1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
|
/*
* post-refinement.c
*
* Post refinement
*
* (c) 2006-2010 Thomas White <taw@physics.org>
*
* Part of CrystFEL - crystallography with a FEL
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <assert.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_linalg.h>
#include "image.h"
#include "post-refinement.h"
#include "peaks.h"
#include "symmetry.h"
#include "geometry.h"
#include "cell.h"
/* Returns dp/dr at "r" */
static double partiality_gradient(double r, double profile_radius)
{
double q, dpdq, dqdr;
/* Calculate degree of penetration */
q = (r + profile_radius)/(2.0*profile_radius);
/* dp/dq */
dpdq = 6.0*(q-pow(q, 2.0));
/* dq/dr */
dqdr = 1.0 / (2.0*profile_radius);
return dpdq * dqdr;
}
/* Returns dp/drad at "r" */
static double partiality_rgradient(double r, double profile_radius)
{
double q, dpdq, dqdrad;
/* Calculate degree of penetration */
q = (r + profile_radius)/(2.0*profile_radius);
/* dp/dq */
dpdq = 6.0*(q-pow(q, 2.0));
/* dq/drad */
dqdrad = 0.5 * (1.0 - r * pow(profile_radius, -2.0));
return dpdq * dqdrad;
}
/* Return the gradient of parameter 'k' given the current status of 'image'. */
double gradient(struct image *image, int k,
struct cpeak spot, double I_partial, double r)
{
double ds, tt, azi;
double nom, den;
double g = 0.0;
double asx, asy, asz;
double bsx, bsy, bsz;
double csx, csy, csz;
double xl, yl, zl;
cell_get_reciprocal(image->indexed_cell, &asx, &asy, &asz,
&bsx, &bsy, &bsz,
&csx, &csy, &csz);
xl = spot.h*asx + spot.k*bsx + spot.l*csx;
yl = spot.h*asy + spot.k*bsy + spot.l*csy;
zl = spot.h*asz + spot.k*bsz + spot.l*csz;
ds = 2.0 * resolution(image->indexed_cell, spot.h, spot.k, spot.l);
tt = angle_between(0.0, 0.0, 1.0, xl, yl, zl+k);
azi = angle_between(1.0, 0.0, 0.0, xl, yl, 0.0);
/* Calculate the gradient of partiality wrt excitation error. */
if ( spot.clamp1 == 0 ) {
g += partiality_gradient(spot.r1, r);
}
if ( spot.clamp2 == 0 ) {
g += partiality_gradient(spot.r2, r);
}
/* For many gradients, just multiply the above number by the gradient
* of excitation error wrt whatever. */
switch ( k ) {
case REF_SCALE :
return I_partial;
case REF_DIV :
nom = sqrt(2.0) * ds * sin(image->div/2.0);
den = sqrt(1.0 - cos(image->div/2.0));
return (nom/den) * g;
case REF_R :
if ( spot.clamp1 == 0 ) {
g += partiality_rgradient(spot.r1, r);
}
if ( spot.clamp2 == 0 ) {
g += partiality_rgradient(spot.r2, r);
}
return g;
/* Cell parameters and orientation */
case REF_ASX :
return spot.h * pow(sin(tt), -1.0) * cos(azi) * g;
case REF_BSX :
return spot.k * pow(sin(tt), -1.0) * cos(azi) * g;
case REF_CSX :
return spot.l * pow(sin(tt), -1.0) * cos(azi) * g;
case REF_ASY :
return spot.h * pow(sin(tt), -1.0) * sin(azi) * g;
case REF_BSY :
return spot.k * pow(sin(tt), -1.0) * sin(azi) * g;
case REF_CSY :
return spot.l * pow(sin(tt), -1.0) * sin(azi) * g;
case REF_ASZ :
return spot.h * pow(cos(tt), -1.0) * g;
case REF_BSZ :
return spot.k * pow(cos(tt), -1.0) * g;
case REF_CSZ :
return spot.l * pow(cos(tt), -1.0) * g;
}
ERROR("No gradient defined for parameter %i\n", k);
abort();
}
static void apply_cell_shift(UnitCell *cell, int k, double shift)
{
double asx, asy, asz;
double bsx, bsy, bsz;
double csx, csy, csz;
cell_get_reciprocal(cell, &asx, &asy, &asz,
&bsx, &bsy, &bsz,
&csx, &csy, &csz);
switch ( k )
{
case REF_ASX : asx += shift; break;
case REF_ASY : asy += shift; break;
case REF_ASZ : asz += shift; break;
case REF_BSX : bsx += shift; break;
case REF_BSY : bsy += shift; break;
case REF_BSZ : bsz += shift; break;
case REF_CSX : csx += shift; break;
case REF_CSY : csy += shift; break;
case REF_CSZ : csz += shift; break;
}
cell_set_reciprocal(cell, asx, asy, asz,
bsx, bsy, bsz,
csx, csy, csz);
if ( k == REF_CSZ ) {
double a, b, c, al, be, ga;
cell_get_parameters(cell, &a, &b, &c, &al, &be, &ga);
