1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
/*
* integration_check.c
*
* Check peak integration
*
* (c) 2011 Thomas White <taw@physics.org>
* (c) 2011 Andrew Martin <andrew.martin@desy.de>
*
* Part of CrystFEL - crystallography with a FEL
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include "../src/image.h"
#include "../src/peaks.h"
#include "../src/utils.h"
#include "../src/beam-parameters.h"
int main(int argc, char *argv[])
{
struct image image;
double fsp, ssp, intensity, bg, max, sigma;
int fs, ss;
image.data = malloc(128*128*sizeof(float));
image.flags = NULL;
image.det = calloc(1, sizeof(struct detector));
image.det->n_panels = 1;
image.det->panels = calloc(1, sizeof(struct panel));
image.det->panels[0].min_fs = 0;
image.det->panels[0].max_fs = 128;
image.det->panels[0].min_ss = 0;
image.det->panels[0].max_ss = 128;
image.det->panels[0].fsx = 1.0;
image.det->panels[0].fsy = 0.0;
image.det->panels[0].ssx = 0.0;
image.det->panels[0].ssy = 1.0;
image.det->panels[0].xfs = 1.0;
image.det->panels[0].yfs = 0.0;
image.det->panels[0].xss = 0.0;
image.det->panels[0].yss = 1.0;
image.det->panels[0].cnx = -64.0;
image.det->panels[0].cny = -64.0;
image.det->panels[0].clen = 1.0;
image.det->panels[0].res = 1.0;
image.det->panels[0].integr_radius = 10.0;
image.width = 128;
image.height = 128;
memset(image.data, 0, 128*128*sizeof(float));
image.beam = calloc(1, sizeof(struct beam_params));
image.beam->adu_per_photon = 100.0;
/* First check: no intensity -> zero intensity and bg */
integrate_peak(&image, 64, 64, &fsp, &ssp, &intensity,
&bg, &max, &sigma, 0, 1);
STATUS(" First check: intensity = %.2f, bg = %.2f, max = %.2f,"
" sigma = %.2f\n", intensity, bg, max, sigma);
if ( intensity != 0.0 ) {
ERROR("Intensity should be zero.\n");
return 1;
}
if ( bg != 0.0 ) {
ERROR("Background should be zero.\n");
return 1;
}
/* Second check: uniform peak gives correct value and no bg */
for ( fs=0; fs<image.width; fs++ ) {
for ( ss=0; ss<image.height; ss++ ) {
if ( (fs-64)*(fs-64) + (ss-64)*(ss-64) > 9*9 ) continue;
image.data[fs+image.width*ss] = 1000.0;
}
}
integrate_peak(&image, 64, 64, &fsp, &ssp, &intensity,
&bg, &max, &sigma, 0, 1);
STATUS("Second check: intensity = %.2f, bg = %.2f, max = %.2f,"
" sigma = %.2f\n", intensity, bg, max, sigma);
if ( fabs(intensity - M_PI*9.0*9.0*1000.0) > 4000.0 ) {
ERROR("Intensity should be close to 1000*pi*integr_r^2\n");
return 1;
}
if ( bg != 0.0 ) {
ERROR("Background should be zero.\n");
return 1;
}
if ( max != 1000.0 ) {
ERROR("Max should be 1000.\n");
return 1;
}
if ( sigma != 0.0 ) {
ERROR("Sigma should be zero.\n");
return 1;
}
/* Third check: Poisson background should get mostly subtracted */
for ( fs=0; fs<image.width; fs++ ) {
for ( ss=0; ss<image.height; ss++ ) {
image.data[fs+image.width*ss] = poisson_noise(10.0);
}
}
integrate_peak(&image, 64, 64, &fsp, &ssp, &intensity,
&bg, &max, &sigma, 0, 1);
STATUS(" Third check: intensity = %.2f, bg = %.2f, max = %.2f,"
" sigma = %.2f\n", intensity, bg, max, sigma);
if ( fabs(intensity) > 100.0 ) {
ERROR("Intensity should be close to zero.\n");
return 1;
}
if ( fabs(bg-10.0) > 10.0 ) {
ERROR("Background should be close to ten.\n");
return 1;
}
if ( fabs(intensity) > sigma ) {
ERROR("Intensity should be less than sigma.\n");
return 1;
}
if ( fabs(sigma-71.0) > 10.0 ) {
ERROR("Sigma should be close to 71.\n");
return 1;
}
/* Fourth check: peak on Poisson background */
for ( fs=0; fs<image.width; fs++ ) {
for ( ss=0; ss<image.height; ss++ ) {
if ( (fs-64)*(fs-64) + (ss-64)*(ss-64) > 9*9 ) continue;
image.data[fs+image.width*ss] = 1000.0;
}
}
integrate_peak(&image, 64, 64, &fsp, &ssp, &intensity,
&bg, &max, &sigma, 0, 1);
STATUS("Fourth check: intensity = %.2f, bg = %.2f, max = %.2f,"
" sigma = %.2f\n", intensity, bg, max, sigma);
if ( fabs(intensity - M_PI*9.0*9.0*1000.0) > 10000.0 ) {
ERROR("Intensity should be close to 1000*pi*integr_r^2.\n");
return 1;
}
if ( fabs(bg - 10.0) > 1.0 ) {
ERROR("Background should be close to 10.\n");
return 1;
}
if ( fabs(sigma-71.0) > 10.0 ) {
ERROR("Sigma should be close to 71.\n");
return 1;
}
free(image.beam);
free(image.det->panels);
free(image.det);
free(image.data);
return 0;
}
|