diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/net/e1000 |
Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'drivers/net/e1000')
-rw-r--r-- | drivers/net/e1000/LICENSE | 339 | ||||
-rw-r--r-- | drivers/net/e1000/Makefile | 35 | ||||
-rw-r--r-- | drivers/net/e1000/e1000.h | 261 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_ethtool.c | 1673 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_hw.c | 5405 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_hw.h | 2144 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_main.c | 3162 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_osdep.h | 101 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_param.c | 744 |
9 files changed, 13864 insertions, 0 deletions
diff --git a/drivers/net/e1000/LICENSE b/drivers/net/e1000/LICENSE new file mode 100644 index 00000000000..5f297e5bb46 --- /dev/null +++ b/drivers/net/e1000/LICENSE @@ -0,0 +1,339 @@ + +"This software program is licensed subject to the GNU General Public License +(GPL). Version 2, June 1991, available at +<http://www.fsf.org/copyleft/gpl.html>" + +GNU General Public License + +Version 2, June 1991 + +Copyright (C) 1989, 1991 Free Software Foundation, Inc. +59 Temple Place - Suite 330, Boston, MA 02111-1307, USA + +Everyone is permitted to copy and distribute verbatim copies of this license +document, but changing it is not allowed. + +Preamble + +The licenses for most software are designed to take away your freedom to +share and change it. By contrast, the GNU General Public License is intended +to guarantee your freedom to share and change free software--to make sure +the software is free for all its users. This General Public License applies +to most of the Free Software Foundation's software and to any other program +whose authors commit to using it. (Some other Free Software Foundation +software is covered by the GNU Library General Public License instead.) You +can apply it to your programs, too. + +When we speak of free software, we are referring to freedom, not price. Our +General Public Licenses are designed to make sure that you have the freedom +to distribute copies of free software (and charge for this service if you +wish), that you receive source code or can get it if you want it, that you +can change the software or use pieces of it in new free programs; and that +you know you can do these things. + +To protect your rights, we need to make restrictions that forbid anyone to +deny you these rights or to ask you to surrender the rights. These +restrictions translate to certain responsibilities for you if you distribute +copies of the software, or if you modify it. + +For example, if you distribute copies of such a program, whether gratis or +for a fee, you must give the recipients all the rights that you have. You +must make sure that they, too, receive or can get the source code. And you +must show them these terms so they know their rights. + +We protect your rights with two steps: (1) copyright the software, and (2) +offer you this license which gives you legal permission to copy, distribute +and/or modify the software. + +Also, for each author's protection and ours, we want to make certain that +everyone understands that there is no warranty for this free software. If +the software is modified by someone else and passed on, we want its +recipients to know that what they have is not the original, so that any +problems introduced by others will not reflect on the original authors' +reputations. + +Finally, any free program is threatened constantly by software patents. We +wish to avoid the danger that redistributors of a free program will +individually obtain patent licenses, in effect making the program +proprietary. To prevent this, we have made it clear that any patent must be +licensed for everyone's free use or not licensed at all. + +The precise terms and conditions for copying, distribution and modification +follow. + +TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION + +0. This License applies to any program or other work which contains a notice + placed by the copyright holder saying it may be distributed under the + terms of this General Public License. The "Program", below, refers to any + such program or work, and a "work based on the Program" means either the + Program or any derivative work under copyright law: that is to say, a + work containing the Program or a portion of it, either verbatim or with + modifications and/or translated into another language. (Hereinafter, + translation is included without limitation in the term "modification".) + Each licensee is addressed as "you". + + Activities other than copying, distribution and modification are not + covered by this License; they are outside its scope. The act of running + the Program is not restricted, and the output from the Program is covered + only if its contents constitute a work based on the Program (independent + of having been made by running the Program). Whether that is true depends + on what the Program does. + +1. You may copy and distribute verbatim copies of the Program's source code + as you receive it, in any medium, provided that you conspicuously and + appropriately publish on each copy an appropriate copyright notice and + disclaimer of warranty; keep intact all the notices that refer to this + License and to the absence of any warranty; and give any other recipients + of the Program a copy of this License along with the Program. + + You may charge a fee for the physical act of transferring a copy, and you + may at your option offer warranty protection in exchange for a fee. + +2. You may modify your copy or copies of the Program or any portion of it, + thus forming a work based on the Program, and copy and distribute such + modifications or work under the terms of Section 1 above, provided that + you also meet all of these conditions: + + * a) You must cause the modified files to carry prominent notices stating + that you changed the files and the date of any change. + + * b) You must cause any work that you distribute or publish, that in + whole or in part contains or is derived from the Program or any part + thereof, to be licensed as a whole at no charge to all third parties + under the terms of this License. + + * c) If the modified program normally reads commands interactively when + run, you must cause it, when started running for such interactive + use in the most ordinary way, to print or display an announcement + including an appropriate copyright notice and a notice that there is + no warranty (or else, saying that you provide a warranty) and that + users may redistribute the program under these conditions, and + telling the user how to view a copy of this License. (Exception: if + the Program itself is interactive but does not normally print such + an announcement, your work based on the Program is not required to + print an announcement.) + + These requirements apply to the modified work as a whole. If identifiable + sections of that work are not derived from the Program, and can be + reasonably considered independent and separate works in themselves, then + this License, and its terms, do not apply to those sections when you + distribute them as separate works. But when you distribute the same + sections as part of a whole which is a work based on the Program, the + distribution of the whole must be on the terms of this License, whose + permissions for other licensees extend to the entire whole, and thus to + each and every part regardless of who wrote it. + + Thus, it is not the intent of this section to claim rights or contest + your rights to work written entirely by you; rather, the intent is to + exercise the right to control the distribution of derivative or + collective works based on the Program. + + In addition, mere aggregation of another work not based on the Program + with the Program (or with a work based on the Program) on a volume of a + storage or distribution medium does not bring the other work under the + scope of this License. + +3. You may copy and distribute the Program (or a work based on it, under + Section 2) in object code or executable form under the terms of Sections + 1 and 2 above provided that you also do one of the following: + + * a) Accompany it with the complete corresponding machine-readable source + code, which must be distributed under the terms of Sections 1 and 2 + above on a medium customarily used for software interchange; or, + + * b) Accompany it with a written offer, valid for at least three years, + to give any third party, for a charge no more than your cost of + physically performing source distribution, a complete machine- + readable copy of the corresponding source code, to be distributed + under the terms of Sections 1 and 2 above on a medium customarily + used for software interchange; or, + + * c) Accompany it with the information you received as to the offer to + distribute corresponding source code. (This alternative is allowed + only for noncommercial distribution and only if you received the + program in object code or executable form with such an offer, in + accord with Subsection b above.) + + The source code for a work means the preferred form of the work for + making modifications to it. For an executable work, complete source code + means all the source code for all modules it contains, plus any + associated interface definition files, plus the scripts used to control + compilation and installation of the executable. However, as a special + exception, the source code distributed need not include anything that is + normally distributed (in either source or binary form) with the major + components (compiler, kernel, and so on) of the operating system on which + the executable runs, unless that component itself accompanies the + executable. + + If distribution of executable or object code is made by offering access + to copy from a designated place, then offering equivalent access to copy + the source code from the same place counts as distribution of the source + code, even though third parties are not compelled to copy the source + along with the object code. + +4. You may not copy, modify, sublicense, or distribute the Program except as + expressly provided under this License. Any attempt otherwise to copy, + modify, sublicense or distribute the Program is void, and will + automatically terminate your rights under this License. However, parties + who have received copies, or rights, from you under this License will not + have their licenses terminated so long as such parties remain in full + compliance. + +5. You are not required to accept this License, since you have not signed + it. However, nothing else grants you permission to modify or distribute + the Program or its derivative works. These actions are prohibited by law + if you do not accept this License. Therefore, by modifying or + distributing the Program (or any work based on the Program), you + indicate your acceptance of this License to do so, and all its terms and + conditions for copying, distributing or modifying the Program or works + based on it. + +6. Each time you redistribute the Program (or any work based on the + Program), the recipient automatically receives a license from the + original licensor to copy, distribute or modify the Program subject to + these terms and conditions. You may not impose any further restrictions + on the recipients' exercise of the rights granted herein. You are not + responsible for enforcing compliance by third parties to this License. + +7. If, as a consequence of a court judgment or allegation of patent + infringement or for any other reason (not limited to patent issues), + conditions are imposed on you (whether by court order, agreement or + otherwise) that contradict the conditions of this License, they do not + excuse you from the conditions of this License. If you cannot distribute + so as to satisfy simultaneously your obligations under this License and + any other pertinent obligations, then as a consequence you may not + distribute the Program at all. For example, if a patent license would + not permit royalty-free redistribution of the Program by all those who + receive copies directly or indirectly through you, then the only way you + could satisfy both it and this License would be to refrain entirely from + distribution of the Program. + + If any portion of this section is held invalid or unenforceable under any + particular circumstance, the balance of the section is intended to apply + and the section as a whole is intended to apply in other circumstances. + + It is not the purpose of this section to induce you to infringe any + patents or other property right claims or to contest validity of any + such claims; this section has the sole purpose of protecting the + integrity of the free software distribution system, which is implemented + by public license practices. Many people have made generous contributions + to the wide range of software distributed through that system in + reliance on consistent application of that system; it is up to the + author/donor to decide if he or she is willing to distribute software + through any other system and a licensee cannot impose that choice. + + This section is intended to make thoroughly clear what is believed to be + a consequence of the rest of this License. + +8. If the distribution and/or use of the Program is restricted in certain + countries either by patents or by copyrighted interfaces, the original + copyright holder who places the Program under this License may add an + explicit geographical distribution limitation excluding those countries, + so that distribution is permitted only in or among countries not thus + excluded. In such case, this License incorporates the limitation as if + written in the body of this License. + +9. The Free Software Foundation may publish revised and/or new versions of + the General Public License from time to time. Such new versions will be + similar in spirit to the present version, but may differ in detail to + address new problems or concerns. + + Each version is given a distinguishing version number. If the Program + specifies a version number of this License which applies to it and "any + later version", you have the option of following the terms and + conditions either of that version or of any later version published by + the Free Software Foundation. If the Program does not specify a version + number of this License, you may choose any version ever published by the + Free Software Foundation. + +10. If you wish to incorporate parts of the Program into other free programs + whose distribution conditions are different, write to the author to ask + for permission. For software which is copyrighted by the Free Software + Foundation, write to the Free Software Foundation; we sometimes make + exceptions for this. Our decision will be guided by the two goals of + preserving the free status of all derivatives of our free software and + of promoting the sharing and reuse of software generally. + + NO WARRANTY + +11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY + FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN + OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES + PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER + EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE + ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH + YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL + NECESSARY SERVICING, REPAIR OR CORRECTION. + +12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING + WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR + REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR + DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL + DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM + (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED + INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF + THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR + OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. + +END OF TERMS AND CONDITIONS + +How to Apply These Terms to Your New Programs + +If you develop a new program, and you want it to be of the greatest +possible use to the public, the best way to achieve this is to make it free +software which everyone can redistribute and change under these terms. + +To do so, attach the following notices to the program. It is safest to +attach them to the start of each source file to most effectively convey the +exclusion of warranty; and each file should have at least the "copyright" +line and a pointer to where the full notice is found. + +one line to give the program's name and an idea of what it does. +Copyright (C) yyyy name of author + +This program is free software; you can redistribute it and/or modify it +under the terms of the GNU General Public License as published by the Free +Software Foundation; either version 2 of the License, or (at your option) +any later version. + +This program is distributed in the hope that it will be useful, but WITHOUT +ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for +more details. + +You should have received a copy of the GNU General Public License along with +this program; if not, write to the Free Software Foundation, Inc., 59 +Temple Place - Suite 330, Boston, MA 02111-1307, USA. + +Also add information on how to contact you by electronic and paper mail. + +If the program is interactive, make it output a short notice like this when +it starts in an interactive mode: + +Gnomovision version 69, Copyright (C) year name of author Gnomovision comes +with ABSOLUTELY NO WARRANTY; for details type 'show w'. This is free +software, and you are welcome to redistribute it under certain conditions; +type 'show c' for details. + +The hypothetical commands 'show w' and 'show c' should show the appropriate +parts of the General Public License. Of course, the commands you use may be +called something other than 'show w' and 'show c'; they could even be +mouse-clicks or menu items--whatever suits your program. + +You should also get your employer (if you work as a programmer) or your +school, if any, to sign a "copyright disclaimer" for the program, if +necessary. Here is a sample; alter the names: + +Yoyodyne, Inc., hereby disclaims all copyright interest in the program +'Gnomovision' (which makes passes at compilers) written by James Hacker. + +signature of Ty Coon, 1 April 1989 +Ty Coon, President of Vice + +This General Public License does not permit incorporating your program into +proprietary programs. If your program is a subroutine library, you may +consider it more useful to permit linking proprietary applications with the +library. If this is what you want to do, use the GNU Library General Public +License instead of this License. diff --git a/drivers/net/e1000/Makefile b/drivers/net/e1000/Makefile new file mode 100644 index 00000000000..ca9f89552da --- /dev/null +++ b/drivers/net/e1000/Makefile @@ -0,0 +1,35 @@ +################################################################################ +# +# +# Copyright(c) 1999 - 2003 Intel Corporation. All rights reserved. +# +# This program is free software; you can redistribute it and/or modify it +# under the terms of the GNU General Public License as published by the Free +# Software Foundation; either version 2 of the License, or (at your option) +# any later version. +# +# This program is distributed in the hope that it will be useful, but WITHOUT +# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for +# more details. +# +# You should have received a copy of the GNU General Public License along with +# this program; if not, write to the Free Software Foundation, Inc., 59 +# Temple Place - Suite 330, Boston, MA 02111-1307, USA. +# +# The full GNU General Public License is included in this distribution in the +# file called LICENSE. +# +# Contact Information: +# Linux NICS <linux.nics@intel.com> +# Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 +# +################################################################################ + +# +# Makefile for the Intel(R) PRO/1000 ethernet driver +# + +obj-$(CONFIG_E1000) += e1000.o + +e1000-objs := e1000_main.o e1000_hw.o e1000_ethtool.o e1000_param.o diff --git a/drivers/net/e1000/e1000.h b/drivers/net/e1000/e1000.h new file mode 100644 index 00000000000..148930d4e9b --- /dev/null +++ b/drivers/net/e1000/e1000.h @@ -0,0 +1,261 @@ +/******************************************************************************* + + + Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. + + This program is free software; you can redistribute it and/or modify it + under the terms of the GNU General Public License as published by the Free + Software Foundation; either version 2 of the License, or (at your option) + any later version. + + This program is distributed in the hope that it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., 59 + Temple Place - Suite 330, Boston, MA 02111-1307, USA. + + The full GNU General Public License is included in this distribution in the + file called LICENSE. + + Contact Information: + Linux NICS <linux.nics@intel.com> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + + +/* Linux PRO/1000 Ethernet Driver main header file */ + +#ifndef _E1000_H_ +#define _E1000_H_ + +#include <linux/stddef.h> +#include <linux/config.h> +#include <linux/module.h> +#include <linux/types.h> +#include <asm/byteorder.h> +#include <linux/init.h> +#include <linux/mm.h> +#include <linux/errno.h> +#include <linux/ioport.h> +#include <linux/pci.h> +#include <linux/kernel.h> +#include <linux/netdevice.h> +#include <linux/etherdevice.h> +#include <linux/skbuff.h> +#include <linux/delay.h> +#include <linux/timer.h> +#include <linux/slab.h> +#include <linux/vmalloc.h> +#include <linux/interrupt.h> +#include <linux/string.h> +#include <linux/pagemap.h> +#include <linux/dma-mapping.h> +#include <linux/bitops.h> +#include <asm/io.h> +#include <asm/irq.h> +#include <linux/capability.h> +#include <linux/in.h> +#include <linux/ip.h> +#include <linux/tcp.h> +#include <linux/udp.h> +#include <net/pkt_sched.h> +#include <linux/list.h> +#include <linux/reboot.h> +#ifdef NETIF_F_TSO +#include <net/checksum.h> +#endif +#include <linux/workqueue.h> +#include <linux/mii.h> +#include <linux/ethtool.h> +#include <linux/if_vlan.h> + +#define BAR_0 0 +#define BAR_1 1 +#define BAR_5 5 + +#define INTEL_E1000_ETHERNET_DEVICE(device_id) {\ + PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} + +struct e1000_adapter; + +#include "e1000_hw.h" + +#ifdef DBG +#define E1000_DBG(args...) printk(KERN_DEBUG "e1000: " args) +#else +#define E1000_DBG(args...) +#endif + +#define E1000_ERR(args...) printk(KERN_ERR "e1000: " args) + +#define PFX "e1000: " +#define DPRINTK(nlevel, klevel, fmt, args...) \ + (void)((NETIF_MSG_##nlevel & adapter->msg_enable) && \ + printk(KERN_##klevel PFX "%s: %s: " fmt, adapter->netdev->name, \ + __FUNCTION__ , ## args)) + +#define E1000_MAX_INTR 10 + +/* TX/RX descriptor defines */ +#define E1000_DEFAULT_TXD 256 +#define E1000_MAX_TXD 256 +#define E1000_MIN_TXD 80 +#define E1000_MAX_82544_TXD 4096 + +#define E1000_DEFAULT_RXD 256 +#define E1000_MAX_RXD 256 +#define E1000_MIN_RXD 80 +#define E1000_MAX_82544_RXD 4096 + +/* Supported Rx Buffer Sizes */ +#define E1000_RXBUFFER_2048 2048 +#define E1000_RXBUFFER_4096 4096 +#define E1000_RXBUFFER_8192 8192 +#define E1000_RXBUFFER_16384 16384 + +/* SmartSpeed delimiters */ +#define E1000_SMARTSPEED_DOWNSHIFT 3 +#define E1000_SMARTSPEED_MAX 15 + +/* Packet Buffer allocations */ +#define E1000_PBA_BYTES_SHIFT 0xA +#define E1000_TX_HEAD_ADDR_SHIFT 7 +#define E1000_PBA_TX_MASK 0xFFFF0000 + +/* Flow Control Watermarks */ +#define E1000_FC_HIGH_DIFF 0x1638 /* High: 5688 bytes below Rx FIFO size */ +#define E1000_FC_LOW_DIFF 0x1640 /* Low: 5696 bytes below Rx FIFO size */ + +#define E1000_FC_PAUSE_TIME 0x0680 /* 858 usec */ + +/* How many Tx Descriptors do we need to call netif_wake_queue ? */ +#define E1000_TX_QUEUE_WAKE 16 +/* How many Rx Buffers do we bundle into one write to the hardware ? */ +#define E1000_RX_BUFFER_WRITE 16 /* Must be power of 2 */ + +#define AUTO_ALL_MODES 0 +#define E1000_EEPROM_82544_APM 0x0004 +#define E1000_EEPROM_APME 0x0400 + +#ifndef E1000_MASTER_SLAVE +/* Switch to override PHY master/slave setting */ +#define E1000_MASTER_SLAVE e1000_ms_hw_default +#endif + +/* only works for sizes that are powers of 2 */ +#define E1000_ROUNDUP(i, size) ((i) = (((i) + (size) - 1) & ~((size) - 1))) + +/* wrapper around a pointer to a socket buffer, + * so a DMA handle can be stored along with the buffer */ +struct e1000_buffer { + struct sk_buff *skb; + uint64_t dma; + unsigned long time_stamp; + uint16_t length; + uint16_t next_to_watch; +}; + +struct e1000_desc_ring { + /* pointer to the descriptor ring memory */ + void *desc; + /* physical address of the descriptor ring */ + dma_addr_t dma; + /* length of descriptor ring in bytes */ + unsigned int size; + /* number of descriptors in the ring */ + unsigned int count; + /* next descriptor to associate a buffer with */ + unsigned int next_to_use; + /* next descriptor to check for DD status bit */ + unsigned int next_to_clean; + /* array of buffer information structs */ + struct e1000_buffer *buffer_info; +}; + +#define E1000_DESC_UNUSED(R) \ + ((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \ + (R)->next_to_clean - (R)->next_to_use - 1) + +#define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i])) +#define E1000_RX_DESC(R, i) E1000_GET_DESC(R, i, e1000_rx_desc) +#define E1000_TX_DESC(R, i) E1000_GET_DESC(R, i, e1000_tx_desc) +#define E1000_CONTEXT_DESC(R, i) E1000_GET_DESC(R, i, e1000_context_desc) + +/* board specific private data structure */ + +struct e1000_adapter { + struct timer_list tx_fifo_stall_timer; + struct timer_list watchdog_timer; + struct timer_list phy_info_timer; + struct vlan_group *vlgrp; + uint32_t bd_number; + uint32_t rx_buffer_len; + uint32_t part_num; + uint32_t wol; + uint32_t smartspeed; + uint32_t en_mng_pt; + uint16_t link_speed; + uint16_t link_duplex; + spinlock_t stats_lock; + atomic_t irq_sem; + struct work_struct tx_timeout_task; + struct work_struct watchdog_task; + uint8_t fc_autoneg; + + struct timer_list blink_timer; + unsigned long led_status; + + /* TX */ + struct e1000_desc_ring tx_ring; + struct e1000_buffer previous_buffer_info; + spinlock_t tx_lock; + uint32_t txd_cmd; + uint32_t tx_int_delay; + uint32_t tx_abs_int_delay; + uint32_t gotcl; + uint64_t gotcl_old; + uint64_t tpt_old; + uint64_t colc_old; + uint32_t tx_fifo_head; + uint32_t tx_head_addr; + uint32_t tx_fifo_size; + atomic_t tx_fifo_stall; + boolean_t pcix_82544; + boolean_t detect_tx_hung; + + /* RX */ + struct e1000_desc_ring rx_ring; + uint64_t hw_csum_err; + uint64_t hw_csum_good; + uint32_t rx_int_delay; + uint32_t rx_abs_int_delay; + boolean_t rx_csum; + uint32_t gorcl; + uint64_t gorcl_old; + + /* Interrupt Throttle Rate */ + uint32_t itr; + + /* OS defined structs */ + struct net_device *netdev; + struct pci_dev *pdev; + struct net_device_stats net_stats; + + /* structs defined in e1000_hw.h */ + struct e1000_hw hw; + struct e1000_hw_stats stats; + struct e1000_phy_info phy_info; + struct e1000_phy_stats phy_stats; + + uint32_t test_icr; + struct e1000_desc_ring test_tx_ring; + struct e1000_desc_ring test_rx_ring; + + + int msg_enable; +}; +#endif /* _E1000_H_ */ diff --git a/drivers/net/e1000/e1000_ethtool.c b/drivers/net/e1000/e1000_ethtool.c new file mode 100644 index 00000000000..0a2ca7c73a4 --- /dev/null +++ b/drivers/net/e1000/e1000_ethtool.c @@ -0,0 +1,1673 @@ +/******************************************************************************* + + + Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. + + This program is free software; you can redistribute it and/or modify it + under the terms of the GNU General Public License as published by the Free + Software Foundation; either version 2 of the License, or (at your option) + any later version. + + This program is distributed in the hope that it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., 59 + Temple Place - Suite 330, Boston, MA 02111-1307, USA. + + The full GNU General Public License is included in this distribution in the + file called LICENSE. + + Contact Information: + Linux NICS <linux.nics@intel.com> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +/* ethtool support for e1000 */ + +#include "e1000.h" + +#include <asm/uaccess.h> + +extern char e1000_driver_name[]; +extern char e1000_driver_version[]; + +extern int e1000_up(struct e1000_adapter *adapter); +extern void e1000_down(struct e1000_adapter *adapter); +extern void e1000_reset(struct e1000_adapter *adapter); +extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx); +extern int e1000_setup_rx_resources(struct e1000_adapter *adapter); +extern int e1000_setup_tx_resources(struct e1000_adapter *adapter); +extern void e1000_free_rx_resources(struct e1000_adapter *adapter); +extern void e1000_free_tx_resources(struct e1000_adapter *adapter); +extern void e1000_update_stats(struct e1000_adapter *adapter); + +struct e1000_stats { + char stat_string[ETH_GSTRING_LEN]; + int sizeof_stat; + int stat_offset; +}; + +#define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \ + offsetof(struct e1000_adapter, m) +static const struct e1000_stats