aboutsummaryrefslogtreecommitdiff
path: root/src/reflections.c
blob: e16bcff32579ea962cfcd43a2e77db43f4c1e31d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
/*
 * reflections.c
 *
 * Data structures in 3D space
 *
 * (c) 2007 Thomas White <taw27@cam.ac.uk>
 *
 *  dtr - Diffraction Tomography Reconstruction
 *
 */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdlib.h>
#include <math.h>
#include <stdio.h>

#include "reflections.h"

static void reflection_addfirst(ReflectionContext *reflectionctx) {
	/* Create first items on lists - saves faffing later.  Corresponds to a central marker.
		Reflections are only stored if they have non-zero value. */
	reflectionctx->reflections = malloc(sizeof(Reflection));
	reflectionctx->reflections->next = NULL;
	reflectionctx->reflections->x = 0;
	reflectionctx->reflections->y = 0;
	reflectionctx->reflections->z = 0;
	reflectionctx->reflections->type = REFLECTION_CENTRAL;
	reflectionctx->last_reflection = reflectionctx->reflections;
}

ReflectionContext *reflection_init() {

	ReflectionContext *reflectionctx = malloc(sizeof(ReflectionContext));
	reflection_addfirst(reflectionctx);
	
	return reflectionctx;

}

void reflection_clear(ReflectionContext *reflectionctx) {

	Reflection *reflection = reflectionctx->reflections;
	do {
		Reflection *next = reflection->next;
		free(reflection);
		reflection = next;
	} while ( reflection );
	
	reflection_addfirst(reflectionctx);

}

void reflection_free(ReflectionContext *reflectionctx) {
	reflection_clear(reflectionctx);
	free(reflectionctx->reflections);
	free(reflectionctx);
}

void reflection_add(ReflectionContext *reflectionctx, double x, double y, double z, double intensity, ReflectionType type) {

	Reflection *new_reflection;
	//printf("Added reflection (%f,%f,%f)\n",x,y,z);
	new_reflection = malloc(sizeof(Reflection));
	new_reflection->next = NULL;
	new_reflection->x = x;
	new_reflection->y = y;
	new_reflection->z = z;
	new_reflection->intensity = intensity;
	new_reflection->type = type;
	
	reflectionctx->last_reflection->next = new_reflection;
	reflectionctx->last_reflection = new_reflection;
	
}

void reflection_add_index(ReflectionContext *reflectionctx, signed int h, signed int k, signed int l, double intensity, ReflectionType type) {

	Reflection *new_reflection;
	
	new_reflection = malloc(sizeof(Reflection));
	new_reflection->next = NULL;
	new_reflection->h = h;
	new_reflection->k = k;
	new_reflection->l = l;
	new_reflection->intensity = intensity;
	new_reflection->type = type;
	
	reflectionctx->last_reflection->next = new_reflection;
	reflectionctx->last_reflection = new_reflection;
	
}

/* x and y in metres (in real space!) */
void reflection_add_from_dp(ControlContext *ctx, double x, double y, double tilt_degrees, double intensity) {

	double nx, ny, nz;

	/* Real space */
	double L;
	double d;

	/* Shared */
	double theta;
	double psi;
	
	/* Reciprocal space */
	double r;
	double tilt;
	double omega;
	double x_temp, y_temp, z_temp;
	
	tilt = 2*M_PI*(tilt_degrees/360);	/* Convert to Radians */
	omega = 2*M_PI*(ctx->omega/360);	/* Likewise */
	
	d = sqrt((x*x) + (y*y));
	L = ctx->camera_length;
	theta = atan2(d, L);
	psi = atan2(y, x);
	
	r = 1/ctx->lambda;
	x_temp = r*sin(theta)*cos(psi);
	y_temp = -r*sin(theta)*sin(psi);	/* Minus sign to define axes as y going upwards */
	z_temp = r- r*cos(theta);
	
	/* Apply the rotations...
		First: rotate image clockwise until tilt axis is aligned horizontally. */
	nx = x_temp*cos(omega) + y_temp*-sin(omega);
	ny = x_temp*sin(omega) + y_temp*cos(omega);
	nz = z_temp;
	
	/* Now, tilt about the x-axis ANTICLOCKWISE around +x, i.e. the "wrong" way.
		This is because the crystal is rotated in the experiment, not the Ewald sphere. */
	x_temp = nx; y_temp = ny; z_temp = nz;	
	nx = x_temp;
	ny = cos(tilt)*y_temp - sin(tilt)*z_temp;
	nz = -sin(tilt)*y_temp - cos(tilt)*z_temp;
	
	reflection_add(ctx->reflectionctx, nx, ny, nz, intensity, REFLECTION_NORMAL);

}

/* Alternative formulation for when the input data is already in reciprocal space units 
	x and y in metres^-1 (in reciprocal space) */
void reflection_add_from_reciprocal(ControlContext *ctx, double x, double y, double tilt_degrees, double intensity) {

	double nx, ny, nz;
	
	/* Input (reciprocal space) */
	double dr;
	
	/* Shared */
	double theta;
	double psi;
	double r;
	
	/* Reciprocal space */
	double tilt;
	double omega;
	double x_temp, y_temp, z_temp;
	
	tilt = M_PI*(tilt_degrees/180);	/* Convert to Radians */
	omega = M_PI*(ctx->omega/180);	/* Likewise */
	
	dr = sqrt((x*x) + (y*y));
	r = 1/ctx->lambda;
	theta = atan2(dr, r);
	psi = atan2(y, x);
	
	x_temp = r*sin(theta)*cos(psi);
	y_temp = -r*sin(theta)*sin(psi);	/* Minus sign to define axes as y going upwards */
	z_temp = r - r*cos(theta);
	
	/* Apply the rotations...
		First: rotate image clockwise until tilt axis is aligned horizontally. */
	nx = x_temp*cos(omega) + y_temp*-sin(omega);
	ny = x_temp*sin(omega) + y_temp*cos(omega);
	nz = z_temp;
	
	/* Now, tilt about the x-axis ANTICLOCKWISE around +x, i.e. the "wrong" way.
		This is because the crystal is rotated in the experiment, not the Ewald sphere. */
	x_temp = nx; y_temp = ny; z_temp = nz;	
	nx = x_temp;
	ny = cos(tilt)*y_temp - sin(tilt)*z_temp;
	nz = -sin(tilt)*y_temp - cos(tilt)*z_temp;
	
	reflection_add(ctx->reflectionctx, nx, ny, nz, intensity, REFLECTION_NORMAL);

}

void reflection_add_from_reflection(ReflectionContext *rctx, Reflection *r) {
	r->next = NULL;
	rctx->last_reflection->next = r;
	rctx->last_reflection = r;
}