1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
|
/*
* prealign.c
*
* Rough initial alignment of images
*
* (c) 2007 Thomas White <taw27@cam.ac.uk>
*
* dtr - Diffraction Tomography Reconstruction
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "control.h"
#include "imagedisplay.h"
#include "main.h"
#include "image.h"
#include "utils.h"
typedef struct {
int n;
ControlContext *ctx;
ImageDisplay *id;
} PreAlignBlock;
static gint prealign_clicked(GtkWidget *widget, GdkEventButton *event, PreAlignBlock *pb) {
double xoffs, yoffs, scale;
double x, y;
x = event->x; y = event->y;
xoffs = (pb->id->drawingarea_width - pb->id->view_width) / 2;
yoffs = (pb->id->drawingarea_height - pb->id->view_height) / 2;
scale = (double)pb->id->view_width/pb->id->imagerecord.width;
x -= xoffs; y -= yoffs;
x /= scale; y /= scale;
y = pb->id->imagerecord.height - y;
pb->ctx->images->images[pb->n].x_centre = x;
pb->ctx->images->images[pb->n].y_centre = y;
pb->n++;
if ( pb->n >= pb->ctx->images->n_images ) {
/* Finished */
imagedisplay_close(pb->id);
main_do_reconstruction(pb->ctx);
free(pb);
} else {
/* Display the next pattern */
imagedisplay_put_data(pb->id, pb->ctx->images->images[pb->n]);
}
return 0;
}
/* No peak-detection nor 3D mapping has been done yet.
Ask the user to give a rough idea (i.e. as accurately as possible...)
of the centre of each image. */
void prealign_do_series(ControlContext *ctx) {
PreAlignBlock *pb;
ctx->have_centres = 1; /* Inhibit "centre-finding by stacking" */
pb = malloc(sizeof(PreAlignBlock));
pb->n = 0;
pb->ctx = ctx;
pb->id = imagedisplay_open_with_message(ctx->images->images[pb->n], "Image Pre-alignment",
"Click the centre of the zero-order beam as accurately as you can.", IMAGEDISPLAY_QUIT_IF_CLOSED,
G_CALLBACK(prealign_clicked), pb);
}
/* Sum the image stack, taking pre-existing centres into account if available.
* If no centres available, select the brightest pixel from the sum and assign
* that as the centre to all the images. */
void prealign_sum_stack(ImageList *list, int have_centres, int sum_stack) {
int twidth, theight;
int mnorth, msouth, mwest, meast;
int x, y, i;
uint16_t *image_total;
ImageDisplay *sum_id;
ImageRecord total_record;
/* Determine maximum size of image to accommodate, and allocate memory */
mnorth = 0; msouth = 0; mwest = 0; meast = 0;
for ( i=0; i<list->n_images; i++ ) {
if ( list->images[i].width-list->images[i].x_centre > meast ) meast = list->images[i].width-list->images[i].x_centre;
if ( list->images[i].x_centre > mwest ) mwest = list->images[i].x_centre;
if ( list->images[i].height-list->images[i].y_centre > mnorth ) mnorth = list->images[i].height-list->images[i].y_centre;
if ( list->images[i].y_centre > msouth ) msouth = list->images[i].y_centre;
}
twidth = mwest + meast;
theight = mnorth + msouth;
image_total = malloc(twidth * theight * sizeof(uint16_t));
memset(image_total, 0, twidth * theight * sizeof(uint16_t));
/* Add the image stack together */
if ( !have_centres ) {
int max_x, max_y;
uint16_t max_val;
for ( i=0; i<list->n_images; i++ ) {
int xoffs, yoffs;
xoffs = (twidth - list->images[i].width)/2;
yoffs = (theight - list->images[i].height)/2;
for ( y=0; y<list->images[i].height; y++ ) {
for ( x=0; x<list->images[i].width; x++ ) {
assert(x+xoffs < twidth);
assert(y+yoffs < theight);
assert(x+xoffs >= 0);
assert(y+yoffs >= 0);
image_total[(x+xoffs) + twidth*(y+yoffs)] +=
list->images[i].image[x + list->images[i].width*y]/list->n_images;
}
}
}
/* Locate the highest point */
max_val = 0; max_x = 0; max_y = 0;