e1000_gstrings_stats[] = { + { "rx_packets", E1000_STAT(net_stats.rx_packets) }, + { "tx_packets", E1000_STAT(net_stats.tx_packets) }, + { "rx_bytes", E1000_STAT(net_stats.rx_bytes) }, + { "tx_bytes", E1000_STAT(net_stats.tx_bytes) }, + { "rx_errors", E1000_STAT(net_stats.rx_errors) }, + { "tx_errors", E1000_STAT(net_stats.tx_errors) }, + { "rx_dropped", E1000_STAT(net_stats.rx_dropped) }, + { "tx_dropped", E1000_STAT(net_stats.tx_dropped) }, + { "multicast", E1000_STAT(net_stats.multicast) }, + { "collisions", E1000_STAT(net_stats.collisions) }, + { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) }, + { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) }, + { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) }, + { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) }, + { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) }, + { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) }, + { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) }, + { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) }, + { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) }, + { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) }, + { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) }, + { "tx_abort_late_coll", E1000_STAT(stats.latecol) }, + { "tx_deferred_ok", E1000_STAT(stats.dc) }, + { "tx_single_coll_ok", E1000_STAT(stats.scc) }, + { "tx_multi_coll_ok", E1000_STAT(stats.mcc) }, + { "rx_long_length_errors", E1000_STAT(stats.roc) }, + { "rx_short_length_errors", E1000_STAT(stats.ruc) }, + { "rx_align_errors", E1000_STAT(stats.algnerrc) }, + { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) }, + { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) }, + { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) }, + { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) }, + { "tx_flow_control_xon", E1000_STAT(stats.xontxc) }, + { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) }, + { "rx_long_byte_count", E1000_STAT(stats.gorcl) }, + { "rx_csum_offload_good", E1000_STAT(hw_csum_good) }, + { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) } +}; +#define E1000_STATS_LEN \ + sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats) +static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { + "Register test (offline)", "Eeprom test (offline)", + "Interrupt test (offline)", "Loopback test (offline)", + "Link test (on/offline)" +}; +#define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN + +static int +e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) +{ + struct e1000_adapter *adapter = netdev->priv; + struct e1000_hw *hw = &adapter->hw; + + if(hw->media_type == e1000_media_type_copper) { + + ecmd->supported = (SUPPORTED_10baseT_Half | + SUPPORTED_10baseT_Full | + SUPPORTED_100baseT_Half | + SUPPORTED_100baseT_Full | + SUPPORTED_1000baseT_Full| + SUPPORTED_Autoneg | + SUPPORTED_TP); + + ecmd->advertising = ADVERTISED_TP; + + if(hw->autoneg == 1) { + ecmd->advertising |= ADVERTISED_Autoneg; + + /* the e1000 autoneg seems to match ethtool nicely */ + + ecmd->advertising |= hw->autoneg_advertised; + } + + ecmd->port = PORT_TP; + ecmd->phy_address = hw->phy_addr; + + if(hw->mac_type == e1000_82543) + ecmd->transceiver = XCVR_EXTERNAL; + else + ecmd->transceiver = XCVR_INTERNAL; + + } else { + ecmd->supported = (SUPPORTED_1000baseT_Full | + SUPPORTED_FIBRE | + SUPPORTED_Autoneg); + + ecmd->advertising = (SUPPORTED_1000baseT_Full | + SUPPORTED_FIBRE | + SUPPORTED_Autoneg); + + ecmd->port = PORT_FIBRE; + + if(hw->mac_type >= e1000_82545) + ecmd->transceiver = XCVR_INTERNAL; + else + ecmd->transceiver = XCVR_EXTERNAL; + } + + if(netif_carrier_ok(adapter->netdev)) { + + e1000_get_speed_and_duplex(hw, &adapter->link_speed, + &adapter->link_duplex); + ecmd->speed = adapter->link_speed; + + /* unfortunatly FULL_DUPLEX != DUPLEX_FULL + * and HALF_DUPLEX != DUPLEX_HALF */ + + if(adapter->link_duplex == FULL_DUPLEX) + ecmd->duplex = DUPLEX_FULL; + else + ecmd->duplex = DUPLEX_HALF; + } else { + ecmd->speed = -1; + ecmd->duplex = -1; + } + + ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) || + hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; + return 0; +} + +static int +e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) +{ + struct e1000_adapter *adapter = netdev->priv; + struct e1000_hw *hw = &adapter->hw; + + if(ecmd->autoneg == AUTONEG_ENABLE) { + hw->autoneg = 1; + hw->autoneg_advertised = 0x002F; + ecmd->advertising = 0x002F; + } else + if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) + return -EINVAL; + + /* reset the link */ + + if(netif_running(adapter->netdev)) { + e1000_down(adapter); + e1000_reset(adapter); + e1000_up(adapter); + } else + e1000_reset(adapter); + + return 0; +} + +static void +e1000_get_pauseparam(struct net_device *netdev, + struct ethtool_pauseparam *pause) +{ + struct e1000_adapter *adapter = netdev->priv; + struct e1000_hw *hw = &adapter->hw; + + pause->autoneg = + (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); + + if(hw->fc == e1000_fc_rx_pause) + pause->rx_pause = 1; + else if(hw->fc == e1000_fc_tx_pause) + pause->tx_pause = 1; + else if(hw->fc == e1000_fc_full) { + pause->rx_pause = 1; + pause->tx_pause = 1; + } +} + +static int +e1000_set_pauseparam(struct net_device *netdev, + struct ethtool_pauseparam *pause) +{ + struct e1000_adapter *adapter = netdev->priv; + struct e1000_hw *hw = &adapter->hw; + + adapter->fc_autoneg = pause->autoneg; + + if(pause->rx_pause && pause->tx_pause) + hw->fc = e1000_fc_full; + else if(pause->rx_pause && !pause->tx_pause) + hw->fc = e1000_fc_rx_pause; + else if(!pause->rx_pause && pause->tx_pause) + hw->fc = e1000_fc_tx_pause; + else if(!pause->rx_pause && !pause->tx_pause) + hw->fc = e1000_fc_none; + + hw->original_fc = hw->fc; + + if(adapter->fc_autoneg == AUTONEG_ENABLE) { + if(netif_running(adapter->netdev)) { + e1000_down(adapter); + e1000_up(adapter); + } else + e1000_reset(adapter); + } + else + return ((hw->media_type == e1000_media_type_fiber) ? + e1000_setup_link(hw) : e1000_force_mac_fc(hw)); + + return 0; +} + +static uint32_t +e1000_get_rx_csum(struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev->priv; + return adapter->rx_csum; +} + +static int +e1000_set_rx_csum(struct net_device *netdev, uint32_t data) +{ + struct e1000_adapter *adapter = netdev->priv; + adapter->rx_csum = data; + + if(netif_running(netdev)) { + e1000_down(adapter); + e1000_up(adapter); + } else + e1000_reset(adapter); + return 0; +} + +static uint32_t +e1000_get_tx_csum(struct net_device *netdev) +{ + return (netdev->features & NETIF_F_HW_CSUM) != 0; +} + +static int +e1000_set_tx_csum(struct net_device *netdev, uint32_t data) +{ + struct e1000_adapter *adapter = netdev->priv; + + if(adapter->hw.mac_type < e1000_82543) { + if (!data) + return -EINVAL; + return 0; + } + + if (data) + netdev->features |= NETIF_F_HW_CSUM; + else + netdev->features &= ~NETIF_F_HW_CSUM; + + return 0; +} + +#ifdef NETIF_F_TSO +static int +e1000_set_tso(struct net_device *netdev, uint32_t data) +{ + struct e1000_adapter *adapter = netdev->priv; + if ((adapter->hw.mac_type < e1000_82544) || + (adapter->hw.mac_type == e1000_82547)) + return data ? -EINVAL : 0; + + if (data) + netdev->features |= NETIF_F_TSO; + else + netdev->features &= ~NETIF_F_TSO; + return 0; +} +#endif /* NETIF_F_TSO */ + +static uint32_t +e1000_get_msglevel(struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev->priv; + return adapter->msg_enable; +} + +static void +e1000_set_msglevel(struct net_device *netdev, uint32_t data) +{ + struct e1000_adapter *adapter = netdev->priv; + adapter->msg_enable = data; +} + +static int +e1000_get_regs_len(struct net_device *netdev) +{ +#define E1000_REGS_LEN 32 + return E1000_REGS_LEN * sizeof(uint32_t); +} + +static void +e1000_get_regs(struct net_device *netdev, + struct ethtool_regs *regs, void *p) +{ + struct e1000_adapter *adapter = netdev->priv; + struct e1000_hw *hw = &adapter->hw; + uint32_t *regs_buff = p; + uint16_t phy_data; + + memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t)); + + regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; + + regs_buff[0] = E1000_READ_REG(hw, CTRL); + regs_buff[1] = E1000_READ_REG(hw, STATUS); + + regs_buff[2] = E1000_READ_REG(hw, RCTL); + regs_buff[3] = E1000_READ_REG(hw, RDLEN); + regs_buff[4] = E1000_READ_REG(hw, RDH); + regs_buff[5] = E1000_READ_REG(hw, RDT); + regs_buff[6] = E1000_READ_REG(hw, RDTR); + + regs_buff[7] = E1000_READ_REG(hw, TCTL); + regs_buff[8] = E1000_READ_REG(hw, TDLEN); + regs_buff[9] = E1000_READ_REG(hw, TDH); + regs_buff[10] = E1000_READ_REG(hw, TDT); + regs_buff[11] = E1000_READ_REG(hw, TIDV); + + regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */ + if(hw->phy_type == e1000_phy_igp) { + e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, + IGP01E1000_PHY_AGC_A); + e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A & + IGP01E1000_PHY_PAGE_SELECT, &phy_data); + regs_buff[13] = (uint32_t)phy_data; /* cable length */ + e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, + IGP01E1000_PHY_AGC_B); + e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B & + IGP01E1000_PHY_PAGE_SELECT, &phy_data); + regs_buff[14] = (uint32_t)phy_data; /* cable length */ + e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, + IGP01E1000_PHY_AGC_C); + e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C & + IGP01E1000_PHY_PAGE_SELECT, &phy_data); + regs_buff[15] = (uint32_t)phy_data; /* cable length */ + e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, + IGP01E1000_PHY_AGC_D); + e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D & + IGP01E1000_PHY_PAGE_SELECT, &phy_data); + regs_buff[16] = (uint32_t)phy_data; /* cable length */ + regs_buff[17] = 0; /* extended 10bt distance (not needed) */ + e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); + e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS & + IGP01E1000_PHY_PAGE_SELECT, &phy_data); + regs_buff[18] = (uint32_t)phy_data; /* cable polarity */ + e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, + IGP01E1000_PHY_PCS_INIT_REG); + e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG & + IGP01E1000_PHY_PAGE_SELECT, &phy_data); + regs_buff[19] = (uint32_t)phy_data; /* cable polarity */ + regs_buff[20] = 0; /* polarity correction enabled (always) */ + regs_buff[22] = 0; /* phy receive errors (unavailable) */ + regs_buff[23] = regs_buff[18]; /* mdix mode */ + e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); + } else { + e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); + regs_buff[13] = (uint32_t)phy_data; /* cable length */ + regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ + regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ + regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ + e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */ + regs_buff[18] = regs_buff[13]; /* cable polarity */ + regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ + regs_buff[20] = regs_buff[17]; /* polarity correction */ + /* phy receive errors */ + regs_buff[22] = adapter->phy_stats.receive_errors; + regs_buff[23] = regs_buff[13]; /* mdix mode */ + } + regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */ + e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); + regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */ + regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ + if(hw->mac_type >= e1000_82540 && + hw->media_type == e1000_media_type_copper) { + regs_buff[26] = E1000_READ_REG(hw, MANC); + } +} + +static int +e1000_get_eeprom_len(struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev->priv; + return adapter->hw.eeprom.word_size * 2; +} + +static int +e1000_get_eeprom(struct net_device *netdev, + struct ethtool_eeprom *eeprom, uint8_t *bytes) +{ + struct e1000_adapter *adapter = netdev->priv; + struct e1000_hw *hw = &adapter->hw; + uint16_t *eeprom_buff; + int first_word, last_word; + int ret_val = 0; + uint16_t i; + + if(eeprom->len == 0) + return -EINVAL; + + eeprom->magic = hw->vendor_id | (hw->device_id << 16); + + first_word = eeprom->offset >> 1; + last_word = (eeprom->offset + eeprom->len - 1) >> 1; + + eeprom_buff = kmalloc(sizeof(uint16_t) * + (last_word - first_word + 1), GFP_KERNEL); + if(!eeprom_buff) + return -ENOMEM; + + if(hw->eeprom.type == e1000_eeprom_spi) + ret_val = e1000_read_eeprom(hw, first_word, + last_word - first_word + 1, + eeprom_buff); + else { + for (i = 0; i < last_word - first_word + 1; i++) + if((ret_val = e1000_read_eeprom(hw, first_word + i, 1, + &eeprom_buff[i]))) + break; + } + + /* Device's eeprom is always little-endian, word addressable */ + for (i = 0; i < last_word - first_word + 1; i++) + le16_to_cpus(&eeprom_buff[i]); + + memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1), + eeprom->len); + kfree(eeprom_buff); + + return ret_val; +} + +static int +e1000_set_eeprom(struct net_device *netdev, + struct ethtool_eeprom *eeprom, uint8_t *bytes) +{ + struct e1000_adapter *adapter = netdev->priv; + struct e1000_hw *hw = &adapter->hw; + uint16_t *eeprom_buff; + void *ptr; + int max_len, first_word, last_word, ret_val = 0; + uint16_t i; + + if(eeprom->len == 0) + return -EOPNOTSUPP; + + if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) + return -EFAULT; + + max_len = hw->eeprom.word_size * 2; + + first_word = eeprom->offset >> 1; + last_word = (eeprom->offset + eeprom->len - 1) >> 1; + eeprom_buff = kmalloc(max_len, GFP_KERNEL); + if(!eeprom_buff) + return -ENOMEM; + + ptr = (void *)eeprom_buff; + + if(eeprom->offset & 1) { + /* need read/modify/write of first changed EEPROM word */ + /* only the second byte of the word is being modified */ + ret_val = e1000_read_eeprom(hw, first_word, 1, + &eeprom_buff[0]); + ptr++; + } + if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { + /* need read/modify/write of last changed EEPROM word */ + /* only the first byte of the word is being modified */ + ret_val = e1000_read_eeprom(hw, last_word, 1, + &eeprom_buff[last_word - first_word]); + } + + /* Device's eeprom is always little-endian, word addressable */ + for (i = 0; i < last_word - first_word + 1; i++) + le16_to_cpus(&eeprom_buff[i]); + + memcpy(ptr, bytes, eeprom->len); + + for (i = 0; i < last_word - first_word + 1; i++) + eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); + + ret_val = e1000_write_eeprom(hw, first_word, + last_word - first_word + 1, eeprom_buff); + + /* Update the checksum over the first part of the EEPROM if needed */ + if((ret_val == 0) && first_word <= EEPROM_CHECKSUM_REG) + e1000_update_eeprom_checksum(hw); + + kfree(eeprom_buff); + return ret_val; +} + +static void +e1000_get_drvinfo(struct net_device *netdev, + struct ethtool_drvinfo *drvinfo) +{ + struct e1000_adapter *adapter = netdev->priv; + + strncpy(drvinfo->driver, e1000_driver_name, 32); + strncpy(drvinfo->version, e1000_driver_version, 32); + strncpy(drvinfo->fw_version, "N/A", 32); + strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32); + drvinfo->n_stats = E1000_STATS_LEN; + drvinfo->testinfo_len = E1000_TEST_LEN; + drvinfo->regdump_len = e1000_get_regs_len(netdev); + drvinfo->eedump_len = e1000_get_eeprom_len(netdev); +} + +static void +e1000_get_ringparam(struct net_device *netdev, + struct ethtool_ringparam *ring) +{ + struct e1000_adapter *adapter = netdev->priv; + e1000_mac_type mac_type = adapter->hw.mac_type; + struct e1000_desc_ring *txdr = &adapter->tx_ring; + struct e1000_desc_ring *rxdr = &adapter->rx_ring; + + ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD : + E1000_MAX_82544_RXD; + ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD : + E1000_MAX_82544_TXD; + ring->rx_mini_max_pending = 0; + ring->rx_jumbo_max_pending = 0; + ring->rx_pending = rxdr->count; + ring->tx_pending = txdr->count; + ring->rx_mini_pending = 0; + ring->rx_jumbo_pending = 0; +} + +static int +e1000_set_ringparam(struct net_device *netdev, + struct ethtool_ringparam *ring) +{ + struct e1000_adapter *adapter = netdev->priv; + e1000_mac_type mac_type = adapter->hw.mac_type; + struct e1000_desc_ring *txdr = &adapter->tx_ring; + struct e1000_desc_ring *rxdr = &adapter->rx_ring; + struct e1000_desc_ring tx_old, tx_new, rx_old, rx_new; + int err; + + tx_old = adapter->tx_ring; + rx_old = adapter->rx_ring; + + if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) + return -EINVAL; + + if(netif_running(adapter->netdev)) + e1000_down(adapter); + + rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD); + rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ? + E1000_MAX_RXD : E1000_MAX_82544_RXD)); + E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); + + txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD); + txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ? + E1000_MAX_TXD : E1000_MAX_82544_TXD)); + E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); + + if(netif_running(adapter->netdev)) { + /* Try to get new resources before deleting old */ + if((err = e1000_setup_rx_resources(adapter))) + goto err_setup_rx; + if((err = e1000_setup_tx_resources(adapter))) + goto err_setup_tx; + + /* save the new, restore the old in order to free it, + * then restore the new back again */ + + rx_new = adapter->rx_ring; + tx_new = adapter->tx_ring; + adapter->rx_ring = rx_old; + adapter->tx_ring = tx_old; + e1000_free_rx_resources(adapter); + e1000_free_tx_resources(adapter); + adapter->rx_ring = rx_new; + adapter->tx_ring = tx_new; + if((err = e1000_up(adapter))) + return err; + } + + return 0; +err_setup_tx: + e1000_free_rx_resources(adapter); +err_setup_rx: + adapter->rx_ring = rx_old; + adapter->tx_ring = tx_old; + e1000_up(adapter); + return err; +} + +#define REG_PATTERN_TEST(R, M, W) \ +{ \ + uint32_t pat, value; \ + uint32_t test[] = \ + {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \ + for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \ + E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \ + value = E1000_READ_REG(&adapter->hw, R); \ + if(value != (test[pat] & W & M)) { \ + *data = (adapter->hw.mac_type < e1000_82543) ? \ + E1000_82542_##R : E1000_##R; \ + return 1; \ + } \ + } \ +} + +#define REG_SET_AND_CHECK(R, M, W) \ +{ \ + uint32_t value; \ + E1000_WRITE_REG(&adapter->hw, R, W & M); \ + value = E1000_READ_REG(&adapter->hw, R); \ + if ((W & M) != (value & M)) { \ + *data = (adapter->hw.mac_type < e1000_82543) ? \ + E1000_82542_##R : E1000_##R; \ + return 1; \ + } \ +} + +static int +e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data) +{ + uint32_t value; + uint32_t i; + + /* The status register is Read Only, so a write should fail. + * Some bits that get toggled are ignored. + */ + value = (E1000_READ_REG(&adapter->hw, STATUS) & (0xFFFFF833)); + E1000_WRITE_REG(&adapter->hw, STATUS, (0xFFFFFFFF)); + if(value != (E1000_READ_REG(&adapter->hw, STATUS) & (0xFFFFF833))) { + *data = 1; + return 1; + } + + REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF); + REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF); + REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF); + REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF); + REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF); + REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); + REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF); + REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF); + REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF); + REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8); + REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF); + REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF); + REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); + REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF); + + REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000); + REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB); + REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); + + if(adapter->hw.mac_type >= e1000_82543) { + + REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF); + REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); + REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); + REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); + REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); + + for(i = 0; i < E1000_RAR_ENTRIES; i++) { + REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF, + 0xFFFFFFFF); + REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF, + 0xFFFFFFFF); + } + + } else { + + REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF); + REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF); + REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF); + REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF); + + } + + for(i = 0; i < E1000_MC_TBL_SIZE; i++) + REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); + + *data = 0; + return 0; +} + +static int +e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data) +{ + uint16_t temp; + uint16_t checksum = 0; + uint16_t i; + + *data = 0; + /* Read and add up the contents of the EEPROM */ + for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { + if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) { + *data = 1; + break; + } + checksum += temp; + } + + /* If Checksum is not Correct return error else test passed */ + if((checksum != (uint16_t) EEPROM_SUM) && !(*data)) + *data = 2; + + return *data; +} + +static irqreturn_t +e1000_test_intr(int irq, + void *data, + struct pt_regs *regs) +{ + struct net_device *netdev = (struct net_device *) data; + struct e1000_adapter *adapter = netdev->priv; + + adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR); + + return IRQ_HANDLED; +} + +static int +e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data) +{ + struct net_device *netdev = adapter->netdev; + uint32_t mask, i=0, shared_int = TRUE; + uint32_t irq = adapter->pdev->irq; + + *data = 0; + + /* Hook up test interrupt handler just for this test */ + if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) { + shared_int = FALSE; + } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ, + netdev->name, netdev)){ + *data = 1; + return -1; + } + + /* Disable all the interrupts */ + E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF); + msec_delay(10); + + /* Test each interrupt */ + for(; i < 10; i++) { + + /* Interrupt to test */ + mask = 1 << i; + + if(!shared_int) { + /* Disable the interrupt to be reported in + * the cause register and then force the same + * interrupt and see if one gets posted. If + * an interrupt was posted to the bus, the + * test failed. + */ + adapter->test_icr = 0; + E1000_WRITE_REG(&adapter->hw, IMC, mask); + E1000_WRITE_REG(&adapter->hw, ICS, mask); + msec_delay(10); + + if(adapter->test_icr & mask) { + *data = 3; + break; + } + } + + /* Enable the interrupt to be reported in + * the cause register and then force the same + * interrupt and see if one gets posted. If + * an interrupt was not posted to the bus, the + * test failed. + */ + adapter->test_icr = 0; + E1000_WRITE_REG(&adapter->hw, IMS, mask); + E1000_WRITE_REG(&adapter->hw, ICS, mask); + msec_delay(10); + + if(!(adapter->test_icr & mask)) { + *data = 4; + break; + } + + if(!shared_int) { + /* Disable the other interrupts to be reported in + * the cause register and then force the other + * interrupts and see if any get posted. If + * an interrupt was posted to the bus, the + * test failed. + */ + adapter->test_icr = 0; + E1000_WRITE_REG(&adapter->hw, IMC, + (~mask & 0x00007FFF)); + E1000_WRITE_REG(&adapter->hw, ICS, + (~mask & 0x00007FFF)); + msec_delay(10); + + if(adapter->test_icr) { + *data = 5; + break; + } + } + } + + /* Disable all the interrupts */ + E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF); + msec_delay(10); + + /* Unhook test interrupt handler */ + free_irq(irq, netdev); + + return *data; +} + +static void +e1000_free_desc_rings(struct e1000_adapter *adapter) +{ + struct e1000_desc_ring *txdr = &adapter->test_tx_ring; + struct e1000_desc_ring *rxdr = &adapter->test_rx_ring; + struct pci_dev *pdev = adapter->pdev; + int i; + + if(txdr->desc && txdr->buffer_info) { + for(i = 0; i < txdr->count; i++) { + if(txdr->buffer_info[i].dma) + pci_unmap_single(pdev, txdr->buffer_info[i].dma, + txdr->buffer_info[i].length, + PCI_DMA_TODEVICE); + if(txdr->buffer_info[i].skb) + dev_kfree_skb(txdr->buffer_info[i].skb); + } + } + + if(rxdr->desc && rxdr->buffer_info) { + for(i = 0; i < rxdr->count; i++) { + if(rxdr->buffer_info[i].dma) + pci_unmap_single(pdev, rxdr->buffer_info[i].dma, + rxdr->buffer_info[i].length, + PCI_DMA_FROMDEVICE); + if(rxdr->buffer_info[i].skb) + dev_kfree_skb(rxdr->buffer_info[i].skb); + } + } + + if(txdr->desc) + pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma); + if(rxdr->desc) + pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma); + + if(txdr->buffer_info) + kfree(txdr->buffer_info); + if(rxdr->buffer_info) + kfree(rxdr->buffer_info); + + return; +} + +static int +e1000_setup_desc_rings(struct e1000_adapter *adapter) +{ + struct e1000_desc_ring *txdr = &adapter->test_tx_ring; + struct e1000_desc_ring *rxdr = &adapter->test_rx_ring; + struct pci_dev *pdev = adapter->pdev; + uint32_t rctl; + int size, i, ret_val; + + /* Setup Tx descriptor ring and Tx buffers */ + + txdr->count = 80; + + size = txdr->count * sizeof(struct e1000_buffer); + if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) { + ret_val = 1; + goto err_nomem; + } + memset(txdr->buffer_info, 0, size); + + txdr->size = txdr->count * sizeof(struct e1000_tx_desc); + E1000_ROUNDUP(txdr->size, 4096); + if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) { + ret_val = 2; + goto err_nomem; + } + memset(txdr->desc, 0, txdr->size); + txdr->next_to_use = txdr->next_to_clean = 0; + + E1000_WRITE_REG(&adapter->hw, TDBAL, + ((uint64_t) txdr->dma & 0x00000000FFFFFFFF)); + E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32)); + E1000_WRITE_REG(&adapter->hw, TDLEN, + txdr->count * sizeof(struct e1000_tx_desc)); + E1000_WRITE_REG(&adapter->hw, TDH, 0); + E1000_WRITE_REG(&adapter->hw, TDT, 0); + E1000_WRITE_REG(&adapter->hw, TCTL, + E1000_TCTL_PSP | E1000_TCTL_EN | + E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | + E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT); + + for(i = 0; i < txdr->count; i++) { + struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i); + struct sk_buff *skb; + unsigned int size = 1024; + + if(!(skb = alloc_skb(size, GFP_KERNEL))) { + ret_val = 3; + goto err_nomem; + } + skb_put(skb, size); + txdr->buffer_info[i].skb = skb; + txdr->buffer_info[i].length = skb->len; + txdr->buffer_info[i].dma = + pci_map_single(pdev, skb->data, skb->len, + PCI_DMA_TODEVICE); + tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma); + tx_desc->lower.data = cpu_to_le32(skb->len); + tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | + E1000_TXD_CMD_IFCS | + E1000_TXD_CMD_RPS); + tx_desc->upper.data = 0; + } + + /* Setup Rx descriptor ring and Rx buffers */ + + rxdr->count = 80; + + size = rxdr->count * sizeof(struct e1000_buffer); + if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) { + ret_val = 4; + goto err_nomem; + } + memset(rxdr->buffer_info, 0, size); + + rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc); + if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) { + ret_val = 5; + goto err_nomem; + } + memset(rxdr->desc, 0, rxdr->size); + rxdr->next_to_use = rxdr->next_to_clean = 0; + + rctl = E1000_READ_REG(&adapter->hw, RCTL); + E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN); + E1000_WRITE_REG(&adapter->hw, RDBAL, + ((uint64_t) rxdr->dma & 0xFFFFFFFF)); + E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32)); + E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size); + E1000_WRITE_REG(&adapter->hw, RDH, 0); + E1000_WRITE_REG(&adapter->hw, RDT, 0); + rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | + E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | + (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT); + E1000_WRITE_REG(&adapter->hw, RCTL, rctl); + + for(i = 0; i < rxdr->count; i++) { + struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i); + struct sk_buff *skb; + + if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, + GFP_KERNEL))) { + ret_val = 6; + goto err_nomem; + } + skb_reserve(skb, NET_IP_ALIGN); + rxdr->buffer_info[i].skb = skb; + rxdr->buffer_info[i].length = E1000_RXBUFFER_2048; + rxdr->buffer_info[i].dma = + pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048, + PCI_DMA_FROMDEVICE); + rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma); + memset(skb->data, 0x00, skb->len); + } + + return 0; + +err_nomem: + e1000_free_desc_rings(adapter); + return ret_val; +} + +static void +e1000_phy_disable_receiver(struct e1000_adapter *adapter) +{ + /* Write out to PHY registers 29 and 30 to disable the Receiver. */ + e1000_write_phy_reg(&adapter->hw, 29, 0x001F); + e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC); + e1000_write_phy_reg(&adapter->hw, 29, 0x001A); + e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0); +} + +static void +e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter) +{ + uint16_t phy_reg; + + /* Because we reset the PHY above, we need to re-force TX_CLK in the + * Extended PHY Specific Control Register to 25MHz clock. This + * value defaults back to a 2.5MHz clock when the PHY is reset. + */ + e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); + phy_reg |= M88E1000_EPSCR_TX_CLK_25; + e1000_write_phy_reg(&adapter->hw, + M88E1000_EXT_PHY_SPEC_CTRL, phy_reg); + + /* In addition, because of the s/w reset above, we need to enable + * CRS on TX. This must be set for both full and half duplex + * operation. + */ + e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); + phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX; + e1000_write_phy_reg(&adapter->hw, + M88E1000_PHY_SPEC_CTRL, phy_reg); +} + +static int +e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter) +{ + uint32_t ctrl_reg; + uint16_t phy_reg; + + /* Setup the Device Control Register for PHY loopback test. */ + + ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL); + ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */ + E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ + E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ + E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */ + E1000_CTRL_FD); /* Force Duplex to FULL */ + + E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg); + + /* Read the PHY Specific Control Register (0x10) */ + e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); + + /* Clear Auto-Crossover bits in PHY Specific Control Register + * (bits 6:5). + */ + phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE; + e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg); + + /* Perform software reset on the PHY */ + e1000_phy_reset(&adapter->hw); + + /* Have to setup TX_CLK and TX_CRS after software reset */ + e1000_phy_reset_clk_and_crs(adapter); + + e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100); + + /* Wait for reset to complete. */ + udelay(500); + + /* Have to setup TX_CLK and TX_CRS after software reset */ + e1000_phy_reset_clk_and_crs(adapter); + + /* Write out to PHY registers 29 and 30 to disable the Receiver. */ + e1000_phy_disable_receiver(adapter); + + /* Set the loopback bit in the PHY control register. */ + e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); + phy_reg |= MII_CR_LOOPBACK; + e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg); + + /* Setup TX_CLK and TX_CRS one more time. */ + e1000_phy_reset_clk_and_crs(adapter); + + /* Check Phy Configuration */ + e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); + if(phy_reg != 0x4100) + return 9; + + e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); + if(phy_reg != 0x0070) + return 10; + + e1000_read_phy_reg(&adapter->hw, 29, &phy_reg); + if(phy_reg != 0x001A) + return 11; + + return 0; +} + +static int +e1000_integrated_phy_loopback(struct e1000_adapter *adapter) +{ + uint32_t ctrl_reg = 0; + uint32_t stat_reg = 0; + + adapter->hw.autoneg = FALSE; + + if(adapter->hw.phy_type == e1000_phy_m88) { + /* Auto-MDI/MDIX Off */ + e1000_write_phy_reg(&adapter->hw, + M88E1000_PHY_SPEC_CTRL, 0x0808); + /* reset to update Auto-MDI/MDIX */ + e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140); + /* autoneg off */ + e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140); + } + /* force 1000, set loopback */ + e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140); + + /* Now set up the MAC to the same speed/duplex as the PHY. */ + ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL); + ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ + ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ + E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ + E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ + E1000_CTRL_FD); /* Force Duplex to FULL */ + + if(adapter->hw.media_type == e1000_media_type_copper && + adapter->hw.phy_type == e1000_phy_m88) { + ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ + } else { + /* Set the ILOS bit on the fiber Nic is half + * duplex link is detected. */ + stat_reg = E1000_READ_REG(&adapter->hw, STATUS); + if((stat_reg & E1000_STATUS_FD) == 0) + ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); + } + + E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg); + + /* Disable the receiver on the PHY so when a cable is plugged in, the + * PHY does not begin to autoneg when a cable is reconnected to the NIC. + */ + if(adapter->hw.phy_type == e1000_phy_m88) + e1000_phy_disable_receiver(adapter); + + udelay(500); + + return 0; +} + +static int +e1000_set_phy_loopback(struct e1000_adapter *adapter) +{ + uint16_t phy_reg = 0; + uint16_t count = 0; + + switch (adapter->hw.mac_type) { + case e1000_82543: + if(adapter->hw.media_type == e1000_media_type_copper) { + /* Attempt to setup Loopback mode on Non-integrated PHY. + * Some PHY registers get corrupted at random, so + * attempt this 10 times. + */ + while(e1000_nonintegrated_phy_loopback(adapter) && + count++ < 10); + if(count < 11) + return 0; + } + break; + + case e1000_82544: + case e1000_82540: + case e1000_82545: + case e1000_82545_rev_3: + case e1000_82546: + case e1000_82546_rev_3: + case e1000_82541: + case e1000_82541_rev_2: + case e1000_82547: + case e1000_82547_rev_2: + return e1000_integrated_phy_loopback(adapter); + break; + + default: + /* Default PHY loopback work is to read the MII + * control register and assert bit 14 (loopback mode). + */ + e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); + phy_reg |= MII_CR_LOOPBACK; + e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg); + return 0; + break; + } + + return 8; +} + +static int +e1000_setup_loopback_test(struct e1000_adapter *adapter) +{ + uint32_t rctl; + + if(adapter->hw.media_type == e1000_media_type_fiber || + adapter->hw.media_type == e1000_media_type_internal_serdes) { + if(adapter->hw.mac_type == e1000_82545 || + adapter->hw.mac_type == e1000_82546 || + adapter->hw.mac_type == e1000_82545_rev_3 || + adapter->hw.mac_type == e1000_82546_rev_3) + return e1000_set_phy_loopback(adapter); + else { + rctl = E1000_READ_REG(&adapter->hw, RCTL); + rctl |= E1000_RCTL_LBM_TCVR; + E1000_WRITE_REG(&adapter->hw, RCTL, rctl); + return 0; + } + } else if(adapter->hw.media_type == e1000_media_type_copper) + return e1000_set_phy_loopback(adapter); + + return 7; +} + +static void +e1000_loopback_cleanup(struct e1000_adapter *adapter) +{ + uint32_t rctl; + uint16_t phy_reg; + + rctl = E1000_READ_REG(&adapter->hw, RCTL); + rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); + E1000_WRITE_REG(&adapter->hw, RCTL, rctl); + + if(adapter->hw.media_type == e1000_media_type_copper || + ((adapter->hw.media_type == e1000_media_type_fiber || + adapter->hw.media_type == e1000_media_type_internal_serdes) && + (adapter->hw.mac_type == e1000_82545 || + adapter->hw.mac_type == e1000_82546 || + adapter->hw.mac_type == e1000_82545_rev_3 || + adapter->hw.mac_type == e1000_82546_rev_3))) { + adapter->hw.autoneg = TRUE; + e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); + if(phy_reg & MII_CR_LOOPBACK) { + phy_reg &= ~MII_CR_LOOPBACK; + e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg); + e1000_phy_reset(&adapter->hw); + } + } +} + +static void +e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size) +{ + memset(skb->data, 0xFF, frame_size); + frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size; + memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); + memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); + memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); +} + +static int +e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size) +{ + frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size; + if(*(skb->data + 3) == 0xFF) { + if((*(skb->data + frame_size / 2 + 10) == 0xBE) && + (*(skb->data + frame_size / 2 + 12) == 0xAF)) { + return 0; + } + } + return 13; +} + +static int +e1000_run_loopback_test(struct e1000_adapter *adapter) +{ + struct e1000_desc_ring *txdr = &adapter->test_tx_ring; + struct e1000_desc_ring *rxdr = &adapter->test_rx_ring; + struct pci_dev *pdev = adapter->pdev; + int i, ret_val; + + E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1); + + for(i = 0; i < 64; i++) { + e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 1024); + pci_dma_sync_single_for_device(pdev, txdr->buffer_info[i].dma, + txdr->buffer_info[i].length, + PCI_DMA_TODEVICE); + } + E1000_WRITE_REG(&adapter->hw, TDT, i); + + msec_delay(200); + + i = 0; + do { + pci_dma_sync_single_for_cpu(pdev, rxdr->buffer_info[i].dma, + rxdr->buffer_info[i].length, + PCI_DMA_FROMDEVICE); + + ret_val = e1000_check_lbtest_frame(rxdr->buffer_info[i].skb, + 1024); + i++; + } while (ret_val != 0 && i < 64); + + return ret_val; +} + +static int +e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data) +{ + if((*data = e1000_setup_desc_rings(adapter))) goto err_loopback; + if((*data = e1000_setup_loopback_test(adapter))) goto err_loopback; + *data = e1000_run_loopback_test(adapter); + e1000_loopback_cleanup(adapter); + e1000_free_desc_rings(adapter); +err_loopback: + return *data; +} + +static int +e1000_link_test(struct e1000_adapter *adapter, uint64_t *data) +{ + *data = 0; + + if (adapter->hw.media_type == e1000_media_type_internal_serdes) { + int i = 0; + adapter->hw.serdes_link_down = TRUE; + + /* on some blade server designs link establishment */ + /* could take as long as 2-3 minutes. */ + do { + e1000_check_for_link(&adapter->hw); + if (adapter->hw.serdes_link_down == FALSE) + return *data; + msec_delay(20); + } while (i++ < 3750); + + *data = 1; + } else { + e1000_check_for_link(&adapter->hw); + + if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) { + *data = 1; + } + } + return *data; +} + +static int +e1000_diag_test_count(struct net_device *netdev) +{ + return E1000_TEST_LEN; +} + +static void +e1000_diag_test(struct net_device *netdev, + struct ethtool_test *eth_test, uint64_t *data) +{ + struct e1000_adapter *adapter = netdev->priv; + boolean_t if_running = netif_running(netdev); + + if(eth_test->flags == ETH_TEST_FL_OFFLINE) { + /* Offline tests */ + + /* save speed, duplex, autoneg settings */ + uint16_t autoneg_advertised = adapter->hw.autoneg_advertised; + uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex; + uint8_t autoneg = adapter->hw.autoneg; + + /* Link test performed before hardware reset so autoneg doesn't + * interfere with test result */ + if(e1000_link_test(adapter, &data[4])) + eth_test->flags |= ETH_TEST_FL_FAILED; + + if(if_running) + e1000_down(adapter); + else + e1000_reset(adapter); + + if(e1000_reg_test(adapter, &data[0])) + eth_test->flags |= ETH_TEST_FL_FAILED; + + e1000_reset(adapter); + if(e1000_eeprom_test(adapter, &data[1])) + eth_test->flags |= ETH_TEST_FL_FAILED; + + e1000_reset(adapter); + if(e1000_intr_test(adapter, &data[2])) + eth_test->flags |= ETH_TEST_FL_FAILED; + + e1000_reset(adapter); + if(e1000_loopback_test(adapter, &data[3])) + eth_test->flags |= ETH_TEST_FL_FAILED; + + /* restore speed, duplex, autoneg settings */ + adapter->hw.autoneg_advertised = autoneg_advertised; + adapter->hw.forced_speed_duplex = forced_speed_duplex; + adapter->hw.autoneg = autoneg; + + e1000_reset(adapter); + if(if_running) + e1000_up(adapter); + } else { + /* Online tests */ + if(e1000_link_test(adapter, &data[4])) + eth_test->flags |= ETH_TEST_FL_FAILED; + + /* Offline tests aren't run; pass by default */ + data[0] = 0; + data[1] = 0; + data[2] = 0; + data[3] = 0; + } +} + +static void +e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) +{ + struct e1000_adapter *adapter = netdev->priv; + struct e1000_hw *hw = &adapter->hw; + + switch(adapter->hw.device_id) { + case E1000_DEV_ID_82542: + case E1000_DEV_ID_82543GC_FIBER: + case E1000_DEV_ID_82543GC_COPPER: + case E1000_DEV_ID_82544EI_FIBER: + case E1000_DEV_ID_82546EB_QUAD_COPPER: + case E1000_DEV_ID_82545EM_FIBER: + case E1000_DEV_ID_82545EM_COPPER: + wol->supported = 0; + wol->wolopts = 0; + return; + + case E1000_DEV_ID_82546EB_FIBER: + case E1000_DEV_ID_82546GB_FIBER: + /* Wake events only supported on port A for dual fiber */ + if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) { + wol->supported = 0; + wol->wolopts = 0; + return; + } + /* Fall Through */ + + default: + wol->supported = WAKE_UCAST | WAKE_MCAST | + WAKE_BCAST | WAKE_MAGIC; + + wol->wolopts = 0; + if(adapter->wol & E1000_WUFC_EX) + wol->wolopts |= WAKE_UCAST; + if(adapter->wol & E1000_WUFC_MC) + wol->wolopts |= WAKE_MCAST; + if(adapter->wol & E1000_WUFC_BC) + wol->wolopts |= WAKE_BCAST; + if(adapter->wol & E1000_WUFC_MAG) + wol->wolopts |= WAKE_MAGIC; + return; + } +} + +static int +e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) +{ + struct e1000_adapter *adapter = netdev->priv; + struct e1000_hw *hw = &adapter->hw; + + switch(adapter->hw.device_id) { + case E1000_DEV_ID_82542: + case E1000_DEV_ID_82543GC_FIBER: + case E1000_DEV_ID_82543GC_COPPER: + case E1000_DEV_ID_82544EI_FIBER: + case E1000_DEV_ID_82546EB_QUAD_COPPER: + case E1000_DEV_ID_82545EM_FIBER: + case E1000_DEV_ID_82545EM_COPPER: + return wol->wolopts ? -EOPNOTSUPP : 0; + + case E1000_DEV_ID_82546EB_FIBER: + case E1000_DEV_ID_82546GB_FIBER: + /* Wake events only supported on port A for dual fiber */ + if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) + return wol->wolopts ? -EOPNOTSUPP : 0; + /* Fall Through */ + + default: + if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE)) + return -EOPNOTSUPP; + + adapter->wol = 0; + + if(wol->wolopts & WAKE_UCAST) + adapter->wol |= E1000_WUFC_EX; + if(wol->wolopts & WAKE_MCAST) + adapter->wol |= E1000_WUFC_MC; + if(wol->wolopts & WAKE_BCAST) + adapter->wol |= E1000_WUFC_BC; + if(wol->wolopts & WAKE_MAGIC) + adapter->wol |= E1000_WUFC_MAG; + } + + return 0; +} + +/* toggle LED 4 times per second = 2 "blinks" per second */ +#define E1000_ID_INTERVAL (HZ/4) + +/* bit defines for adapter->led_status */ +#define E1000_LED_ON 0 + +static void +e1000_led_blink_callback(unsigned long data) +{ + struct e1000_adapter *adapter = (struct e1000_adapter *) data; + + if(test_and_change_bit(E1000_LED_ON, &adapter->led_status)) + e1000_led_off(&adapter->hw); + else + e1000_led_on(&adapter->hw); + + mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL); +} + +static int +e1000_phys_id(struct net_device *netdev, uint32_t data) +{ + struct e1000_adapter *adapter = netdev->priv; + + if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ)) + data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ); + + if(!adapter->blink_timer.function) { + init_timer(&adapter->blink_timer); + adapter->blink_timer.function = e1000_led_blink_callback; + adapter->blink_timer.data = (unsigned long) adapter; + } + + e1000_setup_led(&adapter->hw); + mod_timer(&adapter->blink_timer, jiffies); + + msleep_interruptible(data * 1000); + del_timer_sync(&adapter->blink_timer); + e1000_led_off(&adapter->hw); + clear_bit(E1000_LED_ON, &adapter->led_status); + e1000_cleanup_led(&adapter->hw); + + return 0; +} + +static int +e1000_nway_reset(struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev->priv; + if(netif_running(netdev)) { + e1000_down(adapter); + e1000_up(adapter); + } + return 0; +} + +static int +e1000_get_stats_count(struct net_device *netdev) +{ + return E1000_STATS_LEN; +} + +static void +e1000_get_ethtool_stats(struct net_device *netdev, + struct ethtool_stats *stats, uint64_t *data) +{ + struct e1000_adapter *adapter = netdev->priv; + int i; + + e1000_update_stats(adapter); + for(i = 0; i < E1000_STATS_LEN; i++) { + char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset; + data[i] = (e1000_gstrings_stats[i].sizeof_stat == + sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p; + } +} + +static void +e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data) +{ + int i; + + switch(stringset) { + case ETH_SS_TEST: + memcpy(data, *e1000_gstrings_test, + E1000_TEST_LEN*ETH_GSTRING_LEN); + break; + case ETH_SS_STATS: + for (i=0; i < E1000_STATS_LEN; i++) { + memcpy(data + i * ETH_GSTRING_LEN, + e1000_gstrings_stats[i].stat_string, + ETH_GSTRING_LEN); + } + break; + } +} + +struct ethtool_ops e1000_ethtool_ops = { + .get_settings = e1000_get_settings, + .set_settings = e1000_set_settings, + .get_drvinfo = e1000_get_drvinfo, + .get_regs_len = e1000_get_regs_len, + .get_regs = e1000_get_regs, + .get_wol = e1000_get_wol, + .set_wol = e1000_set_wol, + .get_msglevel = e1000_get_msglevel, + .set_msglevel = e1000_set_msglevel, + .nway_reset = e1000_nway_reset, + .get_link = ethtool_op_get_link, + .get_eeprom_len = e1000_get_eeprom_len, + .get_eeprom = e1000_get_eeprom, + .set_eeprom = e1000_set_eeprom, + .get_ringparam = e1000_get_ringparam, + .set_ringparam = e1000_set_ringparam, + .get_pauseparam = e1000_get_pauseparam, + .set_pauseparam = e1000_set_pauseparam, + .get_rx_csum = e1000_get_rx_csum, + .set_rx_csum = e1000_set_rx_csum, + .get_tx_csum = e1000_get_tx_csum, + .set_tx_csum = e1000_set_tx_csum, + .get_sg = ethtool_op_get_sg, + .set_sg = ethtool_op_set_sg, +#ifdef NETIF_F_TSO + .get_tso = ethtool_op_get_tso, + .set_tso = e1000_set_tso, +#endif + .self_test_count = e1000_diag_test_count, + .self_test = e1000_diag_test, + .get_strings = e1000_get_strings, + .phys_id = e1000_phys_id, + .get_stats_count = e1000_get_stats_count, + .get_ethtool_stats = e1000_get_ethtool_stats, +}; + +void e1000_set_ethtool_ops(struct net_device *netdev) +{ + SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); +} diff --git a/drivers/net/e1000/e1000_hw.c b/drivers/net/e1000/e1000_hw.c new file mode 100644 index 00000000000..786a9b93565 --- /dev/null +++ b/drivers/net/e1000/e1000_hw.c @@ -0,0 +1,5405 @@ +/******************************************************************************* + + + Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. + + This program is free software; you can redistribute it and/or modify it + under the terms of the GNU General Public License as published by the Free + Software Foundation; either version 2 of the License, or (at your option) + any later version. + + This program is distributed in the hope that it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., 59 + Temple Place - Suite 330, Boston, MA 02111-1307, USA. + + The full GNU General Public License is included in this distribution in the + file called LICENSE. + + Contact Information: + Linux NICS <linux.nics@intel.com> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +/* e1000_hw.c + * Shared functions for accessing and configuring the MAC + */ + +#include "e1000_hw.h" + +static int32_t e1000_set_phy_type(struct e1000_hw *hw); +static void e1000_phy_init_script(struct e1000_hw *hw); +static int32_t e1000_setup_copper_link(struct e1000_hw *hw); +static int32_t e1000_setup_fiber_serdes_link(struct e1000_hw *hw); +static int32_t e1000_adjust_serdes_amplitude(struct e1000_hw *hw); +static int32_t e1000_phy_force_speed_duplex(struct e1000_hw *hw); +static int32_t e1000_config_mac_to_phy(struct e1000_hw *hw); +static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl); +static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl); +static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, + uint16_t count); +static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw); +static int32_t e1000_phy_reset_dsp(struct e1000_hw *hw); +static int32_t e1000_write_eeprom_spi(struct e1000_hw *hw, uint16_t offset, + uint16_t words, uint16_t *data); +static int32_t e1000_write_eeprom_microwire(struct e1000_hw *hw, + uint16_t offset, uint16_t words, + uint16_t *data); +static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw); +static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd); +static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd); +static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, + uint16_t count); +static int32_t e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr, + uint16_t phy_data); +static int32_t e1000_read_phy_reg_ex(struct e1000_hw *hw,uint32_t reg_addr, + uint16_t *phy_data); +static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count); +static int32_t e1000_acquire_eeprom(struct e1000_hw *hw); +static void e1000_release_eeprom(struct e1000_hw *hw); +static void e1000_standby_eeprom(struct e1000_hw *hw); +static int32_t e1000_id_led_init(struct e1000_hw * hw); +static int32_t e1000_set_vco_speed(struct e1000_hw *hw); +static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw); +static int32_t e1000_set_phy_mode(struct e1000_hw *hw); + +/* IGP cable length table */ +static const +uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = + { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, + 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, + 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, + 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, + 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, + 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, + 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120}; + + +/****************************************************************************** + * Set the phy type member in the hw struct. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +int32_t +e1000_set_phy_type(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_set_phy_type"); + + switch(hw->phy_id) { + case M88E1000_E_PHY_ID: + case M88E1000_I_PHY_ID: + case M88E1011_I_PHY_ID: + hw->phy_type = e1000_phy_m88; + break; + case IGP01E1000_I_PHY_ID: + if(hw->mac_type == e1000_82541 || + hw->mac_type == e1000_82541_rev_2 || + hw->mac_type == e1000_82547 || + hw->mac_type == e1000_82547_rev_2) { + hw->phy_type = e1000_phy_igp; + break; + } + /* Fall Through */ + default: + /* Should never have loaded on this device */ + hw->phy_type = e1000_phy_undefined; + return -E1000_ERR_PHY_TYPE; + } + + return E1000_SUCCESS; +} + +/****************************************************************************** + * IGP phy init script - initializes the GbE PHY + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static void +e1000_phy_init_script(struct e1000_hw *hw) +{ + uint32_t ret_val; + uint16_t phy_saved_data; + + DEBUGFUNC("e1000_phy_init_script"); + + + if(hw->phy_init_script) { + msec_delay(20); + + /* Save off the current value of register 0x2F5B to be restored at + * the end of this routine. */ + ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); + + /* Disabled the PHY transmitter */ + e1000_write_phy_reg(hw, 0x2F5B, 0x0003); + + msec_delay(20); + + e1000_write_phy_reg(hw,0x0000,0x0140); + + msec_delay(5); + + switch(hw->mac_type) { + case e1000_82541: + case e1000_82547: + e1000_write_phy_reg(hw, 0x1F95, 0x0001); + + e1000_write_phy_reg(hw, 0x1F71, 0xBD21); + + e1000_write_phy_reg(hw, 0x1F79, 0x0018); + + e1000_write_phy_reg(hw, 0x1F30, 0x1600); + + e1000_write_phy_reg(hw, 0x1F31, 0x0014); + + e1000_write_phy_reg(hw, 0x1F32, 0x161C); + + e1000_write_phy_reg(hw, 0x1F94, 0x0003); + + e1000_write_phy_reg(hw, 0x1F96, 0x003F); + + e1000_write_phy_reg(hw, 0x2010, 0x0008); + break; + + case e1000_82541_rev_2: + case e1000_82547_rev_2: + e1000_write_phy_reg(hw, 0x1F73, 0x0099); + break; + default: + break; + } + + e1000_write_phy_reg(hw, 0x0000, 0x3300); + + msec_delay(20); + + /* Now enable the transmitter */ + e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); + + if(hw->mac_type == e1000_82547) { + uint16_t fused, fine, coarse; + + /* Move to analog registers page */ + e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused); + + if(!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { + e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused); + + fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; + coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; + + if(coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { + coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10; + fine -= IGP01E1000_ANALOG_FUSE_FINE_1; + } else if(coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) + fine -= IGP01E1000_ANALOG_FUSE_FINE_10; + + fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | + (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | + (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK); + + e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused); + e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS, + IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); + } + } + } +} + +/****************************************************************************** + * Set the mac type member in the hw struct. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +int32_t +e1000_set_mac_type(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_set_mac_type"); + + switch (hw->device_id) { + case E1000_DEV_ID_82542: + switch (hw->revision_id) { + case E1000_82542_2_0_REV_ID: + hw->mac_type = e1000_82542_rev2_0; + break; + case E1000_82542_2_1_REV_ID: + hw->mac_type = e1000_82542_rev2_1; + break; + default: + /* Invalid 82542 revision ID */ + return -E1000_ERR_MAC_TYPE; + } + break; + case E1000_DEV_ID_82543GC_FIBER: + case E1000_DEV_ID_82543GC_COPPER: + hw->mac_type = e1000_82543; + break; + case E1000_DEV_ID_82544EI_COPPER: + case E1000_DEV_ID_82544EI_FIBER: + case E1000_DEV_ID_82544GC_COPPER: + case E1000_DEV_ID_82544GC_LOM: + hw->mac_type = e1000_82544; + break; + case E1000_DEV_ID_82540EM: + case E1000_DEV_ID_82540EM_LOM: + case E1000_DEV_ID_82540EP: + case E1000_DEV_ID_82540EP_LOM: + case E1000_DEV_ID_82540EP_LP: + hw->mac_type = e1000_82540; + break; + case E1000_DEV_ID_82545EM_COPPER: + case E1000_DEV_ID_82545EM_FIBER: + hw->mac_type = e1000_82545; + break; + case E1000_DEV_ID_82545GM_COPPER: + case E1000_DEV_ID_82545GM_FIBER: + case E1000_DEV_ID_82545GM_SERDES: + hw->mac_type = e1000_82545_rev_3; + break; + case E1000_DEV_ID_82546EB_COPPER: + case E1000_DEV_ID_82546EB_FIBER: + case E1000_DEV_ID_82546EB_QUAD_COPPER: + hw->mac_type = e1000_82546; + break; + case E1000_DEV_ID_82546GB_COPPER: + case E1000_DEV_ID_82546GB_FIBER: + case E1000_DEV_ID_82546GB_SERDES: + case E1000_DEV_ID_82546GB_PCIE: + hw->mac_type = e1000_82546_rev_3; + break; + case E1000_DEV_ID_82541EI: + case E1000_DEV_ID_82541EI_MOBILE: + hw->mac_type = e1000_82541; + break; + case E1000_DEV_ID_82541ER: + case E1000_DEV_ID_82541GI: + case E1000_DEV_ID_82541GI_LF: + case E1000_DEV_ID_82541GI_MOBILE: + hw->mac_type = e1000_82541_rev_2; + break; + case E1000_DEV_ID_82547EI: + hw->mac_type = e1000_82547; + break; + case E1000_DEV_ID_82547GI: + hw->mac_type = e1000_82547_rev_2; + break; + default: + /* Should never have loaded on this device */ + return -E1000_ERR_MAC_TYPE; + } + + switch(hw->mac_type) { + case e1000_82541: + case e1000_82547: + case e1000_82541_rev_2: + case e1000_82547_rev_2: + hw->asf_firmware_present = TRUE; + break; + default: + break; + } + + return E1000_SUCCESS; +} + +/***************************************************************************** + * Set media type and TBI compatibility. + * + * hw - Struct containing variables accessed by shared code + * **************************************************************************/ +void +e1000_set_media_type(struct e1000_hw *hw) +{ + uint32_t status; + + DEBUGFUNC("e1000_set_media_type"); + + if(hw->mac_type != e1000_82543) { + /* tbi_compatibility is only valid on 82543 */ + hw->tbi_compatibility_en = FALSE; + } + + switch (hw->device_id) { + case E1000_DEV_ID_82545GM_SERDES: + case E1000_DEV_ID_82546GB_SERDES: + hw->media_type = e1000_media_type_internal_serdes; + break; + default: + if(hw->mac_type >= e1000_82543) { + status = E1000_READ_REG(hw, STATUS); + if(status & E1000_STATUS_TBIMODE) { + hw->media_type = e1000_media_type_fiber; + /* tbi_compatibility not valid on fiber */ + hw->tbi_compatibility_en = FALSE; + } else { + hw->media_type = e1000_media_type_copper; + } + } else { + /* This is an 82542 (fiber only) */ + hw->media_type = e1000_media_type_fiber; + } + } +} + +/****************************************************************************** + * Reset the transmit and receive units; mask and clear all interrupts. