aboutsummaryrefslogtreecommitdiff
path: root/src/partialator.c
blob: e3eccafb9afd5227089f455eedd7e06d818e6d6c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
/*
 * partialator.c
 *
 * Scaling and post refinement for coherent nanocrystallography
 *
 * (c) 2006-2011 Thomas White <taw@physics.org>
 *
 * Part of CrystFEL - crystallography with a FEL
 *
 */


#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <getopt.h>
#include <assert.h>
#include <pthread.h>
#include <gsl/gsl_errno.h>

#include "utils.h"
#include "hdf5-file.h"
#include "symmetry.h"
#include "stream.h"
#include "geometry.h"
#include "peaks.h"
#include "thread-pool.h"
#include "beam-parameters.h"
#include "post-refinement.h"
#include "hrs-scaling.h"
#include "reflist.h"
#include "reflist-utils.h"


static void show_help(const char *s)
{
	printf("Syntax: %s [options]\n\n", s);
	printf(
"Scaling and post refinement for coherent nanocrystallography.\n"
"\n"
"  -h, --help                 Display this help message.\n"
"\n"
"  -i, --input=<filename>     Specify the name of the input 'stream'.\n"
"                              (must be a file, not e.g. stdin)\n"
"  -o, --output=<filename>    Output filename.  Default: facetron.hkl.\n"
"  -g. --geometry=<file>      Get detector geometry from file.\n"
"  -b, --beam=<file>          Get beam parameters from file, which provides\n"
"                              initial values for parameters, and nominal\n"
"                              wavelengths if no per-shot value is found in \n"
"                              an HDF5 file.\n"
"  -y, --symmetry=<sym>       Merge according to symmetry <sym>.\n"
"  -n, --iterations=<n>       Run <n> cycles of scaling and post-refinement.\n"
"      --reference=<file>     Refine images against reflections in <file>,\n"
"                              instead of taking the mean of the intensity\n"
"                              estimates.\n"
"\n"
"  -j <n>                     Run <n> analyses in parallel.\n");
}


struct refine_args
{
	const char *sym;
	ReflItemList *obs;
	RefList *full;
	struct image *image;
	FILE *graph;
	FILE *pgraph;
};


struct queue_args
{
	int n;
	int n_done;
	int n_total_patterns;
	struct image *images;
	struct refine_args task_defaults;
};


static void refine_image(void *task, int id)
{
	struct refine_args *pargs = task;
	struct image *image = pargs->image;
	image->id = id;

	pr_refine(image, pargs->full, pargs->sym);
}


static void *get_image(void *vqargs)
{
	struct refine_args *task;
	struct queue_args *qargs = vqargs;

	task = malloc(sizeof(struct refine_args));
	memcpy(task, &qargs->task_defaults, sizeof(struct refine_args));

	task->image = &qargs->images[qargs->n];

	qargs->n++;

	return task;
}


static void done_image(void *vqargs, void *task)
{
	struct queue_args *qargs = vqargs;

	qargs->n_done++;

	progress_bar(qargs->n_done+1, qargs->n_total_patterns, "Refining");
	free(task);
}


static void refine_all(struct image *images, int n_total_patterns,
                       struct detector *det, const char *sym,
                       ReflItemList *obs, RefList *full, int nthreads,
                       FILE *graph, FILE *pgraph)
{
	struct refine_args task_defaults;
	struct queue_args qargs;

	task_defaults.sym = sym;
	task_defaults.obs = obs;
	task_defaults.full = full;
	task_defaults.image = NULL;
	task_defaults.graph = graph;
	task_defaults.pgraph = pgraph;

	qargs.task_defaults = task_defaults;
	qargs.n = 0;
	qargs.n_done = 0;
	qargs.n_total_patterns = n_total_patterns;
	qargs.images = images;

	run_threads(nthreads, refine_image, get_image, done_image,
	            &qargs, n_total_patterns-1, 0, 0, 0);
}


int main(int argc, char *argv[])
{
	int c;
	char *infile = NULL;
	char *outfile = NULL;
	char *geomfile = NULL;
	char *sym = NULL;
	FILE *fh;
	int nthreads = 1;
	struct detector *det;
	ReflItemList *scalable;
	int i;
	int n_total_patterns;
	struct image *images;
	int n_iter = 10;
	struct beam_params *beam = NULL;
	RefList *full;
	int n_found = 0;
	int n_expected = 0;
	int n_notfound = 0;
	char *cref;
	int n_usable_patterns = 0;
	char *reference_file = NULL;
	double *reference = NULL;