for ( y=0; y<theight; y++ ) {
for ( x=0; x<twidth; x++ ) {
if ( image_total[x + twidth*y] > max_val ) {
max_val = image_total[x + twidth*y];
max_x = x; max_y = y;
}
}
}
/* Record this measurement on all images */
for ( i=0; i<list->n_images; i++ ) {
list->images[i].x_centre = max_x;
list->images[i].y_centre = max_y;
}
total_record.x_centre = max_x;
total_record.y_centre = max_y;
total_record.omega = list->images[0].omega;
} else {
/* Just sum the stack */
for ( i=0; i<list->n_images; i++ ) {
int xoffs, yoffs;
xoffs = mwest - list->images[i].x_centre;
yoffs = msouth - list->images[i].y_centre;
for ( y=0; y<list->images[i].height; y++ ) {
for ( x=0; x<list->images[i].width; x++ ) {
assert(x+xoffs < twidth);
assert(y+yoffs < theight);
assert(x+xoffs >= 0);
assert(y+yoffs >= 0);
image_total[(x+xoffs) + twidth*(y+yoffs)] +=
list->images[i].image[x + list->images[i].width*y]/list->n_images;
}
}
}
total_record.omega = list->images[0].omega;
total_record.x_centre = mwest;
total_record.y_centre = msouth;
}
/* Display */
if ( sum_stack ) {
total_record.image = image_total;
total_record.width = twidth;
total_record.height = theight;
sum_id = imagedisplay_open(total_record, "Sum of All Images", IMAGEDISPLAY_SHOW_CENTRE | IMAGEDISPLAY_SHOW_TILT_AXIS | IMAGEDISPLAY_FREE);
}
}
#define CENTERING_WINDOW_SIZE 50
void prealign_fine_centering(ImageList *list, int sum_stack) {
int i;
for ( i=0; i<list->n_images; i++ ) {
int sx, sy;
double max;
unsigned int did_something = 1;
int mask_x, mask_y;
int width, height;
width = list->images[i].width;
height = list->images[i].height;
mask_x = list->images[i].x_centre;
mask_y = list->images[i].y_centre;
while ( (did_something) && (distance(mask_x, mask_y, list->images[i].x_centre, list->images[i].y_centre)<100) ) {
double nmax, nmask_x, nmask_y;
nmax = 0.0;
nmask_x = 0;
nmask_y = 0;
max = list->images[i].image[mask_x+width*mask_y];
did_something = 0;
for ( sy=biggest(mask_y-CENTERING_WINDOW_SIZE/2, 0); sy<smallest(mask_y+CENTERING_WINDOW_SIZE/2, height); sy++ ) {
for ( sx=biggest(mask_x-CENTERING_WINDOW_SIZE/2, 0); sx<smallest(mask_x+CENTERING_WINDOW_SIZE/2, width); sx++ ) {
if ( list->images[i].image[sx+width*sy] > nmax ) {
nmax = list->images[i].image[sx+width*sy];
nmask_x = sx;
nmask_y = sy;
}
}
}
if ( nmax > max ) {
max = nmax;
mask_x = nmask_x;
mask_y = nmask_y;
did_something = 1;
}
}
if ( !did_something ) {
assert(mask_x<width);
assert(mask_y<height);
assert(mask_x>=0);
assert(mask_y>=0);
printf("AL: Image %3i: centre offset by %f,%f\n", i, mask_x-list->images[i].x_centre, mask_y-list->images[i].y_centre);
list->images[i].x_centre = mask_x;
list->images[i].y_centre = mask_y;
}
}
prealign_sum_stack(list, TRUE, sum_stack);
}
void prealign_feature_centering(ImageList *list) {
int i;
for ( i=0; i<list->n_images; i++ ) {
double d1, d2;
ImageFeature *feature1;
ImageFeature *feature2;
int idx;
feature1 = image_feature_closest(list->images[i].features, list->images[i].x_centre, list->images[i].y_centre, &d1, &idx);
feature2 = image_feature_second_closest(list->images[i].features, list->images[i].x_centre, list->images[i].y_centre, &d2, &idx);
printf("AL: Image %i, d1=%f, d2=%f\n", i, d1, d2);
if ( (fabs(d2-d1) <= 19.0) && feature1 && feature2 ) {
list->images[i].x_centre = (feature1->x + feature2->x)/2;
list->images[i].y_centre = (feature1->y + feature2->y)/2;
} else {
if ( feature1 ) {
list->images[i].x_centre = feature1->x;
list->images[i].y_centre = feature1->y;
} else {
printf("AL: Couldn't find centre feature for image %i\n", i);
}
}
}
}
|