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +int32_t +e1000_reset_hw(struct e1000_hw *hw) +{ + uint32_t ctrl; + uint32_t ctrl_ext; + uint32_t icr; + uint32_t manc; + uint32_t led_ctrl; + + DEBUGFUNC("e1000_reset_hw"); + + /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ + if(hw->mac_type == e1000_82542_rev2_0) { + DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); + e1000_pci_clear_mwi(hw); + } + + /* Clear interrupt mask to stop board from generating interrupts */ + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, IMC, 0xffffffff); + + /* Disable the Transmit and Receive units. Then delay to allow + * any pending transactions to complete before we hit the MAC with + * the global reset. + */ + E1000_WRITE_REG(hw, RCTL, 0); + E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); + + /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ + hw->tbi_compatibility_on = FALSE; + + /* Delay to allow any outstanding PCI transactions to complete before + * resetting the device + */ + msec_delay(10); + + ctrl = E1000_READ_REG(hw, CTRL); + + /* Must reset the PHY before resetting the MAC */ + if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { + E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST)); + msec_delay(5); + } + + /* Issue a global reset to the MAC. This will reset the chip's + * transmit, receive, DMA, and link units. It will not effect + * the current PCI configuration. The global reset bit is self- + * clearing, and should clear within a microsecond. + */ + DEBUGOUT("Issuing a global reset to MAC\n"); + + switch(hw->mac_type) { + case e1000_82544: + case e1000_82540: + case e1000_82545: + case e1000_82546: + case e1000_82541: + case e1000_82541_rev_2: + /* These controllers can't ack the 64-bit write when issuing the + * reset, so use IO-mapping as a workaround to issue the reset */ + E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); + break; + case e1000_82545_rev_3: + case e1000_82546_rev_3: + /* Reset is performed on a shadow of the control register */ + E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST)); + break; + default: + E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); + break; + } + + /* After MAC reset, force reload of EEPROM to restore power-on settings to + * device. Later controllers reload the EEPROM automatically, so just wait + * for reload to complete. + */ + switch(hw->mac_type) { + case e1000_82542_rev2_0: + case e1000_82542_rev2_1: + case e1000_82543: + case e1000_82544: + /* Wait for reset to complete */ + udelay(10); + ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_EE_RST; + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + /* Wait for EEPROM reload */ + msec_delay(2); + break; + case e1000_82541: + case e1000_82541_rev_2: + case e1000_82547: + case e1000_82547_rev_2: + /* Wait for EEPROM reload */ + msec_delay(20); + break; + default: + /* Wait for EEPROM reload (it happens automatically) */ + msec_delay(5); + break; + } + + /* Disable HW ARPs on ASF enabled adapters */ + if(hw->mac_type >= e1000_82540) { + manc = E1000_READ_REG(hw, MANC); + manc &= ~(E1000_MANC_ARP_EN); + E1000_WRITE_REG(hw, MANC, manc); + } + + if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { + e1000_phy_init_script(hw); + + /* Configure activity LED after PHY reset */ + led_ctrl = E1000_READ_REG(hw, LEDCTL); + led_ctrl &= IGP_ACTIVITY_LED_MASK; + led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); + E1000_WRITE_REG(hw, LEDCTL, led_ctrl); + } + + /* Clear interrupt mask to stop board from generating interrupts */ + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, IMC, 0xffffffff); + + /* Clear any pending interrupt events. */ + icr = E1000_READ_REG(hw, ICR); + + /* If MWI was previously enabled, reenable it. */ + if(hw->mac_type == e1000_82542_rev2_0) { + if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) + e1000_pci_set_mwi(hw); + } + + return E1000_SUCCESS; +} + +/****************************************************************************** + * Performs basic configuration of the adapter. + * + * hw - Struct containing variables accessed by shared code + * + * Assumes that the controller has previously been reset and is in a + * post-reset uninitialized state. Initializes the receive address registers, + * multicast table, and VLAN filter table. Calls routines to setup link + * configuration and flow control settings. Clears all on-chip counters. Leaves + * the transmit and receive units disabled and uninitialized. + *****************************************************************************/ +int32_t +e1000_init_hw(struct e1000_hw *hw) +{ + uint32_t ctrl; + uint32_t i; + int32_t ret_val; + uint16_t pcix_cmd_word; + uint16_t pcix_stat_hi_word; + uint16_t cmd_mmrbc; + uint16_t stat_mmrbc; + DEBUGFUNC("e1000_init_hw"); + + /* Initialize Identification LED */ + ret_val = e1000_id_led_init(hw); + if(ret_val) { + DEBUGOUT("Error Initializing Identification LED\n"); + return ret_val; + } + + /* Set the media type and TBI compatibility */ + e1000_set_media_type(hw); + + /* Disabling VLAN filtering. */ + DEBUGOUT("Initializing the IEEE VLAN\n"); + E1000_WRITE_REG(hw, VET, 0); + + e1000_clear_vfta(hw); + + /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ + if(hw->mac_type == e1000_82542_rev2_0) { + DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); + e1000_pci_clear_mwi(hw); + E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); + E1000_WRITE_FLUSH(hw); + msec_delay(5); + } + + /* Setup the receive address. This involves initializing all of the Receive + * Address Registers (RARs 0 - 15). + */ + e1000_init_rx_addrs(hw); + + /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ + if(hw->mac_type == e1000_82542_rev2_0) { + E1000_WRITE_REG(hw, RCTL, 0); + E1000_WRITE_FLUSH(hw); + msec_delay(1); + if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) + e1000_pci_set_mwi(hw); + } + + /* Zero out the Multicast HASH table */ + DEBUGOUT("Zeroing the MTA\n"); + for(i = 0; i < E1000_MC_TBL_SIZE; i++) + E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); + + /* Set the PCI priority bit correctly in the CTRL register. This + * determines if the adapter gives priority to receives, or if it + * gives equal priority to transmits and receives. + */ + if(hw->dma_fairness) { + ctrl = E1000_READ_REG(hw, CTRL); + E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); + } + + switch(hw->mac_type) { + case e1000_82545_rev_3: + case e1000_82546_rev_3: + break; + default: + /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ + if(hw->bus_type == e1000_bus_type_pcix) { + e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word); + e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, + &pcix_stat_hi_word); + cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >> + PCIX_COMMAND_MMRBC_SHIFT; + stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> + PCIX_STATUS_HI_MMRBC_SHIFT; + if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) + stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; + if(cmd_mmrbc > stat_mmrbc) { + pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK; + pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; + e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, + &pcix_cmd_word); + } + } + break; + } + + /* Call a subroutine to configure the link and setup flow control. */ + ret_val = e1000_setup_link(hw); + + /* Set the transmit descriptor write-back policy */ + if(hw->mac_type > e1000_82544) { + ctrl = E1000_READ_REG(hw, TXDCTL); + ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; + E1000_WRITE_REG(hw, TXDCTL, ctrl); + } + + /* Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + e1000_clear_hw_cntrs(hw); + + return ret_val; +} + +/****************************************************************************** + * Adjust SERDES output amplitude based on EEPROM setting. + * + * hw - Struct containing variables accessed by shared code. + *****************************************************************************/ +static int32_t +e1000_adjust_serdes_amplitude(struct e1000_hw *hw) +{ + uint16_t eeprom_data; + int32_t ret_val; + + DEBUGFUNC("e1000_adjust_serdes_amplitude"); + + if(hw->media_type != e1000_media_type_internal_serdes) + return E1000_SUCCESS; + + switch(hw->mac_type) { + case e1000_82545_rev_3: + case e1000_82546_rev_3: + break; + default: + return E1000_SUCCESS; + } + + ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data); + if (ret_val) { + return ret_val; + } + + if(eeprom_data != EEPROM_RESERVED_WORD) { + /* Adjust SERDES output amplitude only. */ + eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); + if(ret_val) + return ret_val; + } + + return E1000_SUCCESS; +} + +/****************************************************************************** + * Configures flow control and link settings. + * + * hw - Struct containing variables accessed by shared code + * + * Determines which flow control settings to use. Calls the apropriate media- + * specific link configuration function. Configures the flow control settings. + * Assuming the adapter has a valid link partner, a valid link should be + * established. Assumes the hardware has previously been reset and the + * transmitter and receiver are not enabled. + *****************************************************************************/ +int32_t +e1000_setup_link(struct e1000_hw *hw) +{ + uint32_t ctrl_ext; + int32_t ret_val; + uint16_t eeprom_data; + + DEBUGFUNC("e1000_setup_link"); + + /* Read and store word 0x0F of the EEPROM. This word contains bits + * that determine the hardware's default PAUSE (flow control) mode, + * a bit that determines whether the HW defaults to enabling or + * disabling auto-negotiation, and the direction of the + * SW defined pins. If there is no SW over-ride of the flow + * control setting, then the variable hw->fc will + * be initialized based on a value in the EEPROM. + */ + if(e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data) < 0) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + + if(hw->fc == e1000_fc_default) { + if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) + hw->fc = e1000_fc_none; + else if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == + EEPROM_WORD0F_ASM_DIR) + hw->fc = e1000_fc_tx_pause; + else + hw->fc = e1000_fc_full; + } + + /* We want to save off the original Flow Control configuration just + * in case we get disconnected and then reconnected into a different + * hub or switch with different Flow Control capabilities. + */ + if(hw->mac_type == e1000_82542_rev2_0) + hw->fc &= (~e1000_fc_tx_pause); + + if((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) + hw->fc &= (~e1000_fc_rx_pause); + + hw->original_fc = hw->fc; + + DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc); + + /* Take the 4 bits from EEPROM word 0x0F that determine the initial + * polarity value for the SW controlled pins, and setup the + * Extended Device Control reg with that info. + * This is needed because one of the SW controlled pins is used for + * signal detection. So this should be done before e1000_setup_pcs_link() + * or e1000_phy_setup() is called. + */ + if(hw->mac_type == e1000_82543) { + ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << + SWDPIO__EXT_SHIFT); + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + } + + /* Call the necessary subroutine to configure the link. */ + ret_val = (hw->media_type == e1000_media_type_copper) ? + e1000_setup_copper_link(hw) : + e1000_setup_fiber_serdes_link(hw); + + /* Initialize the flow control address, type, and PAUSE timer + * registers to their default values. This is done even if flow + * control is disabled, because it does not hurt anything to + * initialize these registers. + */ + DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); + + E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); + E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); + E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); + E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); + + /* Set the flow control receive threshold registers. Normally, + * these registers will be set to a default threshold that may be + * adjusted later by the driver's runtime code. However, if the + * ability to transmit pause frames in not enabled, then these + * registers will be set to 0. + */ + if(!(hw->fc & e1000_fc_tx_pause)) { + E1000_WRITE_REG(hw, FCRTL, 0); + E1000_WRITE_REG(hw, FCRTH, 0); + } else { + /* We need to set up the Receive Threshold high and low water marks + * as well as (optionally) enabling the transmission of XON frames. + */ + if(hw->fc_send_xon) { + E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); + E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); + } else { + E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water); + E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); + } + } + return ret_val; +} + +/****************************************************************************** + * Sets up link for a fiber based or serdes based adapter + * + * hw - Struct containing variables accessed by shared code + * + * Manipulates Physical Coding Sublayer functions in order to configure + * link. Assumes the hardware has been previously reset and the transmitter + * and receiver are not enabled. + *****************************************************************************/ +static int32_t +e1000_setup_fiber_serdes_link(struct e1000_hw *hw) +{ + uint32_t ctrl; + uint32_t status; + uint32_t txcw = 0; + uint32_t i; + uint32_t signal = 0; + int32_t ret_val; + + DEBUGFUNC("e1000_setup_fiber_serdes_link"); + + /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be + * set when the optics detect a signal. On older adapters, it will be + * cleared when there is a signal. This applies to fiber media only. + * If we're on serdes media, adjust the output amplitude to value set in + * the EEPROM. + */ + ctrl = E1000_READ_REG(hw, CTRL); + if(hw->media_type == e1000_media_type_fiber) + signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; + + ret_val = e1000_adjust_serdes_amplitude(hw); + if(ret_val) + return ret_val; + + /* Take the link out of reset */ + ctrl &= ~(E1000_CTRL_LRST); + + /* Adjust VCO speed to improve BER performance */ + ret_val = e1000_set_vco_speed(hw); + if(ret_val) + return ret_val; + + e1000_config_collision_dist(hw); + + /* Check for a software override of the flow control settings, and setup + * the device accordingly. If auto-negotiation is enabled, then software + * will have to set the "PAUSE" bits to the correct value in the Tranmsit + * Config Word Register (TXCW) and re-start auto-negotiation. However, if + * auto-negotiation is disabled, then software will have to manually + * configure the two flow control enable bits in the CTRL register. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause frames, but + * not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames but we do + * not support receiving pause frames). + * 3: Both Rx and TX flow control (symmetric) are enabled. + */ + switch (hw->fc) { + case e1000_fc_none: + /* Flow control is completely disabled by a software over-ride. */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); + break; + case e1000_fc_rx_pause: + /* RX Flow control is enabled and TX Flow control is disabled by a + * software over-ride. Since there really isn't a way to advertise + * that we are capable of RX Pause ONLY, we will advertise that we + * support both symmetric and asymmetric RX PAUSE. Later, we will + * disable the adapter's ability to send PAUSE frames. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); + break; + case e1000_fc_tx_pause: + /* TX Flow control is enabled, and RX Flow control is disabled, by a + * software over-ride. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); + break; + case e1000_fc_full: + /* Flow control (both RX and TX) is enabled by a software over-ride. */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); + break; + default: + DEBUGOUT("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + break; + } + + /* Since auto-negotiation is enabled, take the link out of reset (the link + * will be in reset, because we previously reset the chip). This will + * restart auto-negotiation. If auto-neogtiation is successful then the + * link-up status bit will be set and the flow control enable bits (RFCE + * and TFCE) will be set according to their negotiated value. + */ + DEBUGOUT("Auto-negotiation enabled\n"); + + E1000_WRITE_REG(hw, TXCW, txcw); + E1000_WRITE_REG(hw, CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + + hw->txcw = txcw; + msec_delay(1); + + /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" + * indication in the Device Status Register. Time-out if a link isn't + * seen in 500 milliseconds seconds (Auto-negotiation should complete in + * less than 500 milliseconds even if the other end is doing it in SW). + * For internal serdes, we just assume a signal is present, then poll. + */ + if(hw->media_type == e1000_media_type_internal_serdes || + (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { + DEBUGOUT("Looking for Link\n"); + for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { + msec_delay(10); + status = E1000_READ_REG(hw, STATUS); + if(status & E1000_STATUS_LU) break; + } + if(i == (LINK_UP_TIMEOUT / 10)) { + DEBUGOUT("Never got a valid link from auto-neg!!!\n"); + hw->autoneg_failed = 1; + /* AutoNeg failed to achieve a link, so we'll call + * e1000_check_for_link. This routine will force the link up if + * we detect a signal. This will allow us to communicate with + * non-autonegotiating link partners. + */ + ret_val = e1000_check_for_link(hw); + if(ret_val) { + DEBUGOUT("Error while checking for link\n"); + return ret_val; + } + hw->autoneg_failed = 0; + } else { + hw->autoneg_failed = 0; + DEBUGOUT("Valid Link Found\n"); + } + } else { + DEBUGOUT("No Signal Detected\n"); + } + return E1000_SUCCESS; +} + +/****************************************************************************** +* Detects which PHY is present and the speed and duplex +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +static int32_t +e1000_setup_copper_link(struct e1000_hw *hw) +{ + uint32_t ctrl; + uint32_t led_ctrl; + int32_t ret_val; + uint16_t i; + uint16_t phy_data; + + DEBUGFUNC("e1000_setup_copper_link"); + + ctrl = E1000_READ_REG(hw, CTRL); + /* With 82543, we need to force speed and duplex on the MAC equal to what + * the PHY speed and duplex configuration is. In addition, we need to + * perform a hardware reset on the PHY to take it out of reset. + */ + if(hw->mac_type > e1000_82543) { + ctrl |= E1000_CTRL_SLU; + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, CTRL, ctrl); + } else { + ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); + E1000_WRITE_REG(hw, CTRL, ctrl); + e1000_phy_hw_reset(hw); + } + + /* Make sure we have a valid PHY */ + ret_val = e1000_detect_gig_phy(hw); + if(ret_val) { + DEBUGOUT("Error, did not detect valid phy.\n"); + return ret_val; + } + DEBUGOUT1("Phy ID = %x \n", hw->phy_id); + + /* Set PHY to class A mode (if necessary) */ + ret_val = e1000_set_phy_mode(hw); + if(ret_val) + return ret_val; + + if((hw->mac_type == e1000_82545_rev_3) || + (hw->mac_type == e1000_82546_rev_3)) { + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + phy_data |= 0x00000008; + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + } + + if(hw->mac_type <= e1000_82543 || + hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || + hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) + hw->phy_reset_disable = FALSE; + + if(!hw->phy_reset_disable) { + if (hw->phy_type == e1000_phy_igp) { + + ret_val = e1000_phy_reset(hw); + if(ret_val) { + DEBUGOUT("Error Resetting the PHY\n"); + return ret_val; + } + + /* Wait 10ms for MAC to configure PHY from eeprom settings */ + msec_delay(15); + + /* Configure activity LED after PHY reset */ + led_ctrl = E1000_READ_REG(hw, LEDCTL); + led_ctrl &= IGP_ACTIVITY_LED_MASK; + led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); + E1000_WRITE_REG(hw, LEDCTL, led_ctrl); + + /* disable lplu d3 during driver init */ + ret_val = e1000_set_d3_lplu_state(hw, FALSE); + if(ret_val) { + DEBUGOUT("Error Disabling LPLU D3\n"); + return ret_val; + } + + /* Configure mdi-mdix settings */ + ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, + &phy_data); + if(ret_val) + return ret_val; + + if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { + hw->dsp_config_state = e1000_dsp_config_disabled; + /* Force MDI for earlier revs of the IGP PHY */ + phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | + IGP01E1000_PSCR_FORCE_MDI_MDIX); + hw->mdix = 1; + + } else { + hw->dsp_config_state = e1000_dsp_config_enabled; + phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; + + switch (hw->mdix) { + case 1: + phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; + break; + case 2: + phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; + break; + case 0: + default: + phy_data |= IGP01E1000_PSCR_AUTO_MDIX; + break; + } + } + ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, + phy_data); + if(ret_val) + return ret_val; + + /* set auto-master slave resolution settings */ + if(hw->autoneg) { + e1000_ms_type phy_ms_setting = hw->master_slave; + + if(hw->ffe_config_state == e1000_ffe_config_active) + hw->ffe_config_state = e1000_ffe_config_enabled; + + if(hw->dsp_config_state == e1000_dsp_config_activated) + hw->dsp_config_state = e1000_dsp_config_enabled; + + /* when autonegotiation advertisment is only 1000Mbps then we + * should disable SmartSpeed and enable Auto MasterSlave + * resolution as hardware default. */ + if(hw->autoneg_advertised == ADVERTISE_1000_FULL) { + /* Disable SmartSpeed */ + ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &phy_data); + if(ret_val) + return ret_val; + phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = e1000_write_phy_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + phy_data); + if(ret_val) + return ret_val; + /* Set auto Master/Slave resolution process */ + ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); + if(ret_val) + return ret_val; + phy_data &= ~CR_1000T_MS_ENABLE; + ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); + if(ret_val) + return ret_val; + } + + ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); + if(ret_val) + return ret_val; + + /* load defaults for future use */ + hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? + ((phy_data & CR_1000T_MS_VALUE) ? + e1000_ms_force_master : + e1000_ms_force_slave) : + e1000_ms_auto; + + switch (phy_ms_setting) { + case e1000_ms_force_master: + phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); + break; + case e1000_ms_force_slave: + phy_data |= CR_1000T_MS_ENABLE; + phy_data &= ~(CR_1000T_MS_VALUE); + break; + case e1000_ms_auto: + phy_data &= ~CR_1000T_MS_ENABLE; + default: + break; + } + ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); + if(ret_val) + return ret_val; + } + } else { + /* Enable CRS on TX. This must be set for half-duplex operation. */ + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, + &phy_data); + if(ret_val) + return ret_val; + + phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; + + /* Options: + * MDI/MDI-X = 0 (default) + * 0 - Auto for all speeds + * 1 - MDI mode + * 2 - MDI-X mode + * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) + */ + phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; + + switch (hw->mdix) { + case 1: + phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; + break; + case 2: + phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; + break; + case 3: + phy_data |= M88E1000_PSCR_AUTO_X_1000T; + break; + case 0: + default: + phy_data |= M88E1000_PSCR_AUTO_X_MODE; + break; + } + + /* Options: + * disable_polarity_correction = 0 (default) + * Automatic Correction for Reversed Cable Polarity + * 0 - Disabled + * 1 - Enabled + */ + phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; + if(hw->disable_polarity_correction == 1) + phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, + phy_data); + if(ret_val) + return ret_val; + + /* Force TX_CLK in the Extended PHY Specific Control Register + * to 25MHz clock. + */ + ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, + &phy_data); + if(ret_val) + return ret_val; + + phy_data |= M88E1000_EPSCR_TX_CLK_25; + + if (hw->phy_revision < M88E1011_I_REV_4) { + /* Configure Master and Slave downshift values */ + phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | + M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); + phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | + M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); + ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, + phy_data); + if(ret_val) + return ret_val; + } + + /* SW Reset the PHY so all changes take effect */ + ret_val = e1000_phy_reset(hw); + if(ret_val) { + DEBUGOUT("Error Resetting the PHY\n"); + return ret_val; + } + } + + /* Options: + * autoneg = 1 (default) + * PHY will advertise value(s) parsed from + * autoneg_advertised and fc + * autoneg = 0 + * PHY will be set to 10H, 10F, 100H, or 100F + * depending on value parsed from forced_speed_duplex. + */ + + /* Is autoneg enabled? This is enabled by default or by software + * override. If so, call e1000_phy_setup_autoneg routine to parse the + * autoneg_advertised and fc options. If autoneg is NOT enabled, then + * the user should have provided a speed/duplex override. If so, then + * call e1000_phy_force_speed_duplex to parse and set this up. + */ + if(hw->autoneg) { + /* Perform some bounds checking on the hw->autoneg_advertised + * parameter. If this variable is zero, then set it to the default. + */ + hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; + + /* If autoneg_advertised is zero, we assume it was not defaulted + * by the calling code so we set to advertise full capability. + */ + if(hw->autoneg_advertised == 0) + hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; + + DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); + ret_val = e1000_phy_setup_autoneg(hw); + if(ret_val) { + DEBUGOUT("Error Setting up Auto-Negotiation\n"); + return ret_val; + } + DEBUGOUT("Restarting Auto-Neg\n"); + + /* Restart auto-negotiation by setting the Auto Neg Enable bit and + * the Auto Neg Restart bit in the PHY control register. + */ + ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); + if(ret_val) + return ret_val; + + phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); + ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); + if(ret_val) + return ret_val; + + /* Does the user want to wait for Auto-Neg to complete here, or + * check at a later time (for example, callback routine). + */ + if(hw->wait_autoneg_complete) { + ret_val = e1000_wait_autoneg(hw); + if(ret_val) { + DEBUGOUT("Error while waiting for autoneg to complete\n"); + return ret_val; + } + } + hw->get_link_status = TRUE; + } else { + DEBUGOUT("Forcing speed and duplex\n"); + ret_val = e1000_phy_force_speed_duplex(hw); + if(ret_val) { + DEBUGOUT("Error Forcing Speed and Duplex\n"); + return ret_val; + } + } + } /* !hw->phy_reset_disable */ + + /* Check link status. Wait up to 100 microseconds for link to become + * valid. + */ + for(i = 0; i < 10; i++) { + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); + if(ret_val) + return ret_val; + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); + if(ret_val) + return ret_val; + + if(phy_data & MII_SR_LINK_STATUS) { + /* We have link, so we need to finish the config process: + * 1) Set up the MAC to the current PHY speed/duplex + * if we are on 82543. If we + * are on newer silicon, we only need to configure + * collision distance in the Transmit Control Register. + * 2) Set up flow control on the MAC to that established with + * the link partner. + */ + if(hw->mac_type >= e1000_82544) { + e1000_config_collision_dist(hw); + } else { + ret_val = e1000_config_mac_to_phy(hw); + if(ret_val) { + DEBUGOUT("Error configuring MAC to PHY settings\n"); + return ret_val; + } + } + ret_val = e1000_config_fc_after_link_up(hw); + if(ret_val) { + DEBUGOUT("Error Configuring Flow Control\n"); + return ret_val; + } + DEBUGOUT("Valid link established!!!\n"); + + if(hw->phy_type == e1000_phy_igp) { + ret_val = e1000_config_dsp_after_link_change(hw, TRUE); + if(ret_val) { + DEBUGOUT("Error Configuring DSP after link up\n"); + return ret_val; + } + } + DEBUGOUT("Valid link established!!!\n"); + return E1000_SUCCESS; + } + udelay(10); + } + + DEBUGOUT("Unable to establish link!!!\n"); + return E1000_SUCCESS; +} + +/****************************************************************************** +* Configures PHY autoneg and flow control advertisement settings +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +int32_t +e1000_phy_setup_autoneg(struct e1000_hw *hw) +{ + int32_t ret_val; + uint16_t mii_autoneg_adv_reg; + uint16_t mii_1000t_ctrl_reg; + + DEBUGFUNC("e1000_phy_setup_autoneg"); + + /* Read the MII Auto-Neg Advertisement Register (Address 4). */ + ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); + if(ret_val) + return ret_val; + + /* Read the MII 1000Base-T Control Register (Address 9). */ + ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); + if(ret_val) + return ret_val; + + /* Need to parse both autoneg_advertised and fc and set up + * the appropriate PHY registers. First we will parse for + * autoneg_advertised software override. Since we can advertise + * a plethora of combinations, we need to check each bit + * individually. + */ + + /* First we clear all the 10/100 mb speed bits in the Auto-Neg + * Advertisement Register (Address 4) and the 1000 mb speed bits in + * the 1000Base-T Control Register (Address 9). + */ + mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; + mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; + + DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised); + + /* Do we want to advertise 10 Mb Half Duplex? */ + if(hw->autoneg_advertised & ADVERTISE_10_HALF) { + DEBUGOUT("Advertise 10mb Half duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; + } + + /* Do we want to advertise 10 Mb Full Duplex? */ + if(hw->autoneg_advertised & ADVERTISE_10_FULL) { + DEBUGOUT("Advertise 10mb Full duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; + } + + /* Do we want to advertise 100 Mb Half Duplex? */ + if(hw->autoneg_advertised & ADVERTISE_100_HALF) { + DEBUGOUT("Advertise 100mb Half duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; + } + + /* Do we want to advertise 100 Mb Full Duplex? */ + if(hw->autoneg_advertised & ADVERTISE_100_FULL) { + DEBUGOUT("Advertise 100mb Full duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; + } + + /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ + if(hw->autoneg_advertised & ADVERTISE_1000_HALF) { + DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n"); + } + + /* Do we want to advertise 1000 Mb Full Duplex? */ + if(hw->autoneg_advertised & ADVERTISE_1000_FULL) { + DEBUGOUT("Advertise 1000mb Full duplex\n"); + mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; + } + + /* Check for a software override of the flow control settings, and + * setup the PHY advertisement registers accordingly. If + * auto-negotiation is enabled, then software will have to set the + * "PAUSE" bits to the correct value in the Auto-Negotiation + * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause frames + * but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames + * but we do not support receiving pause frames). + * 3: Both Rx and TX flow control (symmetric) are enabled. + * other: No software override. The flow control configuration + * in the EEPROM is used. + */ + switch (hw->fc) { + case e1000_fc_none: /* 0 */ + /* Flow control (RX & TX) is completely disabled by a + * software over-ride. + */ + mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + case e1000_fc_rx_pause: /* 1 */ + /* RX Flow control is enabled, and TX Flow control is + * disabled, by a software over-ride. + */ + /* Since there really isn't a way to advertise that we are + * capable of RX Pause ONLY, we will advertise that we + * support both symmetric and asymmetric RX PAUSE. Later + * (in e1000_config_fc_after_link_up) we will disable the + *hw's ability to send PAUSE frames. + */ + mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + case e1000_fc_tx_pause: /* 2 */ + /* TX Flow control is enabled, and RX Flow control is + * disabled, by a software over-ride. + */ + mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; + mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; + break; + case e1000_fc_full: /* 3 */ + /* Flow control (both RX and TX) is enabled by a software + * over-ride. + */ + mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + default: + DEBUGOUT("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + } + + ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); + if(ret_val) + return ret_val; + + DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); + + ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); + if(ret_val) + return ret_val; + + return E1000_SUCCESS; +} + +/****************************************************************************** +* Force PHY speed and duplex settings to hw->forced_speed_duplex +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +static int32_t +e1000_phy_force_speed_duplex(struct e1000_hw *hw) +{ + uint32_t ctrl; + int32_t ret_val; + uint16_t mii_ctrl_reg; + uint16_t mii_status_reg; + uint16_t phy_data; + uint16_t i; + + DEBUGFUNC("e1000_phy_force_speed_duplex"); + + /* Turn off Flow control if we are forcing speed and duplex. */ + hw->fc = e1000_fc_none; + + DEBUGOUT1("hw->fc = %d\n", hw->fc); + + /* Read the Device Control Register. */ + ctrl = E1000_READ_REG(hw, CTRL); + + /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ + ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + ctrl &= ~(DEVICE_SPEED_MASK); + + /* Clear the Auto Speed Detect Enable bit. */ + ctrl &= ~E1000_CTRL_ASDE; + + /* Read the MII Control Register. */ + ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); + if(ret_val) + return ret_val; + + /* We need to disable autoneg in order to force link and duplex. */ + + mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; + + /* Are we forcing Full or Half Duplex? */ + if(hw->forced_speed_duplex == e1000_100_full || + hw->forced_speed_duplex == e1000_10_full) { + /* We want to force full duplex so we SET the full duplex bits in the + * Device and MII Control Registers. + */ + ctrl |= E1000_CTRL_FD; + mii_ctrl_reg |= MII_CR_FULL_DUPLEX; + DEBUGOUT("Full Duplex\n"); + } else { + /* We want to force half duplex so we CLEAR the full duplex bits in + * the Device and MII Control Registers. + */ + ctrl &= ~E1000_CTRL_FD; + mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; + DEBUGOUT("Half Duplex\n"); + } + + /* Are we forcing 100Mbps??? */ + if(hw->forced_speed_duplex == e1000_100_full || + hw->forced_speed_duplex == e1000_100_half) { + /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ + ctrl |= E1000_CTRL_SPD_100; + mii_ctrl_reg |= MII_CR_SPEED_100; + mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); + DEBUGOUT("Forcing 100mb "); + } else { + /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ + ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); + mii_ctrl_reg |= MII_CR_SPEED_10; + mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); + DEBUGOUT("Forcing 10mb "); + } + + e1000_config_collision_dist(hw); + + /* Write the configured values back to the Device Control Reg. */ + E1000_WRITE_REG(hw, CTRL, ctrl); + + if (hw->phy_type == e1000_phy_m88) { + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if(ret_val) + return ret_val; + + /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI + * forced whenever speed are duplex are forced. + */ + phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if(ret_val) + return ret_val; + + DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data); + + /* Need to reset the PHY or these changes will be ignored */ + mii_ctrl_reg |= MII_CR_RESET; + } else { + /* Clear Auto-Crossover to force MDI manually. IGP requires MDI + * forced whenever speed or duplex are forced. + */ + ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); + if(ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; + phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; + + ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); + if(ret_val) + return ret_val; + } + + /* Write back the modified PHY MII control register. */ + ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); + if(ret_val) + return ret_val; + + udelay(1); + + /* The wait_autoneg_complete flag may be a little misleading here. + * Since we are forcing speed and duplex, Auto-Neg is not enabled. + * But we do want to delay for a period while forcing only so we + * don't generate false No Link messages. So we will wait here + * only if the user has set wait_autoneg_complete to 1, which is + * the default. + */ + if(hw->wait_autoneg_complete) { + /* We will wait for autoneg to complete. */ + DEBUGOUT("Waiting for forced speed/duplex link.