	/* Long options */
	const struct option longopts[] = {
		{"help",               0, NULL,               'h'},
		{"input",              1, NULL,               'i'},
		{"output",             1, NULL,               'o'},
		{"geometry",           1, NULL,               'g'},
		{"beam",               1, NULL,               'b'},
		{"symmetry",           1, NULL,               'y'},
		{"iterations",         1, NULL,               'n'},
		{"reference",          1, NULL,                1},
		{0, 0, NULL, 0}
	};

	/* Short options */
	while ((c = getopt_long(argc, argv, "hi:g:x:j:y:o:b:",
	                        longopts, NULL)) != -1)
	{

		switch (c) {
		case 'h' :
			show_help(argv[0]);
			return 0;

		case 'i' :
			infile = strdup(optarg);
			break;

		case 'g' :
			geomfile = strdup(optarg);
			break;

		case 'j' :
			nthreads = atoi(optarg);
			break;

		case 'y' :
			sym = strdup(optarg);
			break;

		case 'o' :
			outfile = strdup(optarg);
			break;

		case 'n' :
			n_iter = atoi(optarg);
			break;

		case 'b' :
			beam = get_beam_parameters(optarg);
			if ( beam == NULL ) {
				ERROR("Failed to load beam parameters"
				      " from '%s'\n", optarg);
				return 1;
			}
			break;

		case 1 :
			reference_file = strdup(optarg);
			break;

		case 0 :
			break;

		default :
			return 1;
		}

	}

	/* Sanitise input filename and open */
	if ( infile == NULL ) {
		infile = strdup("-");
	}
	if ( strcmp(infile, "-") == 0 ) {
		fh = stdin;
	} else {
		fh = fopen(infile, "r");
	}
	if ( fh == NULL ) {
		ERROR("Failed to open input file '%s'\n", infile);
		return 1;
	}
	free(infile);

	/* Sanitise output filename */
	if ( outfile == NULL ) {
		outfile = strdup("partialator.hkl");
	}

	if ( sym == NULL ) sym = strdup("1");

	/* Get detector geometry */
	det = get_detector_geometry(geomfile);
	if ( det == NULL ) {
		ERROR("Failed to read detector geometry from '%s'\n", geomfile);
		return 1;
	}
	free(geomfile);

	if ( beam == NULL ) {
		ERROR("You must provide a beam parameters file.\n");
		return 1;
	}

	if ( reference_file != NULL ) {
		RefList *list;
		RefList *symmed;
		list = read_reflections(reference_file);
		free(reference_file);
		if ( list == NULL ) return 1;
		symmed = asymmetric_indices(list, sym);
		reflist_free(list);
		reference = intensities_from_list(symmed);
		reflist_free(symmed);
	}

	n_total_patterns = count_patterns(fh);
	if ( n_total_patterns == 0 ) {
		ERROR("No patterns to process.\n");
		return 1;
	}
	STATUS("There are %i patterns to process\n", n_total_patterns);

	gsl_set_error_handler_off();

	images = malloc(n_total_patterns * sizeof(struct image));
	if ( images == NULL ) {
		ERROR("Couldn't allocate memory for images.\n");
		return 1;
	}

	/* Fill in what we know about the images so far */
	rewind(fh);
	scalable = new_items();
	for ( i=0; i<n_total_patterns; i++ ) {

		RefList *as;

		images[n_usable_patterns].det = NULL;

		if ( read_chunk(fh, &images[n_usable_patterns]) != 0 ) {
			/* Should not happen, because we counted the patterns
			 * earlier. */
			ERROR("Failed to read chunk from the input stream.\n");
			return 1;
		}

		/* Won't be needing this, if it exists */
		image_feature_list_free(images[n_usable_patterns].features);
		images[n_usable_patterns].features = NULL;

		/* "n_usable_patterns" will not be incremented in this case */
		if ( images[n_usable_patterns].indexed_cell == NULL ) continue;

		/* Fill in initial estimates of stuff */
		images[n_usable_patterns].div = beam->divergence;
		images[n_usable_patterns].bw = beam->bandwidth;
		images[n_usable_patterns].det = det;
		images[n_usable_patterns].width = det->max_fs;
		images[n_usable_patterns].height = det->max_ss;
		images[n_usable_patterns].osf = 1.0;
		images[n_usable_patterns].profile_radius = 0.005e9;

