. */
if ( geometry == NULL ) {
ERROR("You need to specify a geometry file with --geometry\n");
return 1;
}
det = get_detector_geometry(geometry);
if ( det == NULL ) {
ERROR("Failed to read detector geometry from '%s'\n", geometry);
return 1;
}
free(geometry);
if ( (cellr != CELLR_NONE) || (indm == INDEXING_TEMPLATE) ) {
cell = load_cell_from_pdb(pdb);
if ( cell == NULL ) {
ERROR("Couldn't read unit cell (from %s)\n", pdb);
return 1;
}
} else {
STATUS("No cell needed because --no-match was used.\n");
cell = NULL;
}
free(pdb);
/* Start by writing the entire command line to stdout */
fprintf(ofh, "Command line:");
for ( i=0; i<argc; i++ ) {
fprintf(ofh, " %s", argv[i]);
}
fprintf(ofh, "\n");
fflush(ofh);
if ( beam != NULL ) {
nominal_photon_energy = beam->photon_energy;
} else {
STATUS("No beam parameters file was given, so I'm taking the"
" nominal photon energy to be 2 keV.\n");
nominal_photon_energy = 2000.0;
}
/* Get first filename and use it to set up the indexing */
rval = fgets(prepare_line, 1023, fh);
if ( rval == NULL ) {
ERROR("Failed to get filename to prepare indexing.\n");
return 1;
}
chomp(prepare_line);
snprintf(prepare_filename, 1023, "%s%s", prefix, prepare_line);
qargs.use_this_one_instead = prepare_line;
/* Prepare the indexer */
ipriv = prepare_indexing(indm, cell, prepare_filename, det,
nominal_photon_energy);
if ( ipriv == NULL ) {
ERROR("Failed to prepare indexing.\n");
return 1;
}
gsl_set_error_handler_off();
qargs.static_args.gpu_mutex = &gpu_mutex;
qargs.static_args.cell = cell;
qargs.static_args.config_cmfilter = config_cmfilter;
qargs.static_args.config_noisefilter = config_noisefilter;
qargs.static_args.config_writedrx = config_writedrx;
qargs.static_args.config_dumpfound = config_dumpfound;
qargs.static_args.config_verbose = config_verbose;
qargs.static_args.config_alternate = config_alternate;
qargs.static_args.config_nearbragg = config_nearbragg;
qargs.static_args.config_gpu = config_gpu;
qargs.static_args.config_simulate = config_simulate;
qargs.static_args.config_polar = config_polar;
qargs.static_args.config_sanity = config_sanity;
qargs.static_args.config_satcorr = config_satcorr;
qargs.static_args.config_sa = config_sa;
qargs.static_args.config_closer = config_closer;
qargs.static_args.cellr = cellr;
qargs.static_args.threshold = threshold;
qargs.static_args.min_gradient = min_gradient;
qargs.static_args.det = det;
qargs.static_args.indm = indm;
qargs.static_args.ipriv = ipriv;
qargs.static_args.intensities = intensities;
qargs.static_args.flags = flags;
qargs.static_args.sym = sym;
qargs.static_args.gctx = gctx;
qargs.static_args.gpu_dev = gpu_dev;
qargs.static_args.peaks = peaks;
qargs.static_args.output_mutex = &output_mutex;
qargs.static_args.ofh = ofh;
qargs.static_args.nominal_photon_energy = nominal_photon_energy;
qargs.fh = fh;
qargs.prefix = prefix;
qargs.n_indexable = 0;
qargs.n_sane = 0;
n_images = run_threads(nthreads, process_image, get_image,
finalise_image, &qargs, 0);
cleanup_indexing(ipriv);
free(prefix);
free(det->panels);
free(det);
cell_free(cell);
if ( fh != stdout ) fclose(fh);
free(sym);
STATUS("There were %i images. %i could be indexed, of which %i"
" looked sane.\n", n_images, qargs.n_indexable, qargs.n_sane);
if ( gctx != NULL ) {
cleanup_gpu(gctx);
}
return 0;
}
|