\n"); + mii_status_reg = 0; + + /* We will wait for autoneg to complete or 4.5 seconds to expire. */ + for(i = PHY_FORCE_TIME; i > 0; i--) { + /* Read the MII Status Register and wait for Auto-Neg Complete bit + * to be set. + */ + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if(ret_val) + return ret_val; + + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if(ret_val) + return ret_val; + + if(mii_status_reg & MII_SR_LINK_STATUS) break; + msec_delay(100); + } + if((i == 0) && + (hw->phy_type == e1000_phy_m88)) { + /* We didn't get link. Reset the DSP and wait again for link. */ + ret_val = e1000_phy_reset_dsp(hw); + if(ret_val) { + DEBUGOUT("Error Resetting PHY DSP\n"); + return ret_val; + } + } + /* This loop will early-out if the link condition has been met. */ + for(i = PHY_FORCE_TIME; i > 0; i--) { + if(mii_status_reg & MII_SR_LINK_STATUS) break; + msec_delay(100); + /* Read the MII Status Register and wait for Auto-Neg Complete bit + * to be set. + */ + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if(ret_val) + return ret_val; + + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if(ret_val) + return ret_val; + } + } + + if (hw->phy_type == e1000_phy_m88) { + /* Because we reset the PHY above, we need to re-force TX_CLK in the + * Extended PHY Specific Control Register to 25MHz clock. This value + * defaults back to a 2.5MHz clock when the PHY is reset. + */ + ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); + if(ret_val) + return ret_val; + + phy_data |= M88E1000_EPSCR_TX_CLK_25; + ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); + if(ret_val) + return ret_val; + + /* In addition, because of the s/w reset above, we need to enable CRS on + * TX. This must be set for both full and half duplex operation. + */ + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if(ret_val) + return ret_val; + + phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if(ret_val) + return ret_val; + + if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && + (!hw->autoneg) && + (hw->forced_speed_duplex == e1000_10_full || + hw->forced_speed_duplex == e1000_10_half)) { + ret_val = e1000_polarity_reversal_workaround(hw); + if(ret_val) + return ret_val; + } + } + return E1000_SUCCESS; +} + +/****************************************************************************** +* Sets the collision distance in the Transmit Control register +* +* hw - Struct containing variables accessed by shared code +* +* Link should have been established previously. Reads the speed and duplex +* information from the Device Status register. +******************************************************************************/ +void +e1000_config_collision_dist(struct e1000_hw *hw) +{ + uint32_t tctl; + + DEBUGFUNC("e1000_config_collision_dist"); + + tctl = E1000_READ_REG(hw, TCTL); + + tctl &= ~E1000_TCTL_COLD; + tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; + + E1000_WRITE_REG(hw, TCTL, tctl); + E1000_WRITE_FLUSH(hw); +} + +/****************************************************************************** +* Sets MAC speed and duplex settings to reflect the those in the PHY +* +* hw - Struct containing variables accessed by shared code +* mii_reg - data to write to the MII control register +* +* The contents of the PHY register containing the needed information need to +* be passed in. +******************************************************************************/ +static int32_t +e1000_config_mac_to_phy(struct e1000_hw *hw) +{ + uint32_t ctrl; + int32_t ret_val; + uint16_t phy_data; + + DEBUGFUNC("e1000_config_mac_to_phy"); + + /* Read the Device Control Register and set the bits to Force Speed + * and Duplex. + */ + ctrl = E1000_READ_REG(hw, CTRL); + ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); + + /* Set up duplex in the Device Control and Transmit Control + * registers depending on negotiated values. + */ + if (hw->phy_type == e1000_phy_igp) { + ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, + &phy_data); + if(ret_val) + return ret_val; + + if(phy_data & IGP01E1000_PSSR_FULL_DUPLEX) ctrl |= E1000_CTRL_FD; + else ctrl &= ~E1000_CTRL_FD; + + e1000_config_collision_dist(hw); + + /* Set up speed in the Device Control register depending on + * negotiated values. + */ + if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == + IGP01E1000_PSSR_SPEED_1000MBPS) + ctrl |= E1000_CTRL_SPD_1000; + else if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == + IGP01E1000_PSSR_SPEED_100MBPS) + ctrl |= E1000_CTRL_SPD_100; + } else { + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, + &phy_data); + if(ret_val) + return ret_val; + + if(phy_data & M88E1000_PSSR_DPLX) ctrl |= E1000_CTRL_FD; + else ctrl &= ~E1000_CTRL_FD; + + e1000_config_collision_dist(hw); + + /* Set up speed in the Device Control register depending on + * negotiated values. + */ + if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) + ctrl |= E1000_CTRL_SPD_1000; + else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) + ctrl |= E1000_CTRL_SPD_100; + } + /* Write the configured values back to the Device Control Reg. */ + E1000_WRITE_REG(hw, CTRL, ctrl); + return E1000_SUCCESS; +} + +/****************************************************************************** + * Forces the MAC's flow control settings. + * + * hw - Struct containing variables accessed by shared code + * + * Sets the TFCE and RFCE bits in the device control register to reflect + * the adapter settings. TFCE and RFCE need to be explicitly set by + * software when a Copper PHY is used because autonegotiation is managed + * by the PHY rather than the MAC. Software must also configure these + * bits when link is forced on a fiber connection. + *****************************************************************************/ +int32_t +e1000_force_mac_fc(struct e1000_hw *hw) +{ + uint32_t ctrl; + + DEBUGFUNC("e1000_force_mac_fc"); + + /* Get the current configuration of the Device Control Register */ + ctrl = E1000_READ_REG(hw, CTRL); + + /* Because we didn't get link via the internal auto-negotiation + * mechanism (we either forced link or we got link via PHY + * auto-neg), we have to manually enable/disable transmit an + * receive flow control. + * + * The "Case" statement below enables/disable flow control + * according to the "hw->fc" parameter. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause + * frames but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames + * frames but we do not receive pause frames). + * 3: Both Rx and TX flow control (symmetric) is enabled. + * other: No other values should be possible at this point. + */ + + switch (hw->fc) { + case e1000_fc_none: + ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); + break; + case e1000_fc_rx_pause: + ctrl &= (~E1000_CTRL_TFCE); + ctrl |= E1000_CTRL_RFCE; + break; + case e1000_fc_tx_pause: + ctrl &= (~E1000_CTRL_RFCE); + ctrl |= E1000_CTRL_TFCE; + break; + case e1000_fc_full: + ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); + break; + default: + DEBUGOUT("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + } + + /* Disable TX Flow Control for 82542 (rev 2.0) */ + if(hw->mac_type == e1000_82542_rev2_0) + ctrl &= (~E1000_CTRL_TFCE); + + E1000_WRITE_REG(hw, CTRL, ctrl); + return E1000_SUCCESS; +} + +/****************************************************************************** + * Configures flow control settings after link is established + * + * hw - Struct containing variables accessed by shared code + * + * Should be called immediately after a valid link has been established. + * Forces MAC flow control settings if link was forced. When in MII/GMII mode + * and autonegotiation is enabled, the MAC flow control settings will be set + * based on the flow control negotiated by the PHY. In TBI mode, the TFCE + * and RFCE bits will be automaticaly set to the negotiated flow control mode. + *****************************************************************************/ +int32_t +e1000_config_fc_after_link_up(struct e1000_hw *hw) +{ + int32_t ret_val; + uint16_t mii_status_reg; + uint16_t mii_nway_adv_reg; + uint16_t mii_nway_lp_ability_reg; + uint16_t speed; + uint16_t duplex; + + DEBUGFUNC("e1000_config_fc_after_link_up"); + + /* Check for the case where we have fiber media and auto-neg failed + * so we had to force link. In this case, we need to force the + * configuration of the MAC to match the "fc" parameter. + */ + if(((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) || + ((hw->media_type == e1000_media_type_internal_serdes) && (hw->autoneg_failed)) || + ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) { + ret_val = e1000_force_mac_fc(hw); + if(ret_val) { + DEBUGOUT("Error forcing flow control settings\n"); + return ret_val; + } + } + + /* Check for the case where we have copper media and auto-neg is + * enabled. In this case, we need to check and see if Auto-Neg + * has completed, and if so, how the PHY and link partner has + * flow control configured. + */ + if((hw->media_type == e1000_media_type_copper) && hw->autoneg) { + /* Read the MII Status Register and check to see if AutoNeg + * has completed. We read this twice because this reg has + * some "sticky" (latched) bits. + */ + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if(ret_val) + return ret_val; + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if(ret_val) + return ret_val; + + if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) { + /* The AutoNeg process has completed, so we now need to + * read both the Auto Negotiation Advertisement Register + * (Address 4) and the Auto_Negotiation Base Page Ability + * Register (Address 5) to determine how flow control was + * negotiated. + */ + ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, + &mii_nway_adv_reg); + if(ret_val) + return ret_val; + ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, + &mii_nway_lp_ability_reg); + if(ret_val) + return ret_val; + + /* Two bits in the Auto Negotiation Advertisement Register + * (Address 4) and two bits in the Auto Negotiation Base + * Page Ability Register (Address 5) determine flow control + * for both the PHY and the link partner. The following + * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, + * 1999, describes these PAUSE resolution bits and how flow + * control is determined based upon these settings. + * NOTE: DC = Don't Care + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution + *-------|---------|-------|---------|-------------------- + * 0 | 0 | DC | DC | e1000_fc_none + * 0 | 1 | 0 | DC | e1000_fc_none + * 0 | 1 | 1 | 0 | e1000_fc_none + * 0 | 1 | 1 | 1 | e1000_fc_tx_pause + * 1 | 0 | 0 | DC | e1000_fc_none + * 1 | DC | 1 | DC | e1000_fc_full + * 1 | 1 | 0 | 0 | e1000_fc_none + * 1 | 1 | 0 | 1 | e1000_fc_rx_pause + * + */ + /* Are both PAUSE bits set to 1? If so, this implies + * Symmetric Flow Control is enabled at both ends. The + * ASM_DIR bits are irrelevant per the spec. + * + * For Symmetric Flow Control: + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | DC | 1 | DC | e1000_fc_full + * + */ + if((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { + /* Now we need to check if the user selected RX ONLY + * of pause frames. In this case, we had to advertise + * FULL flow control because we could not advertise RX + * ONLY. Hence, we must now check to see if we need to + * turn OFF the TRANSMISSION of PAUSE frames. + */ + if(hw->original_fc == e1000_fc_full) { + hw->fc = e1000_fc_full; + DEBUGOUT("Flow Control = FULL.\r\n"); + } else { + hw->fc = e1000_fc_rx_pause; + DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); + } + } + /* For receiving PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 0 | 1 | 1 | 1 | e1000_fc_tx_pause + * + */ + else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { + hw->fc = e1000_fc_tx_pause; + DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n"); + } + /* For transmitting PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | 1 | 0 | 1 | e1000_fc_rx_pause + * + */ + else if((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { + hw->fc = e1000_fc_rx_pause; + DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); + } + /* Per the IEEE spec, at this point flow control should be + * disabled. However, we want to consider that we could + * be connected to a legacy switch that doesn't advertise + * desired flow control, but can be forced on the link + * partner. So if we advertised no flow control, that is + * what we will resolve to. If we advertised some kind of + * receive capability (Rx Pause Only or Full Flow Control) + * and the link partner advertised none, we will configure + * ourselves to enable Rx Flow Control only. We can do + * this safely for two reasons: If the link partner really + * didn't want flow control enabled, and we enable Rx, no + * harm done since we won't be receiving any PAUSE frames + * anyway. If the intent on the link partner was to have + * flow control enabled, then by us enabling RX only, we + * can at least receive pause frames and process them. + * This is a good idea because in most cases, since we are + * predominantly a server NIC, more times than not we will + * be asked to delay transmission of packets than asking + * our link partner to pause transmission of frames. + */ + else if((hw->original_fc == e1000_fc_none || + hw->original_fc == e1000_fc_tx_pause) || + hw->fc_strict_ieee) { + hw->fc = e1000_fc_none; + DEBUGOUT("Flow Control = NONE.\r\n"); + } else { + hw->fc = e1000_fc_rx_pause; + DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); + } + + /* Now we need to do one last check... If we auto- + * negotiated to HALF DUPLEX, flow control should not be + * enabled per IEEE 802.3 spec. + */ + ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); + if(ret_val) { + DEBUGOUT("Error getting link speed and duplex\n"); + return ret_val; + } + + if(duplex == HALF_DUPLEX) + hw->fc = e1000_fc_none; + + /* Now we call a subroutine to actually force the MAC + * controller to use the correct flow control settings. + */ + ret_val = e1000_force_mac_fc(hw); + if(ret_val) { + DEBUGOUT("Error forcing flow control settings\n"); + return ret_val; + } + } else { + DEBUGOUT("Copper PHY and Auto Neg has not completed.\r\n"); + } + } + return E1000_SUCCESS; +} + +/****************************************************************************** + * Checks to see if the link status of the hardware has changed. + * + * hw - Struct containing variables accessed by shared code + * + * Called by any function that needs to check the link status of the adapter. + *****************************************************************************/ +int32_t +e1000_check_for_link(struct e1000_hw *hw) +{ + uint32_t rxcw = 0; + uint32_t ctrl; + uint32_t status; + uint32_t rctl; + uint32_t icr; + uint32_t signal = 0; + int32_t ret_val; + uint16_t phy_data; + + DEBUGFUNC("e1000_check_for_link"); + + ctrl = E1000_READ_REG(hw, CTRL); + status = E1000_READ_REG(hw, STATUS); + + /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be + * set when the optics detect a signal. On older adapters, it will be + * cleared when there is a signal. This applies to fiber media only. + */ + if((hw->media_type == e1000_media_type_fiber) || + (hw->media_type == e1000_media_type_internal_serdes)) { + rxcw = E1000_READ_REG(hw, RXCW); + + if(hw->media_type == e1000_media_type_fiber) { + signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; + if(status & E1000_STATUS_LU) + hw->get_link_status = FALSE; + } + } + + /* If we have a copper PHY then we only want to go out to the PHY + * registers to see if Auto-Neg has completed and/or if our link + * status has changed. The get_link_status flag will be set if we + * receive a Link Status Change interrupt or we have Rx Sequence + * Errors. + */ + if((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { + /* First we want to see if the MII Status Register reports + * link. If so, then we want to get the current speed/duplex + * of the PHY. + * Read the register twice since the link bit is sticky. + */ + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); + if(ret_val) + return ret_val; + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); + if(ret_val) + return ret_val; + + if(phy_data & MII_SR_LINK_STATUS) { + hw->get_link_status = FALSE; + /* Check if there was DownShift, must be checked immediately after + * link-up */ + e1000_check_downshift(hw); + + /* If we are on 82544 or 82543 silicon and speed/duplex + * are forced to 10H or 10F, then we will implement the polarity + * reversal workaround. We disable interrupts first, and upon + * returning, place the devices interrupt state to its previous + * value except for the link status change interrupt which will + * happen due to the execution of this workaround. + */ + + if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && + (!hw->autoneg) && + (hw->forced_speed_duplex == e1000_10_full || + hw->forced_speed_duplex == e1000_10_half)) { + E1000_WRITE_REG(hw, IMC, 0xffffffff); + ret_val = e1000_polarity_reversal_workaround(hw); + icr = E1000_READ_REG(hw, ICR); + E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC)); + E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK); + } + + } else { + /* No link detected */ + e1000_config_dsp_after_link_change(hw, FALSE); + return 0; + } + + /* If we are forcing speed/duplex, then we simply return since + * we have already determined whether we have link or not. + */ + if(!hw->autoneg) return -E1000_ERR_CONFIG; + + /* optimize the dsp settings for the igp phy */ + e1000_config_dsp_after_link_change(hw, TRUE); + + /* We have a M88E1000 PHY and Auto-Neg is enabled. If we + * have Si on board that is 82544 or newer, Auto + * Speed Detection takes care of MAC speed/duplex + * configuration. So we only need to configure Collision + * Distance in the MAC. Otherwise, we need to force + * speed/duplex on the MAC to the current PHY speed/duplex + * settings. + */ + if(hw->mac_type >= e1000_82544) + e1000_config_collision_dist(hw); + else { + ret_val = e1000_config_mac_to_phy(hw); + if(ret_val) { + DEBUGOUT("Error configuring MAC to PHY settings\n"); + return ret_val; + } + } + + /* Configure Flow Control now that Auto-Neg has completed. First, we + * need to restore the desired flow control settings because we may + * have had to re-autoneg with a different link partner. + */ + ret_val = e1000_config_fc_after_link_up(hw); + if(ret_val) { + DEBUGOUT("Error configuring flow control\n"); + return ret_val; + } + + /* At this point we know that we are on copper and we have + * auto-negotiated link. These are conditions for checking the link + * partner capability register. We use the link speed to determine if + * TBI compatibility needs to be turned on or off. If the link is not + * at gigabit speed, then TBI compatibility is not needed. If we are + * at gigabit speed, we turn on TBI compatibility. + */ + if(hw->tbi_compatibility_en) { + uint16_t speed, duplex; + e1000_get_speed_and_duplex(hw, &speed, &duplex); + if(speed != SPEED_1000) { + /* If link speed is not set to gigabit speed, we do not need + * to enable TBI compatibility. + */ + if(hw->tbi_compatibility_on) { + /* If we previously were in the mode, turn it off. */ + rctl = E1000_READ_REG(hw, RCTL); + rctl &= ~E1000_RCTL_SBP; + E1000_WRITE_REG(hw, RCTL, rctl); + hw->tbi_compatibility_on = FALSE; + } + } else { + /* If TBI compatibility is was previously off, turn it on. For + * compatibility with a TBI link partner, we will store bad + * packets. Some frames have an additional byte on the end and + * will look like CRC errors to to the hardware. + */ + if(!hw->tbi_compatibility_on) { + hw->tbi_compatibility_on = TRUE; + rctl = E1000_READ_REG(hw, RCTL); + rctl |= E1000_RCTL_SBP; + E1000_WRITE_REG(hw, RCTL, rctl); + } + } + } + } + /* If we don't have link (auto-negotiation failed or link partner cannot + * auto-negotiate), the cable is plugged in (we have signal), and our + * link partner is not trying to auto-negotiate with us (we are receiving + * idles or data), we need to force link up. We also need to give + * auto-negotiation time to complete, in case the cable was just plugged + * in. The autoneg_failed flag does this. + */ + else if((((hw->media_type == e1000_media_type_fiber) && + ((ctrl & E1000_CTRL_SWDPIN1) == signal)) || + (hw->media_type == e1000_media_type_internal_serdes)) && + (!(status & E1000_STATUS_LU)) && + (!(rxcw & E1000_RXCW_C))) { + if(hw->autoneg_failed == 0) { + hw->autoneg_failed = 1; + return 0; + } + DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n"); + + /* Disable auto-negotiation in the TXCW register */ + E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE)); + + /* Force link-up and also force full-duplex. */ + ctrl = E1000_READ_REG(hw, CTRL); + ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); + E1000_WRITE_REG(hw, CTRL, ctrl); + + /* Configure Flow Control after forcing link up. */ + ret_val = e1000_config_fc_after_link_up(hw); + if(ret_val) { + DEBUGOUT("Error configuring flow control\n"); + return ret_val; + } + } + /* If we are forcing link and we are receiving /C/ ordered sets, re-enable + * auto-negotiation in the TXCW register and disable forced link in the + * Device Control register in an attempt to auto-negotiate with our link + * partner. + */ + else if(((hw->media_type == e1000_media_type_fiber) || + (hw->media_type == e1000_media_type_internal_serdes)) && + (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { + DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\r\n"); + E1000_WRITE_REG(hw, TXCW, hw->txcw); + E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU)); + + hw->serdes_link_down = FALSE; + } + /* If we force link for non-auto-negotiation switch, check link status + * based on MAC synchronization for internal serdes media type. + */ + else if((hw->media_type == e1000_media_type_internal_serdes) && + !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { + /* SYNCH bit and IV bit are sticky. */ + udelay(10); + if(E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) { + if(!(rxcw & E1000_RXCW_IV)) { + hw->serdes_link_down = FALSE; + DEBUGOUT("SERDES: Link is up.\n"); + } + } else { + hw->serdes_link_down = TRUE; + DEBUGOUT("SERDES: Link is down.\n"); + } + } + if((hw->media_type == e1000_media_type_internal_serdes) && + (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { + hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS)); + } + return E1000_SUCCESS; +} + +/****************************************************************************** + * Detects the current speed and duplex settings of the hardware. + * + * hw - Struct containing variables accessed by shared code + * speed - Speed of the connection + * duplex - Duplex setting of the connection + *****************************************************************************/ +int32_t +e1000_get_speed_and_duplex(struct e1000_hw *hw, + uint16_t *speed, + uint16_t *duplex) +{ + uint32_t status; + int32_t ret_val; + uint16_t phy_data; + + DEBUGFUNC("e1000_get_speed_and_duplex"); + + if(hw->mac_type >= e1000_82543) { + status = E1000_READ_REG(hw, STATUS); + if(status & E1000_STATUS_SPEED_1000) { + *speed = SPEED_1000; + DEBUGOUT("1000 Mbs, "); + } else if(status & E1000_STATUS_SPEED_100) { + *speed = SPEED_100; + DEBUGOUT("100 Mbs, "); + } else { + *speed = SPEED_10; + DEBUGOUT("10 Mbs, "); + } + + if(status & E1000_STATUS_FD) { + *duplex = FULL_DUPLEX; + DEBUGOUT("Full Duplex\r\n"); + } else { + *duplex = HALF_DUPLEX; + DEBUGOUT(" Half Duplex\r\n"); + } + } else { + DEBUGOUT("1000 Mbs, Full Duplex\r\n"); + *speed = SPEED_1000; + *duplex = FULL_DUPLEX; + } + + /* IGP01 PHY may advertise full duplex operation after speed downgrade even + * if it is operating at half duplex. Here we set the duplex settings to + * match the duplex in the link partner's capabilities. + */ + if(hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { + ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); + if(ret_val) + return ret_val; + + if(!(phy_data & NWAY_ER_LP_NWAY_CAPS)) + *duplex = HALF_DUPLEX; + else { + ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data); + if(ret_val) + return ret_val; + if((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) || + (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) + *duplex = HALF_DUPLEX; + } + } + + return E1000_SUCCESS; +} + +/****************************************************************************** +* Blocks until autoneg completes or times out (~4.5 seconds) +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +int32_t +e1000_wait_autoneg(struct e1000_hw *hw) +{ + int32_t ret_val; + uint16_t i; + uint16_t phy_data; + + DEBUGFUNC("e1000_wait_autoneg"); + DEBUGOUT("Waiting for Auto-Neg to complete.