		/* Muppet proofing */
		images[n_usable_patterns].data = NULL;
		images[n_usable_patterns].flags = NULL;
		images[n_usable_patterns].beam = NULL;

		/* This is the raw list of reflections */
		as = asymmetric_indices(images[n_usable_patterns].reflections,
		                        sym);
		optimise_reflist(as);
		reflist_free(images[n_usable_patterns].reflections);
		images[n_usable_patterns].reflections = as;

		update_partialities(&images[n_usable_patterns], sym, scalable,
		                    &n_expected, &n_found, &n_notfound);

		progress_bar(i, n_total_patterns-1, "Loading pattern data");
		n_usable_patterns++;

	}
	fclose(fh);
	STATUS("Found %5.2f%% of the expected peaks (missed %i of %i).\n",
	       100.0 * (double)n_found / n_expected, n_notfound, n_expected);
	STATUS("Mean measurements per scalable unique reflection: %5.2f\n",
	       (double)n_found / num_items(scalable));

	cref = find_common_reflections(images, n_usable_patterns);

	/* Make initial estimates */
	STATUS("Performing initial scaling.\n");
	full = scale_intensities(images, n_usable_patterns, sym,
	                         scalable, cref, reference);

	for ( i=0; i<num_items(scalable); i++ ) {
		Reflection *f;
		struct refl_item *it = get_item(scalable, i);
		f = find_refl(full, it->h, it->k, it->l);
		if ( f == NULL ) {
			ERROR("%3i %3i %3i was designated scalable, but no"
			      " full intensity was recorded.\n",
			      it->h, it->k, it->l);
		}
	}

	for ( i=0; i<n_usable_patterns; i++ ) {

		Reflection *refl;
		RefListIterator *iter;

		for ( refl = first_refl(images[i].reflections, &iter);
		      refl != NULL;
		      refl = next_refl(refl, iter) )
		{
			signed int h, k, l;

			if ( !get_scalable(refl) ) continue;
			get_indices(refl, &h, &k, &l);

			if ( find_item(scalable, h, k, l) == 0 ) {
				ERROR("%3i %3i %3i in image %i is scalable"
				      " but is not in the list of scalable"
				      " reflections.\n", h, k, l, i);
			}
		}
	}

	/* Iterate */
	for ( i=0; i<n_iter; i++ ) {

		FILE *fhg;
		FILE *fhp;
		char filename[1024];

		STATUS("Post refinement iteration %i of %i\n", i+1, n_iter);

		snprintf(filename, 1023, "p-iteration-%i.dat", i+1);
		fhg = fopen(filename, "w");
		if ( fhg == NULL ) {
			ERROR("Failed to open '%s'\n", filename);
			/* Nothing will be written later */
		}

		snprintf(filename, 1023, "g-iteration-%i.dat", i+1);
		fhp = fopen(filename, "w");
		if ( fhp == NULL ) {
			ERROR("Failed to open '%s'\n", filename);
			/* Nothing will be written later */
		}

		/* Refine the geometry of all patterns to get the best fit */
		refine_all(images, n_total_patterns, det, sym, scalable, full,
		           nthreads, fhg, fhp);

		/* Re-estimate all the full intensities */
		reflist_free(full);
		full = scale_intensities(images, n_usable_patterns,
		                         sym, scalable, cref, reference);

		fclose(fhg);
		fclose(fhp);

	}

	STATUS("Final scale factors:\n");
	for ( i=0; i<n_usable_patterns; i++ ) {
		STATUS("%4i : %5.2f\n", i, images[i].osf);
	}

	/* Output results */
	write_reflist(outfile, full, images[0].indexed_cell);

	/* Clean up */
	for ( i=0; i<n_usable_patterns; i++ ) {
		reflist_free(images[i].reflections);
	}
	reflist_free(full);
	delete_items(scalable);
	free(sym);
	free(outfile);
	free_detector_geometry(det);
	free(beam);
	free(cref);
	free(reference);
	for ( i=0; i<n_usable_patterns; i++ ) {
		cell_free(images[i].indexed_cell);
		free(images[i].filename);
	}
	free(images);

	return 0;
}