STATUS("New cell: %5.2f %5.2f %5.2f nm %5.2f %5.2f %5.2f deg\n",
a/1.0e-9, b/1.0e-9, c/1.0e-9,
rad2deg(al), rad2deg(be), rad2deg(ga));
}
}
/* Apply the given shift to the 'k'th parameter of 'image'. */
void apply_shift(struct image *image, int k, double shift)
{
switch ( k ) {
case REF_SCALE :
image->osf += shift;
break;
case REF_DIV :
STATUS("Shifting div by %e\n", shift);
image->div += shift;
break;
case REF_R :
STATUS("Shifting r by %e\n", shift);
image->profile_radius += shift;
break;
case REF_ASX :
case REF_ASY :
case REF_ASZ :
case REF_BSX :
case REF_BSY :
case REF_BSZ :
case REF_CSX :
case REF_CSY :
case REF_CSZ :
apply_cell_shift(image->indexed_cell, k, shift);
break;
default :
ERROR("No shift defined for parameter %i\n", k);
abort();
}
}
double mean_partial_dev(struct image *image, struct cpeak *spots, int n,
const char *sym, double *i_full, FILE *graph)
{
int h;
double delta_I = 0.0;
for ( h=0; h<n; h++ ) {
signed int hind, kind, lind;
signed int ha, ka, la;
double I_full;
float I_partial;
float xc, yc;
hind = spots[h].h;
kind = spots[h].k;
lind = spots[h].l;
/* Don't attempt to use spots with very small
* partialities, since it won't be accurate. */
if ( spots[h].p < 0.1 ) continue;
/* Actual measurement of this reflection from this
* pattern? */
/* FIXME: Coordinates aren't whole numbers */
if ( integrate_peak(image, spots[h].x, spots[h].y,
&xc, &yc, &I_partial, NULL, NULL, 1, 1) ) {
continue;
}
I_partial *= image->osf;
get_asymm(hind, kind, lind, &ha, &ka, &la, sym);
I_full = lookup_intensity(i_full, ha, ka, la);
delta_I += fabs(I_partial - spots[h].p * I_full);
if ( graph != NULL ) {
fprintf(graph, "%3i %3i %3i %5.2f (at %5.2f,%5.2f)"
" %5.2f %5.2f\n",
hind, kind, lind, I_partial/spots[h].p, xc, yc,
spots[h].p, I_partial / I_full);
}
}
return delta_I / (double)n;
}
/* Perform one cycle of post refinement on 'image' against 'i_full' */
double pr_iterate(struct image *image, double *i_full, const char *sym,
struct cpeak **pspots, int *n)
{
gsl_matrix *M;
gsl_vector *v;
gsl_vector *shifts;
int h, param;
struct cpeak *spots = *pspots;
M = gsl_matrix_calloc(NUM_PARAMS, NUM_PARAMS);
v = gsl_vector_calloc(NUM_PARAMS);
/* Construct the equations, one per reflection in this image */
for ( h=0; h<*n; h++ ) {
signed int hind, kind, lind;
signed int ha, ka, la;
double I_full, delta_I;
float I_partial;
float xc, yc;
int k;
hind = spots[h].h;
kind = spots[h].k;
lind = spots[h].l;
/* Don't attempt to use spots with very small
* partialities, since it won't be accurate. */
if ( spots[h].p < 0.1 ) continue;
/* Actual measurement of this reflection from this
* pattern? */
/* FIXME: Coordinates aren't whole numbers */
if ( integrate_peak(image, spots[h].x, spots[h].y,
&xc, &yc, &I_partial, NULL, NULL, 1, 1) ) {
continue;
}
I_partial *= image->osf;
get_asymm(hind, kind, lind, &ha, &ka, &la, sym);
I_full = lookup_intensity(i_full, ha, ka, la);
delta_I = I_partial - spots[h].p * I_full;
for ( k=0; k<NUM_PARAMS; k++ ) {
int g;
double v_c, gr;
for ( g=0; g<NUM_PARAMS; g++ ) {
double M_curr, M_c;
M_curr = gsl_matrix_get(M, g, k);
M_c = gradient(image, g, spots[h], I_partial,
image->profile_radius)
* gradient(image, k, spots[h], I_partial,
image->profile_radius);
M_c *= pow(I_full, 2.0);
gsl_matrix_set(M, g, k, M_curr + M_c);
}
gr = gradient(image, k, spots[h], I_partial,
image->profile_radius);
v_c = delta_I * I_full * gr;
gsl_vector_set(v, k, v_c);
}
}
shifts = gsl_vector_alloc(NUM_PARAMS);
gsl_linalg_HH_solve(M, v, shifts);
for ( param=0; param<NUM_PARAMS; param++ ) {
double shift = gsl_vector_get(shifts, param);
apply_shift(image, param, shift);
}
gsl_matrix_free(M);
gsl_vector_free(v);
gsl_vector_free(shifts);
free(spots);
spots = find_intersections(image, image->indexed_cell, n, 0);
*pspots = spots;
return mean_partial_dev(image, spots, *n, sym, i_full, NULL);
}
|