\n"); + + /* We will wait for autoneg to complete or 4.5 seconds to expire. */ + for(i = PHY_AUTO_NEG_TIME; i > 0; i--) { + /* Read the MII Status Register and wait for Auto-Neg + * Complete bit to be set. + */ + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); + if(ret_val) + return ret_val; + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); + if(ret_val) + return ret_val; + if(phy_data & MII_SR_AUTONEG_COMPLETE) { + return E1000_SUCCESS; + } + msec_delay(100); + } + return E1000_SUCCESS; +} + +/****************************************************************************** +* Raises the Management Data Clock +* +* hw - Struct containing variables accessed by shared code +* ctrl - Device control register's current value +******************************************************************************/ +static void +e1000_raise_mdi_clk(struct e1000_hw *hw, + uint32_t *ctrl) +{ + /* Raise the clock input to the Management Data Clock (by setting the MDC + * bit), and then delay 10 microseconds. + */ + E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC)); + E1000_WRITE_FLUSH(hw); + udelay(10); +} + +/****************************************************************************** +* Lowers the Management Data Clock +* +* hw - Struct containing variables accessed by shared code +* ctrl - Device control register's current value +******************************************************************************/ +static void +e1000_lower_mdi_clk(struct e1000_hw *hw, + uint32_t *ctrl) +{ + /* Lower the clock input to the Management Data Clock (by clearing the MDC + * bit), and then delay 10 microseconds. + */ + E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC)); + E1000_WRITE_FLUSH(hw); + udelay(10); +} + +/****************************************************************************** +* Shifts data bits out to the PHY +* +* hw - Struct containing variables accessed by shared code +* data - Data to send out to the PHY +* count - Number of bits to shift out +* +* Bits are shifted out in MSB to LSB order. +******************************************************************************/ +static void +e1000_shift_out_mdi_bits(struct e1000_hw *hw, + uint32_t data, + uint16_t count) +{ + uint32_t ctrl; + uint32_t mask; + + /* We need to shift "count" number of bits out to the PHY. So, the value + * in the "data" parameter will be shifted out to the PHY one bit at a + * time. In order to do this, "data" must be broken down into bits. + */ + mask = 0x01; + mask <<= (count - 1); + + ctrl = E1000_READ_REG(hw, CTRL); + + /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ + ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); + + while(mask) { + /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and + * then raising and lowering the Management Data Clock. A "0" is + * shifted out to the PHY by setting the MDIO bit to "0" and then + * raising and lowering the clock. + */ + if(data & mask) ctrl |= E1000_CTRL_MDIO; + else ctrl &= ~E1000_CTRL_MDIO; + + E1000_WRITE_REG(hw, CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + + udelay(10); + + e1000_raise_mdi_clk(hw, &ctrl); + e1000_lower_mdi_clk(hw, &ctrl); + + mask = mask >> 1; + } +} + +/****************************************************************************** +* Shifts data bits in from the PHY +* +* hw - Struct containing variables accessed by shared code +* +* Bits are shifted in in MSB to LSB order. +******************************************************************************/ +static uint16_t +e1000_shift_in_mdi_bits(struct e1000_hw *hw) +{ + uint32_t ctrl; + uint16_t data = 0; + uint8_t i; + + /* In order to read a register from the PHY, we need to shift in a total + * of 18 bits from the PHY. The first two bit (turnaround) times are used + * to avoid contention on the MDIO pin when a read operation is performed. + * These two bits are ignored by us and thrown away. Bits are "shifted in" + * by raising the input to the Management Data Clock (setting the MDC bit), + * and then reading the value of the MDIO bit. + */ + ctrl = E1000_READ_REG(hw, CTRL); + + /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ + ctrl &= ~E1000_CTRL_MDIO_DIR; + ctrl &= ~E1000_CTRL_MDIO; + + E1000_WRITE_REG(hw, CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + + /* Raise and Lower the clock before reading in the data. This accounts for + * the turnaround bits. The first clock occurred when we clocked out the + * last bit of the Register Address. + */ + e1000_raise_mdi_clk(hw, &ctrl); + e1000_lower_mdi_clk(hw, &ctrl); + + for(data = 0, i = 0; i < 16; i++) { + data = data << 1; + e1000_raise_mdi_clk(hw, &ctrl); + ctrl = E1000_READ_REG(hw, CTRL); + /* Check to see if we shifted in a "1". */ + if(ctrl & E1000_CTRL_MDIO) data |= 1; + e1000_lower_mdi_clk(hw, &ctrl); + } + + e1000_raise_mdi_clk(hw, &ctrl); + e1000_lower_mdi_clk(hw, &ctrl); + + return data; +} + +/***************************************************************************** +* Reads the value from a PHY register, if the value is on a specific non zero +* page, sets the page first. +* hw - Struct containing variables accessed by shared code +* reg_addr - address of the PHY register to read +******************************************************************************/ +int32_t +e1000_read_phy_reg(struct e1000_hw *hw, + uint32_t reg_addr, + uint16_t *phy_data) +{ + uint32_t ret_val; + + DEBUGFUNC("e1000_read_phy_reg"); + + + if(hw->phy_type == e1000_phy_igp && + (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { + ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, + (uint16_t)reg_addr); + if(ret_val) { + return ret_val; + } + } + + ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, + phy_data); + + return ret_val; +} + +int32_t +e1000_read_phy_reg_ex(struct e1000_hw *hw, + uint32_t reg_addr, + uint16_t *phy_data) +{ + uint32_t i; + uint32_t mdic = 0; + const uint32_t phy_addr = 1; + + DEBUGFUNC("e1000_read_phy_reg_ex"); + + if(reg_addr > MAX_PHY_REG_ADDRESS) { + DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); + return -E1000_ERR_PARAM; + } + + if(hw->mac_type > e1000_82543) { + /* Set up Op-code, Phy Address, and register address in the MDI + * Control register. The MAC will take care of interfacing with the + * PHY to retrieve the desired data. + */ + mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | + (phy_addr << E1000_MDIC_PHY_SHIFT) | + (E1000_MDIC_OP_READ)); + + E1000_WRITE_REG(hw, MDIC, mdic); + + /* Poll the ready bit to see if the MDI read completed */ + for(i = 0; i < 64; i++) { + udelay(50); + mdic = E1000_READ_REG(hw, MDIC); + if(mdic & E1000_MDIC_READY) break; + } + if(!(mdic & E1000_MDIC_READY)) { + DEBUGOUT("MDI Read did not complete\n"); + return -E1000_ERR_PHY; + } + if(mdic & E1000_MDIC_ERROR) { + DEBUGOUT("MDI Error\n"); + return -E1000_ERR_PHY; + } + *phy_data = (uint16_t) mdic; + } else { + /* We must first send a preamble through the MDIO pin to signal the + * beginning of an MII instruction. This is done by sending 32 + * consecutive "1" bits. + */ + e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); + + /* Now combine the next few fields that are required for a read + * operation. We use this method instead of calling the + * e1000_shift_out_mdi_bits routine five different times. The format of + * a MII read instruction consists of a shift out of 14 bits and is + * defined as follows: + * <Preamble><SOF><Op Code><Phy Addr><Reg Addr> + * followed by a shift in of 18 bits. This first two bits shifted in + * are TurnAround bits used to avoid contention on the MDIO pin when a + * READ operation is performed. These two bits are thrown away + * followed by a shift in of 16 bits which contains the desired data. + */ + mdic = ((reg_addr) | (phy_addr << 5) | + (PHY_OP_READ << 10) | (PHY_SOF << 12)); + + e1000_shift_out_mdi_bits(hw, mdic, 14); + + /* Now that we've shifted out the read command to the MII, we need to + * "shift in" the 16-bit value (18 total bits) of the requested PHY + * register address. + */ + *phy_data = e1000_shift_in_mdi_bits(hw); + } + return E1000_SUCCESS; +} + +/****************************************************************************** +* Writes a value to a PHY register +* +* hw - Struct containing variables accessed by shared code +* reg_addr - address of the PHY register to write +* data - data to write to the PHY +******************************************************************************/ +int32_t +e1000_write_phy_reg(struct e1000_hw *hw, + uint32_t reg_addr, + uint16_t phy_data) +{ + uint32_t ret_val; + + DEBUGFUNC("e1000_write_phy_reg"); + + + if(hw->phy_type == e1000_phy_igp && + (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { + ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, + (uint16_t)reg_addr); + if(ret_val) { + return ret_val; + } + } + + ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, + phy_data); + + return ret_val; +} + +int32_t +e1000_write_phy_reg_ex(struct e1000_hw *hw, + uint32_t reg_addr, + uint16_t phy_data) +{ + uint32_t i; + uint32_t mdic = 0; + const uint32_t phy_addr = 1; + + DEBUGFUNC("e1000_write_phy_reg_ex"); + + if(reg_addr > MAX_PHY_REG_ADDRESS) { + DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); + return -E1000_ERR_PARAM; + } + + if(hw->mac_type > e1000_82543) { + /* Set up Op-code, Phy Address, register address, and data intended + * for the PHY register in the MDI Control register. The MAC will take + * care of interfacing with the PHY to send the desired data. + */ + mdic = (((uint32_t) phy_data) | + (reg_addr << E1000_MDIC_REG_SHIFT) | + (phy_addr << E1000_MDIC_PHY_SHIFT) | + (E1000_MDIC_OP_WRITE)); + + E1000_WRITE_REG(hw, MDIC, mdic); + + /* Poll the ready bit to see if the MDI read completed */ + for(i = 0; i < 640; i++) { + udelay(5); + mdic = E1000_READ_REG(hw, MDIC); + if(mdic & E1000_MDIC_READY) break; + } + if(!(mdic & E1000_MDIC_READY)) { + DEBUGOUT("MDI Write did not complete\n"); + return -E1000_ERR_PHY; + } + } else { + /* We'll need to use the SW defined pins to shift the write command + * out to the PHY. We first send a preamble to the PHY to signal the + * beginning of the MII instruction. This is done by sending 32 + * consecutive "1" bits. + */ + e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); + + /* Now combine the remaining required fields that will indicate a + * write operation. We use this method instead of calling the + * e1000_shift_out_mdi_bits routine for each field in the command. The + * format of a MII write instruction is as follows: + * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. + */ + mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | + (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); + mdic <<= 16; + mdic |= (uint32_t) phy_data; + + e1000_shift_out_mdi_bits(hw, mdic, 32); + } + + return E1000_SUCCESS; +} + +/****************************************************************************** +* Returns the PHY to the power-on reset state +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +void +e1000_phy_hw_reset(struct e1000_hw *hw) +{ + uint32_t ctrl, ctrl_ext; + uint32_t led_ctrl; + + DEBUGFUNC("e1000_phy_hw_reset"); + + DEBUGOUT("Resetting Phy...\n"); + + if(hw->mac_type > e1000_82543) { + /* Read the device control register and assert the E1000_CTRL_PHY_RST + * bit. Then, take it out of reset. + */ + ctrl = E1000_READ_REG(hw, CTRL); + E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); + E1000_WRITE_FLUSH(hw); + msec_delay(10); + E1000_WRITE_REG(hw, CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + } else { + /* Read the Extended Device Control Register, assert the PHY_RESET_DIR + * bit to put the PHY into reset. Then, take it out of reset. + */ + ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; + ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + msec_delay(10); + ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + } + udelay(150); + + if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { + /* Configure activity LED after PHY reset */ + led_ctrl = E1000_READ_REG(hw, LEDCTL); + led_ctrl &= IGP_ACTIVITY_LED_MASK; + led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); + E1000_WRITE_REG(hw, LEDCTL, led_ctrl); + } +} + +/****************************************************************************** +* Resets the PHY +* +* hw - Struct containing variables accessed by shared code +* +* Sets bit 15 of the MII Control regiser +******************************************************************************/ +int32_t +e1000_phy_reset(struct e1000_hw *hw) +{ + int32_t ret_val; + uint16_t phy_data; + + DEBUGFUNC("e1000_phy_reset"); + + if(hw->mac_type != e1000_82541_rev_2) { + ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); + if(ret_val) + return ret_val; + + phy_data |= MII_CR_RESET; + ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); + if(ret_val) + return ret_val; + + udelay(1); + } else e1000_phy_hw_reset(hw); + + if(hw->phy_type == e1000_phy_igp) + e1000_phy_init_script(hw); + + return E1000_SUCCESS; +} + +/****************************************************************************** +* Probes the expected PHY address for known PHY IDs +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +int32_t +e1000_detect_gig_phy(struct e1000_hw *hw) +{ + int32_t phy_init_status, ret_val; + uint16_t phy_id_high, phy_id_low; + boolean_t match = FALSE; + + DEBUGFUNC("e1000_detect_gig_phy"); + + /* Read the PHY ID Registers to identify which PHY is onboard. */ + ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); + if(ret_val) + return ret_val; + + hw->phy_id = (uint32_t) (phy_id_high << 16); + udelay(20); + ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); + if(ret_val) + return ret_val; + + hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK); + hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK; + + switch(hw->mac_type) { + case e1000_82543: + if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE; + break; + case e1000_82544: + if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE; + break; + case e1000_82540: + case e1000_82545: + case e1000_82545_rev_3: + case e1000_82546: + case e1000_82546_rev_3: + if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE; + break; + case e1000_82541: + case e1000_82541_rev_2: + case e1000_82547: + case e1000_82547_rev_2: + if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE; + break; + default: + DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); + return -E1000_ERR_CONFIG; + } + phy_init_status = e1000_set_phy_type(hw); + + if ((match) && (phy_init_status == E1000_SUCCESS)) { + DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id); + return E1000_SUCCESS; + } + DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id); + return -E1000_ERR_PHY; +} + +/****************************************************************************** +* Resets the PHY's DSP +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +static int32_t +e1000_phy_reset_dsp(struct e1000_hw *hw) +{ + int32_t ret_val; + DEBUGFUNC("e1000_phy_reset_dsp"); + + do { + ret_val = e1000_write_phy_reg(hw, 29, 0x001d); + if(ret_val) break; + ret_val = e1000_write_phy_reg(hw, 30, 0x00c1); + if(ret_val) break; + ret_val = e1000_write_phy_reg(hw, 30, 0x0000); + if(ret_val) break; + ret_val = E1000_SUCCESS; + } while(0); + + return ret_val; +} + +/****************************************************************************** +* Get PHY information from various PHY registers for igp PHY only. +* +* hw - Struct containing variables accessed by shared code +* phy_info - PHY information structure +******************************************************************************/ +int32_t +e1000_phy_igp_get_info(struct e1000_hw *hw, + struct e1000_phy_info *phy_info) +{ + int32_t ret_val; + uint16_t phy_data, polarity, min_length, max_length, average; + + DEBUGFUNC("e1000_phy_igp_get_info"); + + /* The downshift status is checked only once, after link is established, + * and it stored in the hw->speed_downgraded parameter. */ + phy_info->downshift = hw->speed_downgraded; + + /* IGP01E1000 does not need to support it. */ + phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; + + /* IGP01E1000 always correct polarity reversal */ + phy_info->polarity_correction = e1000_polarity_reversal_enabled; + + /* Check polarity status */ + ret_val = e1000_check_polarity(hw, &polarity); + if(ret_val) + return ret_val; + + phy_info->cable_polarity = polarity; + + ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); + if(ret_val) + return ret_val; + + phy_info->mdix_mode = (phy_data & IGP01E1000_PSSR_MDIX) >> + IGP01E1000_PSSR_MDIX_SHIFT; + + if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == + IGP01E1000_PSSR_SPEED_1000MBPS) { + /* Local/Remote Receiver Information are only valid at 1000 Mbps */ + ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); + if(ret_val) + return ret_val; + + phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >> + SR_1000T_LOCAL_RX_STATUS_SHIFT; + phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >> + SR_1000T_REMOTE_RX_STATUS_SHIFT; + + /* Get cable length */ + ret_val = e1000_get_cable_length(hw, &min_length, &max_length); + if(ret_val) + return ret_val; + + /* transalte to old method */ + average = (max_length + min_length) / 2; + + if(average <= e1000_igp_cable_length_50) + phy_info->cable_length = e1000_cable_length_50; + else if(average <= e1000_igp_cable_length_80) + phy_info->cable_length = e1000_cable_length_50_80; + else if(average <= e1000_igp_cable_length_110) + phy_info->cable_length = e1000_cable_length_80_110; + else if(average <= e1000_igp_cable_length_140) + phy_info->cable_length = e1000_cable_length_110_140; + else + phy_info->cable_length = e1000_cable_length_140; + } + + return E1000_SUCCESS; +} + +/****************************************************************************** +* Get PHY information from various PHY registers fot m88 PHY only. +* +* hw - Struct containing variables accessed by shared code +* phy_info - PHY information structure +******************************************************************************/ +int32_t +e1000_phy_m88_get_info(struct e1000_hw *hw, + struct e1000_phy_info *phy_info) +{ + int32_t ret_val; + uint16_t phy_data, polarity; + + DEBUGFUNC("e1000_phy_m88_get_info"); + + /* The downshift status is checked only once, after link is established, + * and it stored in the hw->speed_downgraded parameter. */ + phy_info->downshift = hw->speed_downgraded; + + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if(ret_val) + return ret_val; + + phy_info->extended_10bt_distance = + (phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >> + M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT; + phy_info->polarity_correction = + (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >> + M88E1000_PSCR_POLARITY_REVERSAL_SHIFT; + + /* Check polarity status */ + ret_val = e1000_check_polarity(hw, &polarity); + if(ret_val) + return ret_val; + phy_info->cable_polarity = polarity; + + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); + if(ret_val) + return ret_val; + + phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >> + M88E1000_PSSR_MDIX_SHIFT; + + if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { + /* Cable Length Estimation and Local/Remote Receiver Information + * are only valid at 1000 Mbps. + */ + phy_info->cable_length = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >> + M88E1000_PSSR_CABLE_LENGTH_SHIFT); + + ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); + if(ret_val) + return ret_val; + + phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >> + SR_1000T_LOCAL_RX_STATUS_SHIFT; + + phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >> + SR_1000T_REMOTE_RX_STATUS_SHIFT; + } + + return E1000_SUCCESS; +} + +/****************************************************************************** +* Get PHY information from various PHY registers +* +* hw - Struct containing variables accessed by shared code +* phy_info - PHY information structure +******************************************************************************/ +int32_t +e1000_phy_get_info(struct e1000_hw *hw, + struct e1000_phy_info *phy_info) +{ + int32_t ret_val; + uint16_t phy_data; + + DEBUGFUNC("e1000_phy_get_info"); + + phy_info->cable_length = e1000_cable_length_undefined; + phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined; + phy_info->cable_polarity = e1000_rev_polarity_undefined; + phy_info->downshift = e1000_downshift_undefined; + phy_info->polarity_correction = e1000_polarity_reversal_undefined; + phy_info->mdix_mode = e1000_auto_x_mode_undefined; + phy_info->local_rx = e1000_1000t_rx_status_undefined; + phy_info->remote_rx = e1000_1000t_rx_status_undefined; + + if(hw->media_type != e1000_media_type_copper) { + DEBUGOUT("PHY info is only valid for copper media\n"); + return -E1000_ERR_CONFIG; + } + + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); + if(ret_val) + return ret_val; + + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); + if(ret_val) + return ret_val; + + if((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { + DEBUGOUT("PHY info is only valid if link is up\n"); + return -E1000_ERR_CONFIG; + } + + if(hw->phy_type == e1000_phy_igp) + return e1000_phy_igp_get_info(hw, phy_info); + else + return e1000_phy_m88_get_info(hw, phy_info); +} + +int32_t +e1000_validate_mdi_setting(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_validate_mdi_settings"); + + if(!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { + DEBUGOUT("Invalid MDI setting detected\n"); + hw->mdix = 1; + return -E1000_ERR_CONFIG; + } + return E1000_SUCCESS; +} + + +/****************************************************************************** + * Sets up eeprom variables in the hw struct. Must be called after mac_type + * is configured. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +void +e1000_init_eeprom_params(struct e1000_hw *hw) +{ + struct e1000_eeprom_info *eeprom = &hw->eeprom; + uint32_t eecd = E1000_READ_REG(hw, EECD); + uint16_t eeprom_size; + + DEBUGFUNC("e1000_init_eeprom_params"); + + switch (hw->mac_type) { + case e1000_82542_rev2_0: + case e1000_82542_rev2_1: + case e1000_82543: + case e1000_82544: + eeprom->type = e1000_eeprom_microwire; + eeprom->word_size = 64; + eeprom->opcode_bits = 3; + eeprom->address_bits = 6; + eeprom->delay_usec = 50; + break; + case e1000_82540: + case e1000_82545: + case e1000_82545_rev_3: + case e1000_82546: + case e1000_82546_rev_3: + eeprom->type = e1000_eeprom_microwire; + eeprom->opcode_bits = 3; + eeprom->delay_usec = 50; + if(eecd & E1000_EECD_SIZE) { + eeprom->word_size = 256; + eeprom->address_bits = 8; + } else { + eeprom->word_size = 64; + eeprom->address_bits = 6; + } + break; + case e1000_82541: + case e1000_82541_rev_2: + case e1000_82547: + case e1000_82547_rev_2: + if (eecd & E1000_EECD_TYPE) { + eeprom->type = e1000_eeprom_spi; + eeprom->opcode_bits = 8; + eeprom->delay_usec = 1; + if (eecd & E1000_EECD_ADDR_BITS) { + eeprom->page_size = 32; + eeprom->address_bits = 16; + } else { + eeprom->page_size = 8; + eeprom->address_bits = 8; + } + } else { + eeprom->type = e1000_eeprom_microwire; + eeprom->opcode_bits = 3; + eeprom->delay_usec = 50; + if (eecd & E1000_EECD_ADDR_BITS) { + eeprom->word_size = 256; + eeprom->address_bits = 8; + } else { + eeprom->word_size = 64; + eeprom->address_bits = 6; + } + } + break; + default: + break; + } + + if (eeprom->type == e1000_eeprom_spi) { + eeprom->word_size = 64; + if (e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size) == 0) { + eeprom_size &= EEPROM_SIZE_MASK; + + switch (eeprom_size) { + case EEPROM_SIZE_16KB: + eeprom->word_size = 8192; + break; + case EEPROM_SIZE_8KB: + eeprom->word_size = 4096; + break; + case EEPROM_SIZE_4KB: + eeprom->word_size = 2048; + break; + case EEPROM_SIZE_2KB: + eeprom->word_size = 1024; + break; + case EEPROM_SIZE_1KB: + eeprom->word_size = 512; + break; + case EEPROM_SIZE_512B: + eeprom->word_size = 256; + break; + case EEPROM_SIZE_128B: + default: + eeprom->word_size = 64; + break; + } + } + } +} + +/****************************************************************************** + * Raises the EEPROM's clock input. + * + * hw - Struct containing variables accessed by shared code + * eecd - EECD's current value + *****************************************************************************/ +static void +e1000_raise_ee_clk(struct e1000_hw *hw, + uint32_t *eecd) +{ + /* Raise the clock input to the EEPROM (by setting the SK bit), and then + * wait <delay> microseconds. + */ + *eecd = *eecd | E1000_EECD_SK; + E1000_WRITE_REG(hw, EECD, *eecd); + E1000_WRITE_FLUSH(hw); + udelay(hw->eeprom.delay_usec); +} + +/****************************************************************************** + * Lowers the EEPROM's clock input. + * + * hw - Struct containing variables accessed by shared code + * eecd - EECD's current value + *****************************************************************************/ +static void +e1000_lower_ee_clk(struct e1000_hw *hw, + uint32_t *eecd) +{ + /* Lower the clock input to the EEPROM (by clearing the SK bit), and then + * wait 50 microseconds. + */ + *eecd = *eecd & ~E1000_EECD_SK; + E1000_WRITE_REG(hw, EECD, *eecd); + E1000_WRITE_FLUSH(hw); + udelay(hw->eeprom.delay_usec); +} + +/****************************************************************************** + * Shift data bits out to the EEPROM. + * + * hw - Struct containing variables accessed by shared code + * data - data to send to the EEPROM + * count - number of bits to shift out + *****************************************************************************/ +static void +e1000_shift_out_ee_bits(struct e1000_hw *hw, + uint16_t data, + uint16_t count) +{ + struct e1000_eeprom_info *eeprom = &hw->eeprom; + uint32_t eecd; + uint32_t mask; + + /* We need to shift "count" bits out to the EEPROM. So, value in the + * "data" parameter will be shifted out to the EEPROM one bit at a time. + * In order to do this, "data" must be broken down into bits. + */ + mask = 0x01 << (count - 1); + eecd = E1000_READ_REG(hw, EECD); + if (eeprom->type == e1000_eeprom_microwire) { + eecd &= ~E1000_EECD_DO; + } else if (eeprom->type == e1000_eeprom_spi) { + eecd |= E1000_EECD_DO; + } + do { + /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", + * and then raising and then lowering the clock (the SK bit controls + * the clock input to the EEPROM). A "0" is shifted out to the EEPROM + * by setting "DI" to "0" and then raising and then lowering the clock. + */ + eecd &= ~E1000_EECD_DI; + + if(data & mask) + eecd |= E1000_EECD_DI; + + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + + udelay(eeprom->delay_usec); + + e1000_raise_ee_clk(hw, &eecd); + e1000_lower_ee_clk(hw, &eecd); + + mask = mask >> 1; + + } while(mask); + + /* We leave the "DI" bit set to "0" when we leave this routine. */ + eecd &= ~E1000_EECD_DI; + E1000_WRITE_REG(hw, EECD, eecd); +} + +/****************************************************************************** + * Shift data bits in from the EEPROM + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static uint16_t +e1000_shift_in_ee_bits(struct e1000_hw *hw, + uint16_t count) +{ + uint32_t eecd; + uint32_t i; + uint16_t data; + + /* In order to read a register from the EEPROM, we need to shift 'count' + * bits in from the EEPROM. Bits are "shifted in" by raising the clock + * input to the EEPROM (setting the SK bit), and then reading the value of + * the "DO" bit. During this "shifting in" process the "DI" bit should + * always be clear. + */ + + eecd = E1000_READ_REG(hw, EECD); + + eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); + data = 0; + + for(i = 0; i < count; i++) { + data = data << 1; + e1000_raise_ee_clk(hw, &eecd); + + eecd = E1000_READ_REG(hw, EECD); + + eecd &= ~(E1000_EECD_DI); + if(eecd & E1000_EECD_DO) + data |= 1; + + e1000_lower_ee_clk(hw, &eecd); + } + + return data; +} + +/****************************************************************************** + * Prepares EEPROM for access + * + * hw - Struct containing variables accessed by shared code + * + * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This + * function should be called before issuing a command to the EEPROM. + *****************************************************************************/ +static int32_t +e1000_acquire_eeprom(struct e1000_hw *hw) +{ + struct e1000_eeprom_info *eeprom = &hw->eeprom; + uint32_t eecd, i=0; + + DEBUGFUNC("e1000_acquire_eeprom"); + + eecd = E1000_READ_REG(hw, EECD); + + /* Request EEPROM Access */ + if(hw->mac_type > e1000_82544) { + eecd |= E1000_EECD_REQ; + E1000_WRITE_REG(hw, EECD, eecd); + eecd = E1000_READ_REG(hw, EECD); + while((!(eecd & E1000_EECD_GNT)) && + (i < E1000_EEPROM_GRANT_ATTEMPTS)) { + i++; + udelay(5); + eecd = E1000_READ_REG(hw, EECD); + } + if(!(eecd & E1000_EECD_GNT)) { + eecd &= ~E1000_EECD_REQ; + E1000_WRITE_REG(hw, EECD, eecd); + DEBUGOUT("Could not acquire EEPROM grant\n"); + return -E1000_ERR_EEPROM; + } + } + + /* Setup EEPROM for Read/Write */ + + if (eeprom->type == e1000_eeprom_microwire) { + /* Clear SK and DI */ + eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); + E1000_WRITE_REG(hw, EECD, eecd); + + /* Set CS */ + eecd |= E1000_EECD_CS; + E1000_WRITE_REG(hw, EECD, eecd); + } else if (eeprom->type == e1000_eeprom_spi) { + /* Clear SK and CS */ + eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); + E1000_WRITE_REG(hw, EECD, eecd); + udelay(1); + } + + return E1000_SUCCESS; +} + +/****************************************************************************** + * Returns EEPROM to a "standby" state + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static void +e1000_standby_eeprom(struct e1000_hw *hw) +{ + struct e1000_eeprom_info *eeprom = &hw->eeprom; + uint32_t eecd; + + eecd = E1000_READ_REG(hw, EECD); + + if(eeprom->type == e1000_eeprom_microwire) { + eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + udelay(eeprom->delay_usec); + + /* Clock high */ + eecd |= E1000_EECD_SK; + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + udelay(eeprom->delay_usec); + + /* Select EEPROM */ + eecd |= E1000_EECD_CS; + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + udelay(eeprom->delay_usec); + + /* Clock low */ + eecd &= ~E1000_EECD_SK; + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + udelay(eeprom->delay_usec); + } else if(eeprom->type == e1000_eeprom_spi) { + /* Toggle CS to flush commands */ + eecd |= E1000_EECD_CS; + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + udelay(eeprom->delay_usec); + eecd &= ~E1000_EECD_CS; + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + udelay(eeprom->delay_usec); + } +} + +/****************************************************************************** + * Terminates a command by inverting the EEPROM's chip select pin + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static void +e1000_release_eeprom(struct e1000_hw *hw) +{ + uint32_t eecd; + + DEBUGFUNC("e1000_release_eeprom"); + + eecd = E1000_READ_REG(hw, EECD); + + if (hw->eeprom.type == e1000_eeprom_spi) { + eecd |= E1000_EECD_CS; /* Pull CS high */ + eecd &= ~E1000_EECD_SK; /* Lower SCK */ + + E1000_WRITE_REG(hw, EECD, eecd); + + udelay(hw->eeprom.delay_usec); + } else if(hw->eeprom.type == e1000_eeprom_microwire) { + /* cleanup eeprom */ + + /* CS on Microwire is active-high */ + eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); + + E1000_WRITE_REG(hw, EECD, eecd); + + /* Rising edge of clock */ + eecd |= E1000_EECD_SK; + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + udelay(hw->eeprom.delay_usec); + + /* Falling edge of clock */ + eecd &= ~E1000_EECD_SK; + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + udelay(hw->eeprom.delay_usec); + } + + /* Stop requesting EEPROM access */ + if(hw->mac_type > e1000_82544) { + eecd &= ~E1000_EECD_REQ; + E1000_WRITE_REG(hw, EECD, eecd); + } +} + +/****************************************************************************** + * Reads a 16 bit word from the EEPROM. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +int32_t +e1000_spi_eeprom_ready(struct e1000_hw *hw) +{ + uint16_t retry_count = 0; + uint8_t spi_stat_reg; + + DEBUGFUNC("e1000_spi_eeprom_ready"); + + /* Read "Status Register" repeatedly until the LSB is cleared. The + * EEPROM will signal that the command has been completed by clearing + * bit 0 of the internal status register. If it's not cleared within + * 5 milliseconds, then error out. + */ + retry_count = 0; + do { + e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, + hw->eeprom.opcode_bits); + spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8); + if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) + break; + + udelay(5); + retry_count += 5; + + e1000_standby_eeprom(hw); + } while(retry_count < EEPROM_MAX_RETRY_SPI); + + /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and + * only 0-5mSec on 5V devices) + */ + if(retry_count >= EEPROM_MAX_RETRY_SPI) { + DEBUGOUT("SPI EEPROM Status error\n"); + return -E1000_ERR_EEPROM; + } + + return E1000_SUCCESS; +} + +/****************************************************************************** + * Reads a 16 bit word from the EEPROM. + * + * hw - Struct containing variables accessed by shared code + * offset - offset of word in the EEPROM to read + * data - word read from the EEPROM + * words - number of words to read + *****************************************************************************/ +int32_t +e1000_read_eeprom(struct e1000_hw *hw, + uint16_t offset, + uint16_t words, + uint16_t *data) +{ + struct e1000_eeprom_info *eeprom = &hw->eeprom; + uint32_t i = 0; + + DEBUGFUNC("e1000_read_eeprom"); + /* A check for invalid values: offset too large, too many words, and not + * enough words. + */ + if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || + (words == 0)) { + DEBUGOUT("\"words\" parameter out of bounds\n"); + return -E1000_ERR_EEPROM; + } + + /* Prepare the EEPROM for reading */ + if(e1000_acquire_eeprom(hw) != E1000_SUCCESS) + return -E1000_ERR_EEPROM; + + if(eeprom->type == e1000_eeprom_spi) { + uint16_t word_in; + uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; + + if(e1000_spi_eeprom_ready(hw)) { + e1000_release_eeprom(hw); + return -E1000_ERR_EEPROM; + } + + e1000_standby_eeprom(hw); + + /* Some SPI eeproms use the 8th address bit embedded in the opcode */ + if((eeprom->address_bits == 8) && (offset >= 128)) + read_opcode |= EEPROM_A8_OPCODE_SPI; + + /* Send the READ command (opcode + addr) */ + e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); + e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits); + + /* Read the data. The address of the eeprom internally increments with + * each byte (spi) being read, saving on the overhead of eeprom setup + * and tear-down. The address counter will roll over if reading beyond + * the size of the eeprom, thus allowing the entire memory to be read + * starting from any offset. */ + for (i = 0; i < words; i++) { + word_in = e1000_shift_in_ee_bits(hw, 16); + data[i] = (word_in >> 8) | (word_in << 8); + } + } else if(eeprom->type == e1000_eeprom_microwire) { + for (i = 0; i < words; i++) { + /* Send the READ command (opcode + addr) */ + e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE, + eeprom->opcode_bits); + e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i), + eeprom->address_bits); + + /* Read the data. For microwire, each word requires the overhead + * of eeprom setup and tear-down. */ + data[i] = e1000_shift_in_ee_bits(hw, 16); + e1000_standby_eeprom(hw); + } + } + + /* End this read operation */ + e1000_release_eeprom(hw); + + return E1000_SUCCESS; +} + +/****************************************************************************** + * Verifies that the EEPROM has a valid checksum + * + * hw - Struct containing variables accessed by shared code + * + * Reads the first 64 16 bit words of the EEPROM and sums the values read. + * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is + * valid. + *****************************************************************************/ +int32_t +e1000_validate_eeprom_checksum(struct e1000_hw *hw) +{ + uint16_t checksum = 0; + uint16_t i, eeprom_data; + + DEBUGFUNC("e1000_validate_eeprom_checksum"); + + for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { + if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + checksum += eeprom_data; + } + + if(checksum == (uint16_t) EEPROM_SUM) + return E1000_SUCCESS; + else { + DEBUGOUT("EEPROM Checksum Invalid\n"); + return -E1000_ERR_EEPROM; + } +} + +/****************************************************************************** + * Calculates the EEPROM checksum and writes it to the EEPROM + * + * hw - Struct containing variables accessed by shared code + * + * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA. + * Writes the difference to word offset 63 of the EEPROM. + *****************************************************************************/ +int32_t +e1000_update_eeprom_checksum(struct e1000_hw *hw) +{ + uint16_t checksum = 0; + uint16_t i, eeprom_data; + + DEBUGFUNC("e1000_update_eeprom_checksum"); + + for(i = 0; i < EEPROM_CHECKSUM_REG; i++) { + if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + checksum += eeprom_data; + } + checksum = (uint16_t) EEPROM_SUM - checksum; + if(e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { + DEBUGOUT("EEPROM Write Error\n"); + return -E1000_ERR_EEPROM; + } + return E1000_SUCCESS; +} + +/****************************************************************************** + * Parent function for writing words to the different EEPROM types. + * + * hw - Struct containing variables accessed by shared code + * offset - offset within the EEPROM to be written to + * words - number of words to write + * data - 16 bit word to be written to the EEPROM + * + * If e1000_update_eeprom_checksum is not called after this function, the + * EEPROM will most likely contain an invalid checksum. + *****************************************************************************/ +int32_t +e1000_write_eeprom(struct e1000_hw *hw, + uint16_t offset, + uint16_t words, + uint16_t *data) +{ + struct e1000_eeprom_info *eeprom = &hw->eeprom; + int32_t status = 0; + + DEBUGFUNC("e1000_write_eeprom"); + + /* A check for invalid values: offset too large, too many words, and not + * enough words. + */ + if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || + (words == 0)) { + DEBUGOUT("\"words\" parameter out of bounds\n"); + return -E1000_ERR_EEPROM; + } + + /* Prepare the EEPROM for writing */ + if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) + return -E1000_ERR_EEPROM; + + if(eeprom->type == e1000_eeprom_microwire) { + status = e1000_write_eeprom_microwire(hw, offset, words, data); + } else { + status = e1000_write_eeprom_spi(hw, offset, words, data); + msec_delay(10); + } + + /* Done with writing */ + e1000_release_eeprom(hw); + + return status; +} + +/****************************************************************************** + * Writes a 16 bit word to a given offset in an SPI EEPROM. + * + * hw - Struct containing variables accessed by shared code + * offset - offset within the EEPROM to be written to + * words - number of words to write + * data - pointer to array of 8 bit words to be written to the EEPROM + * + *****************************************************************************/ +int32_t +e1000_write_eeprom_spi(struct e1000_hw *hw, + uint16_t offset, + uint16_t words, + uint16_t *data) +{ + struct e1000_eeprom_info *eeprom = &hw->eeprom; + uint16_t widx = 0; + + DEBUGFUNC("e1000_write_eeprom_spi"); + + while (widx < words) { + uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI; + + if(e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM; + + e1000_standby_eeprom(hw); + + /* Send the WRITE ENABLE command (8 bit opcode ) */ + e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI, + eeprom->opcode_bits); + + e1000_standby_eeprom(hw); + + /* Some SPI eeproms use the 8th address bit embedded in the opcode */ + if((eeprom->address_bits == 8) && (offset >= 128)) + write_opcode |= EEPROM_A8_OPCODE_SPI; + + /* Send the Write command (8-bit opcode + addr) */ + e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits); + + e1000_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2), + eeprom->address_bits); + + /* Send the data */ + + /* Loop to allow for up to whole page write (32 bytes) of eeprom */ + while (widx < words) { + uint16_t word_out = data[widx]; + word_out = (word_out >> 8) | (word_out << 8); + e1000_shift_out_ee_bits(hw, word_out, 16); + widx++; + + /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE + * operation, while the smaller eeproms are capable of an 8-byte + * PAGE WRITE operation. Break the inner loop to pass new address + */ + if((((offset + widx)*2) % eeprom->page_size) == 0) { + e1000_standby_eeprom(hw); + break; + } + } + } + + return E1000_SUCCESS; +} + +/****************************************************************************** + * Writes a 16 bit word to a given offset in a Microwire EEPROM. + * + * hw - Struct containing variables accessed by shared code + * offset - offset within the EEPROM to be written to + * words - number of words to write + * data - pointer to array of 16 bit words to be written to the EEPROM + * + *****************************************************************************/ +int32_t +e1000_write_eeprom_microwire(struct e1000_hw *hw, + uint16_t offset, + uint16_t words, + uint16_t *data) +{ + struct e1000_eeprom_info *eeprom = &hw->eeprom; + uint32_t eecd; + uint16_t words_written = 0; + uint16_t i = 0; + + DEBUGFUNC("e1000_write_eeprom_microwire"); + + /* Send the write enable command to the EEPROM (3-bit opcode plus + * 6/8-bit dummy address beginning with 11). It's less work to include + * the 11 of the dummy address as part of the opcode than it is to shift + * it over the correct number of bits for the address. This puts the + * EEPROM into write/erase mode. + */ + e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE, + (uint16_t)(eeprom->opcode_bits + 2)); + + e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2)); + + /* Prepare the EEPROM */ + e1000_standby_eeprom(hw); + + while (words_written < words) { + /* Send the Write command (3-bit opcode + addr) */ + e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE, + eeprom->opcode_bits); + + e1000_shift_out_ee_bits(hw, (uint16_t)(offset + words_written), + eeprom->address_bits); + + /* Send the data */ + e1000_shift_out_ee_bits(hw, data[words_written], 16); + + /* Toggle the CS line. This in effect tells the EEPROM to execute + * the previous command. + */ + e1000_standby_eeprom(hw); + + /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will + * signal that the command has been completed by raising the DO signal. + * If DO does not go high in 10 milliseconds, then error out. + */ + for(i = 0; i < 200; i++) { + eecd = E1000_READ_REG(hw, EECD); + if(eecd & E1000_EECD_DO) break; + udelay(50); + } + if(i == 200) { + DEBUGOUT("EEPROM Write did not complete\n"); + return -E1000_ERR_EEPROM; + } + + /* Recover from write */ + e1000_standby_eeprom(hw); + + words_written++; + } + + /* Send the write disable command to the EEPROM (3-bit opcode plus + * 6/8-bit dummy address beginning with 10). It's less work to include + * the 10 of the dummy address as part of the opcode than it is to shift + * it over the correct number of bits for the address. This takes the + * EEPROM out of write/erase mode. + */ + e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE, + (uint16_t)(eeprom->opcode_bits + 2)); + + e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2)); + + return E1000_SUCCESS; +} + +/****************************************************************************** + * Reads the adapter's part number from the EEPROM + * + * hw - Struct containing variables accessed by shared code + * part_num - Adapter's part number + *****************************************************************************/ +int32_t +e1000_read_part_num(struct e1000_hw *hw, + uint32_t *part_num) +{ + uint16_t offset = EEPROM_PBA_BYTE_1; + uint16_t eeprom_data; + + DEBUGFUNC("e1000_read_part_num"); + + /* Get word 0 from EEPROM */ + if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + /* Save word 0 in upper half of part_num */ + *part_num = (uint32_t) (eeprom_data << 16); + + /* Get word 1 from EEPROM */ + if(e1000_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + /* Save word 1 in lower half of part_num */ + *part_num |= eeprom_data; + + return E1000_SUCCESS; +} + +/****************************************************************************** + * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the + * second function of dual function devices + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +int32_t +e1000_read_mac_addr(struct e1000_hw * hw) +{ + uint16_t offset; + uint16_t eeprom_data, i; + + DEBUGFUNC("e1000_read_mac_addr"); + + for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) { + offset = i >> 1; + if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF); + hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8); + } + if(((hw->mac_type == e1000_82546) || (hw->mac_type == e1000_82546_rev_3)) && + (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) + hw->perm_mac_addr[5] ^= 0x01; + + for(i = 0; i < NODE_ADDRESS_SIZE; i++) + hw->mac_addr[i] = hw->perm_mac_addr[i]; + return E1000_SUCCESS; +} + +/****************************************************************************** + * Initializes receive address filters. + * + * hw - Struct containing variables accessed by shared code + * + * Places the MAC address in receive address register 0 and clears the rest + * of the receive addresss registers. Clears the multicast table. Assumes + * the receiver is in reset when the routine is called. + *****************************************************************************/ +void +e1000_init_rx_addrs(struct e1000_hw *hw) +{ + uint32_t i; + + DEBUGFUNC("e1000_init_rx_addrs"); + + /* Setup the receive address. */ + DEBUGOUT("Programming MAC Address into RAR[0]\n"); + + e1000_rar_set(hw, hw->mac_addr, 0); + + /* Zero out the other 15 receive addresses. */ + DEBUGOUT("Clearing RAR[1-15]\n"); + for(i = 1; i < E1000_RAR_ENTRIES; i++) { + E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); + E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); + } +} + +/****************************************************************************** + * Updates the MAC's list of multicast addresses. + * + * hw - Struct containing variables accessed by shared code + * mc_addr_list - the list of new multicast addresses + * mc_addr_count - number of addresses + * pad - number of bytes between addresses in the list + * rar_used_count - offset where to start adding mc addresses into the RAR's + * + * The given list replaces any existing list. Clears the last 15 receive + * address registers and the multicast table. Uses receive address registers + * for the first 15 multicast addresses, and hashes the rest into the + * multicast table. + *****************************************************************************/ +void +e1000_mc_addr_list_update(struct e1000_hw *hw, + uint8_t *mc_addr_list, + uint32_t mc_addr_count, + uint32_t pad, + uint32_t rar_used_count) +{ + uint32_t hash_value; + uint32_t i; + + DEBUGFUNC("e1000_mc_addr_list_update"); + + /* Set the new number of MC addresses that we are being requested to use. */ + hw->num_mc_addrs = mc_addr_count; + + /* Clear RAR[1-15] */ + DEBUGOUT(" Clearing RAR[1-15]\n"); + for(i = rar_used_count; i < E1000_RAR_ENTRIES; i++) { + E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); + E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); + } + + /* Clear the MTA */ + DEBUGOUT(" Clearing MTA\n"); + for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++) { + E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); + } + + /* Add the new addresses */ + for(i = 0; i < mc_addr_count; i++) { + DEBUGOUT(" Adding the multicast addresses:\n"); + DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i, + mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)], + mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1], + mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2], + mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3], + mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4], + mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]); + + hash_value = e1000_hash_mc_addr(hw, + mc_addr_list + + (i * (ETH_LENGTH_OF_ADDRESS + pad))); + + DEBUGOUT1(" Hash value = 0x%03X\n", hash_value); + + /* Place this multicast address in the RAR if there is room, * + * else put it in the MTA + */ + if(rar_used_count < E1000_RAR_ENTRIES) { + e1000_rar_set(hw, + mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)), + rar_used_count); + rar_used_count++; + } else { + e1000_mta_set(hw, hash_value); + } + } + DEBUGOUT("MC Update Complete\n"); +} + +/****************************************************************************** + * Hashes an address to determine its location in the multicast table + * + * hw - Struct containing variables accessed by shared code + * mc_addr - the multicast address to hash + *****************************************************************************/ +uint32_t +e1000_hash_mc_addr(struct e1000_hw *hw, + uint8_t *mc_addr) +{ + uint32_t hash_value = 0; + + /* The portion of the address that is used for the hash table is + * determined by the mc_filter_type setting. + */ + switch (hw->mc_filter_type) { + /* [0] [1] [2] [3] [4] [5] + * 01 AA 00 12 34 56 + * LSB MSB + */ + case 0: + /* [47:36] i.e. 0x563 for above example address */ + hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); + break; + case 1: + /* [46:35] i.e. 0xAC6 for above example address */ + hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5)); + break; + case 2: + /* [45:34] i.e. 0x5D8 for above example address */ + hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); + break; + case 3: + /* [43:32] i.e. 0x634 for above example address */ + hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8)); + break; + } + + hash_value &= 0xFFF; + return hash_value; +} + +/****************************************************************************** + * Sets the bit in the multicast table corresponding to the hash value. + * + * hw - Struct containing variables accessed by shared code + * hash_value - Multicast address hash value + *****************************************************************************/ +void +e1000_mta_set(struct e1000_hw *hw, + uint32_t hash_value) +{ + uint32_t hash_bit, hash_reg; + uint32_t mta; + uint32_t temp; + + /* The MTA is a register array of 128 32-bit registers. + * It is treated like an array of 4096 bits. We want to set + * bit BitArray[hash_value]. So we figure out what register + * the bit is in, read it, OR in the new bit, then write + * back the new value. The register is determined by the + * upper 7 bits of the hash value and the bit within that + * register are determined by the lower 5 bits of the value. + */ + hash_reg = (hash_value >> 5) & 0x7F; + hash_bit = hash_value & 0x1F; + + mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg); + + mta |= (1 << hash_bit); + + /* If we are on an 82544 and we are trying to write an odd offset + * in the MTA, save off the previous entry before writing and + * restore the old value after writing. + */ + if((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) { + temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1)); + E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); + E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp); + } else { + E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); + } +} + +/****************************************************************************** + * Puts an ethernet address into a receive address register. + * + * hw - Struct containing variables accessed by shared code + * addr - Address to put into receive address register + * index - Receive address register to write + *****************************************************************************/ +void +e1000_rar_set(struct e1000_hw *hw, + uint8_t *addr, + uint32_t index) +{ + uint32_t rar_low, rar_high; + + /* HW expects these in little endian so we reverse the byte order + * from network order (big endian) to little endian + */ + rar_low = ((uint32_t) addr[0] | + ((uint32_t) addr[1] << 8) | + ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24)); + + rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8) | E1000_RAH_AV); + + E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); + E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); +} + +/****************************************************************************** + * Writes a value to the specified offset in the VLAN filter table. + * + * hw - Struct containing variables accessed by shared code + * offset - Offset in VLAN filer table to write + * value - Value to write into VLAN filter table + *****************************************************************************/ +void +e1000_write_vfta(struct e1000_hw *hw, + uint32_t offset, + uint32_t value) +{ + uint32_t temp; + + if((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { + temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); + E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); + E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); + } else { + E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); + } +} + +/****************************************************************************** + * Clears the VLAN filer table + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +void +e1000_clear_vfta(struct e1000_hw *hw) +{ + uint32_t offset; + + for(offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) + E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0); +} + +static int32_t +e1000_id_led_init(struct e1000_hw * hw) +{ + uint32_t ledctl; + const uint32_t ledctl_mask = 0x000000FF; + const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON; + const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF; + uint16_t eeprom_data, i, temp; + const uint16_t led_mask = 0x0F; + + DEBUGFUNC("e1000_id_led_init"); + + if(hw->mac_type < e1000_82540) { + /* Nothing to do */ + return E1000_SUCCESS; + } + + ledctl = E1000_READ_REG(hw, LEDCTL); + hw->ledctl_default = ledctl; + hw->ledctl_mode1 = hw->ledctl_default; + hw->ledctl_mode2 = hw->ledctl_default; + + if(e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + if((eeprom_data== ID_LED_RESERVED_0000) || + (eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT; + for(i = 0; i < 4; i++) { + temp = (eeprom_data >> (i << 2)) & led_mask; + switch(temp) { + case ID_LED_ON1_DEF2: + case ID_LED_ON1_ON2: + case ID_LED_ON1_OFF2: + hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); + hw->ledctl_mode1 |= ledctl_on << (i << 3); + break; + case ID_LED_OFF1_DEF2: + case ID_LED_OFF1_ON2: + case ID_LED_OFF1_OFF2: + hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); + hw->ledctl_mode1 |= ledctl_off << (i << 3); + break; + default: + /* Do nothing */ + break; + } + switch(temp) { + case ID_LED_DEF1_ON2: + case ID_LED_ON1_ON2: + case ID_LED_OFF1_ON2: + hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); + hw->ledctl_mode2 |= ledctl_on << (i << 3); + break; + case ID_LED_DEF1_OFF2: + case ID_LED_ON1_OFF2: + case ID_LED_OFF1_OFF2: + hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); + hw->ledctl_mode2 |= ledctl_off << (i << 3); + break; + default: + /* Do nothing */ + break; + } + } + return E1000_SUCCESS; +} + +/****************************************************************************** + * Prepares SW controlable LED for use and saves the current state of the LED. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +int32_t +e1000_setup_led(struct e1000_hw *hw) +{ + uint32_t ledctl; + int32_t ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_setup_led"); + + switch(hw->mac_type) { + case e1000_82542_rev2_0: + case e1000_82542_rev2_1: + case e1000_82543: + case e1000_82544: + /* No setup necessary */ + break; + case e1000_82541: + case e1000_82547: + case e1000_82541_rev_2: + case e1000_82547_rev_2: + /* Turn off PHY Smart Power Down (if enabled) */ + ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, + &hw->phy_spd_default); + if(ret_val) + return ret_val; + ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, + (uint16_t)(hw->phy_spd_default & + ~IGP01E1000_GMII_SPD)); + if(ret_val) + return ret_val; + /* Fall Through */ + default: + if(hw->media_type == e1000_media_type_fiber) { + ledctl = E1000_READ_REG(hw, LEDCTL); + /* Save current LEDCTL settings */ + hw->ledctl_default = ledctl; + /* Turn off LED0 */ + ledctl &= ~(E1000_LEDCTL_LED0_IVRT | + E1000_LEDCTL_LED0_BLINK | + E1000_LEDCTL_LED0_MODE_MASK); + ledctl |= (E1000_LEDCTL_MODE_LED_OFF << + E1000_LEDCTL_LED0_MODE_SHIFT); + E1000_WRITE_REG(hw, LEDCTL, ledctl); + } else if(hw->media_type == e1000_media_type_copper) + E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); + break; + } + + return E1000_SUCCESS; +} + +/****************************************************************************** + * Restores the saved state of the SW controlable LED. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +int32_t +e1000_cleanup_led(struct e1000_hw *hw) +{ + int32_t ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_cleanup_led"); + + switch(hw->mac_type) { + case e1000_82542_rev2_0: + case e1000_82542_rev2_1: + case e1000_82543: + case e1000_82544: + /* No cleanup necessary */ + break; + case e1000_82541: + case e1000_82547: + case e1000_82541_rev_2: + case e1000_82547_rev_2: + /* Turn on PHY Smart Power Down (if previously enabled) */ + ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, + hw->phy_spd_default); + if(ret_val) + return ret_val; + /* Fall Through */ + default: + /* Restore LEDCTL settings */ + E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default); + break; + } + + return E1000_SUCCESS; +} + +/****************************************************************************** + * Turns on the software controllable LED + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +int32_t +e1000_led_on(struct e1000_hw *hw) +{ + uint32_t ctrl = E1000_READ_REG(hw, CTRL); + + DEBUGFUNC("e1000_led_on"); + + switch(hw->mac_type) { + case e1000_82542_rev2_0: + case e1000_82542_rev2_1: + case e1000_82543: + /* Set SW Defineable Pin 0 to turn on the LED */ + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + break; + case e1000_82544: + if(hw->media_type == e1000_media_type_fiber) { + /* Set SW Defineable Pin 0 to turn on the LED */ + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } else { + /* Clear SW Defineable Pin 0 to turn on the LED */ + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } + break; + default: + if(hw->media_type == e1000_media_type_fiber) { + /* Clear SW Defineable Pin 0 to turn on the LED */ + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } else if(hw->media_type == e1000_media_type_copper) { + E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2); + return E1000_SUCCESS; + } + break; + } + + E1000_WRITE_REG(hw, CTRL, ctrl); + + return E1000_SUCCESS; +} + +/****************************************************************************** + * Turns off the software controllable LED + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +int32_t +e1000_led_off(struct e1000_hw *hw) +{ + uint32_t ctrl = E1000_READ_REG(hw, CTRL); + + DEBUGFUNC("e1000_led_off"); + + switch(hw->mac_type) { + case e1000_82542_rev2_0: + case e1000_82542_rev2_1: + case e1000_82543: + /* Clear SW Defineable Pin 0 to turn off the LED */ + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + break; + case e1000_82544: + if(hw->media_type == e1000_media_type_fiber) { + /* Clear SW Defineable Pin 0 to turn off the LED */ + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } else { + /* Set SW Defineable Pin 0 to turn off the LED */ + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } + break; + default: + if(hw->media_type == e1000_media_type_fiber) { + /* Set SW Defineable Pin 0 to turn off the LED */ + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } else if(hw->media_type == e1000_media_type_copper) { + E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); + return E1000_SUCCESS; + } + break; + } + + E1000_WRITE_REG(hw, CTRL, ctrl); + + return E1000_SUCCESS; +} + +/****************************************************************************** + * Clears all hardware statistics counters. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +void +e1000_clear_hw_cntrs(struct e1000_hw *hw) +{ + volatile uint32_t temp; + + temp = E1000_READ_REG(hw, CRCERRS); + temp = E1000_READ_REG(hw, SYMERRS); + temp = E1000_READ_REG(hw, MPC); + temp = E1000_READ_REG(hw, SCC); + temp = E1000_READ_REG(hw, ECOL); + temp = E1000_READ_REG(hw, MCC); + temp = E1000_READ_REG(hw, LATECOL); + temp = E1000_READ_REG(hw, COLC); + temp = E1000_READ_REG(hw, DC); + temp = E1000_READ_REG(hw, SEC); + temp = E1000_READ_REG(hw, RLEC); + temp = E1000_READ_REG(hw, XONRXC); + temp = E1000_READ_REG(hw, XONTXC); + temp = E1000_READ_REG(hw, XOFFRXC); + temp = E1000_READ_REG(hw, XOFFTXC); + temp = E1000_READ_REG(hw, FCRUC); + temp = E1000_READ_REG(hw, PRC64); + temp = E1000_READ_REG(hw, PRC127); + temp = E1000_READ_REG(hw, PRC255); + temp = E1000_READ_REG(hw, PRC511); + temp = E1000_READ_REG(hw, PRC1023); + temp = E1000_READ_REG(hw, PRC1522); + temp = E1000_READ_REG(hw, GPRC); + temp = E1000_READ_REG(hw, BPRC); + temp = E1000_READ_REG(hw, MPRC); + temp = E1000_READ_REG(hw, GPTC); + temp = E1000_READ_REG(hw, GORCL); + temp = E1000_READ_REG(hw, GORCH); + temp = E1000_READ_REG(hw, GOTCL); + temp = E1000_READ_REG(hw, GOTCH); + temp = E1000_READ_REG(hw, RNBC); + temp = E1000_READ_REG(hw, RUC); + temp = E1000_READ_REG(hw, RFC); + temp = E1000_READ_REG(hw, ROC); + temp = E1000_READ_REG(hw, RJC); + temp = E1000_READ_REG(hw, TORL); + temp = E1000_READ_REG(hw, TORH); + temp = E1000_READ_REG(hw, TOTL); + temp = E1000_READ_REG(hw, TOTH); + temp = E1000_READ_REG(hw, TPR); + temp = E1000_READ_REG(hw, TPT); + temp = E1000_READ_REG(hw, PTC64); + temp = E1000_READ_REG(hw, PTC127); + temp = E1000_READ_REG(hw, PTC255); + temp = E1000_READ_REG(hw, PTC511); + temp = E1000_READ_REG(hw, PTC1023); + temp = E1000_READ_REG(hw, PTC1522); + temp = E1000_READ_REG(hw, MPTC); + temp = E1000_READ_REG(hw, BPTC); + + if(hw->mac_type < e1000_82543) return; + + temp = E1000_READ_REG(hw, ALGNERRC); + temp = E1000_READ_REG(hw, RXERRC); + temp = E1000_READ_REG(hw, TNCRS); + temp = E1000_READ_REG(hw, CEXTERR); + temp = E1000_READ_REG(hw, TSCTC); + temp = E1000_READ_REG(hw, TSCTFC); + + if(hw->mac_type <= e1000_82544) return; + + temp = E1000_READ_REG(hw, MGTPRC); + temp = E1000_READ_REG(hw, MGTPDC); + temp = E1000_READ_REG(hw, MGTPTC); +} + +/****************************************************************************** + * Resets Adaptive IFS to its default state. + * + * hw - Struct containing variables accessed by shared code + * + * Call this after e1000_init_hw. You may override the IFS defaults by setting + * hw->ifs_params_forced to TRUE. However, you must initialize hw-> + * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio + * before calling this function. + *****************************************************************************/ +void +e1000_reset_adaptive(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_reset_adaptive"); + + if(hw->adaptive_ifs) { + if(!hw->ifs_params_forced) { + hw->current_ifs_val = 0; + hw->ifs_min_val = IFS_MIN; + hw->ifs_max_val = IFS_MAX; + hw->ifs_step_size = IFS_STEP; + hw->ifs_ratio = IFS_RATIO; + } + hw->in_ifs_mode = FALSE; + E1000_WRITE_REG(hw, AIT, 0); + } else { + DEBUGOUT("Not in Adaptive IFS mode!\n"); + } +} + +/****************************************************************************** + * Called during the callback/watchdog routine to update IFS value based on + * the ratio of transmits to collisions. + * + * hw - Struct containing variables accessed by shared code + * tx_packets - Number of transmits since last callback + * total_collisions - Number of collisions since last callback + *****************************************************************************/ +void +e1000_update_adaptive(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_update_adaptive"); + + if(hw->adaptive_ifs) { + if((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) { + if(hw->tx_packet_delta > MIN_NUM_XMITS) { + hw->in_ifs_mode = TRUE; + if(hw->current_ifs_val < hw->ifs_max_val) { + if(hw->current_ifs_val == 0) + hw->current_ifs_val = hw->ifs_min_val; + else + hw->current_ifs_val += hw->ifs_step_size; + E1000_WRITE_REG(hw, AIT, hw->current_ifs_val); + } + } + } else { + if(hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { + hw->current_ifs_val = 0; + hw->in_ifs_mode = FALSE; + E1000_WRITE_REG(hw, AIT, 0); + } + } + } else { + DEBUGOUT("Not in Adaptive IFS mode!\n"); + } +} + +/****************************************************************************** + * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT + * + * hw - Struct containing variables accessed by shared code + * frame_len - The length of the frame in question + * mac_addr - The Ethernet destination address of the frame in question + *****************************************************************************/ +void +e1000_tbi_adjust_stats(struct e1000_hw *hw, + struct e1000_hw_stats *stats, + uint32_t frame_len, + uint8_t *mac_addr) +{ + uint64_t carry_bit; + + /* First adjust the frame length. */ + frame_len--; + /* We need to adjust the statistics counters, since the hardware + * counters overcount this packet as a CRC error and undercount + * the packet as a good packet + */ + /* This packet should not be counted as a CRC error. */ + stats->crcerrs--; + /* This packet does count as a Good Packet Received. */ + stats->gprc++; + + /* Adjust the Good Octets received counters */ + carry_bit = 0x80000000 & stats->gorcl; + stats->gorcl += frame_len; + /* If the high bit of Gorcl (the low 32 bits of the Good Octets + * Received Count) was one before the addition, + * AND it is zero after, then we lost the carry out, + * need to add one to Gorch (Good Octets Received Count High). + * This could be simplified if all environments supported + * 64-bit integers. + */ + if(carry_bit && ((stats->gorcl & 0x80000000) == 0)) + stats->gorch++; + /* Is this a broadcast or multicast? Check broadcast first, + * since the test for a multicast frame will test positive on + * a broadcast frame. + */ + if((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff)) + /* Broadcast packet */ + stats->bprc++; + else if(*mac_addr & 0x01) + /* Multicast packet */ + stats->mprc++; + + if(frame_len == hw->max_frame_size) { + /* In this case, the hardware has overcounted the number of + * oversize frames. + */ + if(stats->roc > 0) + stats->roc--; + } + + /* Adjust the bin counters when the extra byte put the frame in the + * wrong bin. Remember that the frame_len was adjusted above. + */ + if(frame_len == 64) { + stats->prc64++; + stats->prc127--; + } else if(frame_len == 127) { + stats->prc127++; + stats->prc255--; + } else if(frame_len == 255) { + stats->prc255++; + stats->prc511--; + } else if(frame_len == 511) { + stats->prc511++; + stats->prc1023--; + } else if(frame_len == 1023) { + stats->prc1023++; + stats->prc1522--; + } else if(frame_len == 1522) { + stats->prc1522++; + } +} + +/****************************************************************************** + * Gets the current PCI bus type, speed, and width of the hardware + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +void +e1000_get_bus_info(struct e1000_hw *hw) +{ + uint32_t status; + + switch (hw->mac_type) { + case e1000_82542_rev2_0: + case e1000_82542_rev2_1: + hw->bus_type = e1000_bus_type_unknown; + hw->bus_speed = e1000_bus_speed_unknown; + hw->bus_width = e1000_bus_width_unknown; + break; + default: + status = E1000_READ_REG(hw, STATUS); + hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? + e1000_bus_type_pcix : e1000_bus_type_pci; + + if(hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { + hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ? + e1000_bus_speed_66 : e1000_bus_speed_120; + } else if(hw->bus_type == e1000_bus_type_pci) { + hw->bus_speed = (status & E1000_STATUS_PCI66) ? + e1000_bus_speed_66 : e1000_bus_speed_33; + } else { + switch (status & E1000_STATUS_PCIX_SPEED) { + case E1000_STATUS_PCIX_SPEED_66: + hw->bus_speed = e1000_bus_speed_66; + break; + case E1000_STATUS_PCIX_SPEED_100: + hw->bus_speed = e1000_bus_speed_100; + break; + case E1000_STATUS_PCIX_SPEED_133: + hw->bus_speed = e1000_bus_speed_133; + break; + default: + hw->bus_speed = e1000_bus_speed_reserved; + break; + } + } + hw->bus_width = (status & E1000_STATUS_BUS64) ? + e1000_bus_width_64 : e1000_bus_width_32; + break; + } +} +/****************************************************************************** + * Reads a value from one of the devices registers using port I/O (as opposed + * memory mapped I/O). Only 82544 and newer devices support port I/O. + * + * hw - Struct containing variables accessed by shared code + * offset - offset to read from + *****************************************************************************/ +uint32_t +e1000_read_reg_io(struct e1000_hw *hw, + uint32_t offset) +{ + unsigned long io_addr = hw->io_base; + unsigned long io_data = hw->io_base + 4; + + e1000_io_write(hw, io_addr, offset); + return e1000_io_read(hw, io_data); +} + +/****************************************************************************** + * Writes a value to one of the devices registers using port I/O (as opposed to + * memory mapped I/O). Only 82544 and newer devices support port I/O. + * + * hw - Struct containing variables accessed by shared code + * offset - offset to write to + * value - value to write + *****************************************************************************/ +void +e1000_write_reg_io(struct e1000_hw *hw, + uint32_t offset, + uint32_t value) +{ + unsigned long io_addr = hw->io_base; + unsigned long io_data = hw->io_base + 4; + + e1000_io_write(hw, io_addr, offset); + e1000_io_write(hw, io_data, value); +} + + +/****************************************************************************** + * Estimates the cable length. + * + * hw - Struct containing variables accessed by shared code + * min_length - The estimated minimum length + * max_length - The estimated maximum length + * + * returns: - E1000_ERR_XXX + * E1000_SUCCESS + * + * This function always returns a ranged length (minimum & maximum). + * So for M88 phy's, this function interprets the one value returned from the + * register to the minimum and maximum range. + * For IGP phy's, the function calculates the range by the AGC registers. + *****************************************************************************/ +int32_t +e1000_get_cable_length(struct e1000_hw *hw, + uint16_t *min_length, + uint16_t *max_length) +{ + int32_t ret_val; + uint16_t agc_value = 0; + uint16_t cur_agc, min_agc = IGP01E1000_AGC_LENGTH_TABLE_SIZE; + uint16_t i, phy_data; + uint16_t cable_length; + + DEBUGFUNC("e1000_get_cable_length"); + + *min_length = *max_length = 0; + + /* Use old method for Phy older than IGP */ + if(hw->phy_type == e1000_phy_m88) { + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, + &phy_data); + if(ret_val) + return ret_val; + cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> + M88E1000_PSSR_CABLE_LENGTH_SHIFT; + + /* Convert the enum value to ranged values */ + switch (cable_length) { + case e1000_cable_length_50: + *min_length = 0; + *max_length = e1000_igp_cable_length_50; + break; + case e1000_cable_length_50_80: + *min_length = e1000_igp_cable_length_50; + *max_length = e1000_igp_cable_length_80; + break; + case e1000_cable_length_80_110: + *min_length = e1000_igp_cable_length_80; + *max_length = e1000_igp_cable_length_110; + break; + case e1000_cable_length_110_140: + *min_length = e1000_igp_cable_length_110; + *max_length = e1000_igp_cable_length_140; + break; + case e1000_cable_length_140: + *min_length = e1000_igp_cable_length_140; + *max_length = e1000_igp_cable_length_170; + break; + default: + return -E1000_ERR_PHY; + break; + } + } else if(hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ + uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = + {IGP01E1000_PHY_AGC_A, + IGP01E1000_PHY_AGC_B, + IGP01E1000_PHY_AGC_C, + IGP01E1000_PHY_AGC_D}; + /* Read the AGC registers for all channels */ + for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + + ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); + if(ret_val) + return ret_val; + + cur_agc = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; + + /* Array bound check. */ + if((cur_agc >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || + (cur_agc == 0)) + return -E1000_ERR_PHY; + + agc_value += cur_agc; + + /* Update minimal AGC value. */ + if(min_agc > cur_agc) + min_agc = cur_agc; + } + + /* Remove the minimal AGC result for length < 50m */ + if(agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { + agc_value -= min_agc; + + /* Get the average length of the remaining 3 channels */ + agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); + } else { + /* Get the average length of all the 4 channels. */ + agc_value /= IGP01E1000_PHY_CHANNEL_NUM; + } + + /* Set the range of the calculated length. */ + *min_length = ((e1000_igp_cable_length_table[agc_value] - + IGP01E1000_AGC_RANGE) > 0) ? + (e1000_igp_cable_length_table[agc_value] - + IGP01E1000_AGC_RANGE) : 0; + *max_length = e1000_igp_cable_length_table[agc_value] + + IGP01E1000_AGC_RANGE; + } + + return E1000_SUCCESS; +} + +/****************************************************************************** + * Check the cable polarity + * + * hw - Struct containing variables accessed by shared code + * polarity - output parameter : 0 - Polarity is not reversed + * 1 - Polarity is reversed. + * + * returns: - E1000_ERR_XXX + * E1000_SUCCESS + * + * For phy's older then IGP, this function simply reads the polarity bit in the + * Phy Status register. For IGP phy's, this bit is valid only if link speed is + * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will + * return 0. If the link speed is 1000 Mbps the polarity status is in the + * IGP01E1000_PHY_PCS_INIT_REG. + *****************************************************************************/ +int32_t +e1000_check_polarity(struct e1000_hw *hw, + uint16_t *polarity) +{ + int32_t ret_val; + uint16_t phy_data; + + DEBUGFUNC("e1000_check_polarity"); + + if(hw->phy_type == e1000_phy_m88) { + /* return the Polarity bit in the Status register. */ + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, + &phy_data); + if(ret_val) + return ret_val; + *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >> + M88E1000_PSSR_REV_POLARITY_SHIFT; + } else if(hw->phy_type == e1000_phy_igp) { + /* Read the Status register to check the speed */ + ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, + &phy_data); + if(ret_val) + return ret_val; + + /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to + * find the polarity status */ + if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == + IGP01E1000_PSSR_SPEED_1000MBPS) { + + /* Read the GIG initialization PCS register (0x00B4) */ + ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG, + &phy_data); + if(ret_val) + return ret_val; + + /* Check the polarity bits */ + *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? 1 : 0; + } else { + /* For 10 Mbps, read the polarity bit in the status register. (for + * 100 Mbps this bit is always 0) */ + *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED; + } + } + return E1000_SUCCESS; +} + +/****************************************************************************** + * Check if Downshift occured + * + * hw - Struct containing variables accessed by shared code + * downshift - output parameter : 0 - No Downshift ocured. + * 1 - Downshift ocured. + * + * returns: - E1000_ERR_XXX + * E1000_SUCCESS + * + * For phy's older then IGP, this function reads the Downshift bit in the Phy + * Specific Status register. For IGP phy's, it reads the Downgrade bit in the + * Link Health register. In IGP this bit is latched high, so the driver must + * read it immediately after link is established. + *****************************************************************************/ +int32_t +e1000_check_downshift(struct e1000_hw *hw) +{ + int32_t ret_val; + uint16_t phy_data; + + DEBUGFUNC("e1000_check_downshift"); + + if(hw->phy_type == e1000_phy_igp) { + ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, + &phy_data); + if(ret_val) + return ret_val; + + hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; + } else if(hw->phy_type == e1000_phy_m88) { + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, + &phy_data); + if(ret_val) + return ret_val; + + hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> + M88E1000_PSSR_DOWNSHIFT_SHIFT; + } + return E1000_SUCCESS; +} + +/***************************************************************************** + * + * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a + * gigabit link is achieved to improve link quality. + * + * hw: Struct containing variables accessed by shared code + * + * returns: - E1000_ERR_PHY if fail to read/write the PHY + * E1000_SUCCESS at any other case. + * + ****************************************************************************/ + +int32_t +e1000_config_dsp_after_link_change(struct e1000_hw *hw, + boolean_t link_up) +{ + int32_t ret_val; + uint16_t phy_data, phy_saved_data, speed, duplex, i; + uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = + {IGP01E1000_PHY_AGC_PARAM_A, + IGP01E1000_PHY_AGC_PARAM_B, + IGP01E1000_PHY_AGC_PARAM_C, + IGP01E1000_PHY_AGC_PARAM_D}; + uint16_t min_length, max_length; + + DEBUGFUNC("e1000_config_dsp_after_link_change"); + + if(hw->phy_type != e1000_phy_igp) + return E1000_SUCCESS; + + if(link_up) { + ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); + if(ret_val) { + DEBUGOUT("Error getting link speed and duplex\n"); + return ret_val; + } + + if(speed == SPEED_1000) { + + e1000_get_cable_length(hw, &min_length, &max_length); + + if((hw->dsp_config_state == e1000_dsp_config_enabled) && + min_length >= e1000_igp_cable_length_50) { + + for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], + &phy_data); + if(ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; + + ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i], + phy_data); + if(ret_val) + return ret_val; + } + hw->dsp_config_state = e1000_dsp_config_activated; + } + + if((hw->ffe_config_state == e1000_ffe_config_enabled) && + (min_length < e1000_igp_cable_length_50)) { + + uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20; + uint32_t idle_errs = 0; + + /* clear previous idle error counts */ + ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, + &phy_data); + if(ret_val) + return ret_val; + + for(i = 0; i < ffe_idle_err_timeout; i++) { + udelay(1000); + ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, + &phy_data); + if(ret_val) + return ret_val; + + idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT); + if(idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { + hw->ffe_config_state = e1000_ffe_config_active; + + ret_val = e1000_write_phy_reg(hw, + IGP01E1000_PHY_DSP_FFE, + IGP01E1000_PHY_DSP_FFE_CM_CP); + if(ret_val) + return ret_val; + break; + } + + if(idle_errs) + ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100; + } + } + } + } else { + if(hw->dsp_config_state == e1000_dsp_config_activated) { + /* Save off the current value of register 0x2F5B to be restored at + * the end of the routines. */ + ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); + + if(ret_val) + return ret_val; + + /* Disable the PHY transmitter */ + ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); + + if(ret_val) + return ret_val; + + msec_delay(20); + + ret_val = e1000_write_phy_reg(hw, 0x0000, + IGP01E1000_IEEE_FORCE_GIGA); + if(ret_val) + return ret_val; + for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data); + if(ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; + phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; + + ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data); + if(ret_val) + return ret_val; + } + + ret_val = e1000_write_phy_reg(hw, 0x0000, + IGP01E1000_IEEE_RESTART_AUTONEG); + if(ret_val) + return ret_val; + + msec_delay(20); + + /* Now enable the transmitter */ + ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); + + if(ret_val) + return ret_val; + + hw->dsp_config_state = e1000_dsp_config_enabled; + } + + if(hw->ffe_config_state == e1000_ffe_config_active) { + /* Save off the current value of register 0x2F5B to be restored at + * the end of the routines. */ + ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); + + if(ret_val) + return ret_val; + + /* Disable the PHY transmitter */ + ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); + + if(ret_val) + return ret_val; + + msec_delay(20); + + ret_val = e1000_write_phy_reg(hw, 0x0000, + IGP01E1000_IEEE_FORCE_GIGA); + if(ret_val) + return ret_val; + ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, + IGP01E1000_PHY_DSP_FFE_DEFAULT); + if(ret_val) + return ret_val; + + ret_val = e1000_write_phy_reg(hw, 0x0000, + IGP01E1000_IEEE_RESTART_AUTONEG); + if(ret_val) + return ret_val; + + msec_delay(20); + + /* Now enable the transmitter */ + ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); + + if(ret_val) + return ret_val; + + hw->ffe_config_state = e1000_ffe_config_enabled; + } + } + return E1000_SUCCESS; +} + +/***************************************************************************** + * Set PHY to class A mode + * Assumes the following operations will follow to enable the new class mode. + * 1. Do a PHY soft reset + * 2. Restart auto-negotiation or force link. + * + * hw - Struct containing variables accessed by shared code + ****************************************************************************/ +static int32_t +e1000_set_phy_mode(struct e1000_hw *hw) +{ + int32_t ret_val; + uint16_t eeprom_data; + + DEBUGFUNC("e1000_set_phy_mode"); + + if((hw->mac_type == e1000_82545_rev_3) && + (hw->media_type == e1000_media_type_copper)) { + ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data); + if(ret_val) { + return ret_val; + } + + if((eeprom_data != EEPROM_RESERVED_WORD) && + (eeprom_data & EEPROM_PHY_CLASS_A)) { + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B); + if(ret_val) + return ret_val; + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104); + if(ret_val) + return ret_val; + + hw->phy_reset_disable = FALSE; + } + } + + return E1000_SUCCESS; +} + +/***************************************************************************** + * + * This function sets the lplu state according to the active flag. When + * activating lplu this function also disables smart speed and vise versa. + * lplu will not be activated unless the device autonegotiation advertisment + * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. + * hw: Struct containing variables accessed by shared code + * active - true to enable lplu false to disable lplu. + * + * returns: - E1000_ERR_PHY if fail to read/write the PHY + * E1000_SUCCESS at any other case. + * + ****************************************************************************/ + +int32_t +e1000_set_d3_lplu_state(struct e1000_hw *hw, + boolean_t active) +{ + int32_t ret_val; + uint16_t phy_data; + DEBUGFUNC("e1000_set_d3_lplu_state"); + + if(!((hw->mac_type == e1000_82541_rev_2) || + (hw->mac_type == e1000_82547_rev_2))) + return E1000_SUCCESS; + + /* During driver activity LPLU should not be used or it will attain link + * from the lowest speeds starting from 10Mbps. The capability is used for + * Dx transitions and states */ + ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); + if(ret_val) + return ret_val; + + if(!active) { + phy_data &= ~IGP01E1000_GMII_FLEX_SPD; + ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); + if(ret_val) + return ret_val; + + /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during + * Dx states where the power conservation is most important. During + * driver activity we should enable SmartSpeed, so performance is + * maintained. */ + if (hw->smart_speed == e1000_smart_speed_on) { + ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &phy_data); + if(ret_val) + return ret_val; + + phy_data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + phy_data); + if(ret_val) + return ret_val; + } else if (hw->smart_speed == e1000_smart_speed_off) { + ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + phy_data); + if(ret_val) + return ret_val; + } + + } else if((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) || + (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) || + (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { + + phy_data |= IGP01E1000_GMII_FLEX_SPD; + ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); + if(ret_val) + return ret_val; + + /* When LPLU is enabled we should disable SmartSpeed */ + ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); + if(ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); + if(ret_val) + return ret_val; + + } + return E1000_SUCCESS; +} + +/****************************************************************************** + * Change VCO speed register to improve Bit Error Rate performance of SERDES. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static int32_t +e1000_set_vco_speed(struct e1000_hw *hw) +{ + int32_t ret_val; + uint16_t default_page = 0; + uint16_t phy_data; + + DEBUGFUNC("e1000_set_vco_speed"); + + switch(hw->mac_type) { + case e1000_82545_rev_3: + case e1000_82546_rev_3: + break; + default: + return E1000_SUCCESS; + } + + /* Set PHY register 30, page 5, bit 8 to 0 */ + + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); + if(ret_val) + return ret_val; + + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); + if(ret_val) + return ret_val; + + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); + if(ret_val) + return ret_val; + + phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); + if(ret_val) + return ret_val; + + /* Set PHY register 30, page 4, bit 11 to 1 */ + + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); + if(ret_val) + return ret_val; + + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); + if(ret_val) + return ret_val; + + phy_data |= M88E1000_PHY_VCO_REG_BIT11; + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); + if(ret_val) + return ret_val; + + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); + if(ret_val) + return ret_val; + + return E1000_SUCCESS; +} + +static int32_t +e1000_polarity_reversal_workaround(struct e1000_hw *hw) +{ + int32_t ret_val; + uint16_t mii_status_reg; + uint16_t i; + + /* Polarity reversal workaround for forced 10F/10H links. */ + + /* Disable the transmitter on the PHY */ + + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); + if(ret_val) + return ret_val; + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); + if(ret_val) + return ret_val; + + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); + if(ret_val) + return ret_val; + + /* This loop will early-out if the NO link condition has been met. */ + for(i = PHY_FORCE_TIME; i > 0; i--) { + /* Read the MII Status Register and wait for Link Status bit + * to be clear. + */ + + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if(ret_val) + return ret_val; + + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if(ret_val) + return ret_val; + + if((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break; + msec_delay_irq(100); + } + + /* Recommended delay time after link has been lost */ + msec_delay_irq(1000); + + /* Now we will re-enable th transmitter on the PHY */ + + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); + if(ret_val) + return ret_val; + msec_delay_irq(50); + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); + if(ret_val) + return ret_val; + msec_delay_irq(50); + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); + if(ret_val) + return ret_val; + msec_delay_irq(50); + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); + if(ret_val) + return ret_val; + + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); + if(ret_val) + return ret_val; + + /* This loop will early-out if the link condition has been met. */ + for(i = PHY_FORCE_TIME; i > 0; i--) { + /* Read the MII Status Register and wait for Link Status bit + * to be set. + */ + + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if(ret_val) + return ret_val; + + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if(ret_val) + return ret_val; + + if(mii_status_reg & MII_SR_LINK_STATUS) break; + msec_delay_irq(100); + } + return E1000_SUCCESS; +} + diff --git a/drivers/net/e1000/e1000_hw.h b/drivers/net/e1000/e1000_hw.h new file mode 100644 index 00000000000..f397e637a3c --- /dev/null +++ b/drivers/net/e1000/e1000_hw.h @@ -0,0 +1,2144 @@ +/******************************************************************************* + + + Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. + + This program is free software; you can redistribute it and/or modify it + under the terms of the GNU General Public License as published by the Free + Software Foundation; either version 2 of the License, or (at your option) + any later version. + + This program is distributed in the hope that it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., 59 + Temple Place - Suite 330, Boston, MA 02111-1307, USA. + + The full GNU General Public License is included in this distribution in the + file called LICENSE. + + Contact Information: + Linux NICS <linux.nics@intel.com> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +/* e1000_hw.h + * Structures, enums, and macros for the MAC + */ + +#ifndef _E1000_HW_H_ +#define _E1000_HW_H_ + +#include "e1000_osdep.h" + + +/* Forward declarations of structures used by the shared code */ +struct e1000_hw; +struct e1000_hw_stats; + +/* Enumerated types specific to the e1000 hardware */ +/* Media Access Controlers */ +typedef enum { + e1000_undefined = 0, + e1000_82542_rev2_0, + e1000_82542_rev2_1, + e1000_82543, + e1000_82544, + e1000_82540, + e1000_82545, + e1000_82545_rev_3, + e1000_82546, + e1000_82546_rev_3, + e1000_82541, + e1000_82541_rev_2, + e1000_82547, + e1000_82547_rev_2, + e1000_num_macs +} e1000_mac_type; + +typedef enum { + e1000_eeprom_uninitialized = 0, + e1000_eeprom_spi, + e1000_eeprom_microwire, + e1000_num_eeprom_types +} e1000_eeprom_type; + +/* Media Types */ +typedef enum { + e1000_media_type_copper = 0, + e1000_media_type_fiber = 1, + e1000_media_type_internal_serdes = 2, + e1000_num_media_types +} e1000_media_type; + +typedef enum { + e1000_10_half = 0, + e1000_10_full = 1, + e1000_100_half = 2, + e1000_100_full = 3 +} e1000_speed_duplex_type; + +/* Flow Control Settings */ +typedef enum { + e1000_fc_none = 0, + e1000_fc_rx_pause = 1, + e1000_fc_tx_pause = 2, + e1000_fc_full = 3, + e1000_fc_default = 0xFF +} e1000_fc_type; + +/* PCI bus types */ +typedef enum { + e1000_bus_type_unknown = 0, + e1000_bus_type_pci, + e1000_bus_type_pcix, + e1000_bus_type_reserved +} e1000_bus_type; + +/* PCI bus speeds */ +typedef enum { + e1000_bus_speed_unknown = 0, + e1000_bus_speed_33, + e1000_bus_speed_66, + e1000_bus_speed_100, + e1000_bus_speed_120, + e1000_bus_speed_133, + e1000_bus_speed_reserved +} e1000_bus_speed; + +/* PCI bus widths */ +typedef enum { + e1000_bus_width_unknown = 0, + e1000_bus_width_32, + e1000_bus_width_64, + e1000_bus_width_reserved +} e1000_bus_width; + +/* PHY status info structure and supporting enums */ +typedef enum { + e1000_cable_length_50 = 0, + e1000_cable_length_50_80, + e1000_cable_length_80_110, + e1000_cable_length_110_140, + e1000_cable_length_140, + e1000_cable_length_undefined = 0xFF +} e1000_cable_length; + +typedef enum { + e1000_igp_cable_length_10 = 10, + e1000_igp_cable_length_20 = 20, + e1000_igp_cable_length_30 = 30, + e1000_igp_cable_length_40 = 40, + e1000_igp_cable_length_50 = 50, + e1000_igp_cable_length_60 = 60, + e1000_igp_cable_length_70 = 70, + e1000_igp_cable_length_80 = 80, + e1000_igp_cable_length_90 = 90, + e1000_igp_cable_length_100 = 100, + e1000_igp_cable_length_110 = 110, + e1000_igp_cable_length_120 = 120, + e1000_igp_cable_length_130 = 130, + e1000_igp_cable_length_140 = 140, + e1000_igp_cable_length_150 = 150, + e1000_igp_cable_length_160 = 160, + e1000_igp_cable_length_170 = 170, + e1000_igp_cable_length_180 = 180 +} e1000_igp_cable_length; + +typedef enum { + e1000_10bt_ext_dist_enable_normal = 0, + e1000_10bt_ext_dist_enable_lower, + e1000_10bt_ext_dist_enable_undefined = 0xFF +} e1000_10bt_ext_dist_enable; + +typedef enum { + e1000_rev_polarity_normal = 0, + e1000_rev_polarity_reversed, + e1000_rev_polarity_undefined = 0xFF +} e1000_rev_polarity; + +typedef enum { + e1000_downshift_normal = 0, + e1000_downshift_activated, + e1000_downshift_undefined = 0xFF +} e1000_downshift; + +typedef enum { + e1000_smart_speed_default = 0, + e1000_smart_speed_on, + e1000_smart_speed_off +} e1000_smart_speed; + +typedef enum { + e1000_polarity_reversal_enabled = 0, + e1000_polarity_reversal_disabled, + e1000_polarity_reversal_undefined = 0xFF +} e1000_polarity_reversal; + +typedef enum { + e1000_auto_x_mode_manual_mdi = 0, + e1000_auto_x_mode_manual_mdix, + e1000_auto_x_mode_auto1, + e1000_auto_x_mode_auto2, + e1000_auto_x_mode_undefined = 0xFF +} e1000_auto_x_mode; + +typedef enum { + e1000_1000t_rx_status_not_ok = 0, + e1000_1000t_rx_status_ok, + e1000_1000t_rx_status_undefined = 0xFF +} e1000_1000t_rx_status; + +typedef enum { + e1000_phy_m88 = 0, + e1000_phy_igp, + e1000_phy_undefined = 0xFF +} e1000_phy_type; + +typedef enum { + e1000_ms_hw_default = 0, + e1000_ms_force_master, + e1000_ms_force_slave, + e1000_ms_auto +} e1000_ms_type; + +typedef enum { + e1000_ffe_config_enabled = 0, + e1000_ffe_config_active, + e1000_ffe_config_blocked +} e1000_ffe_config; + +typedef enum { + e1000_dsp_config_disabled = 0, + e1000_dsp_config_enabled, + e1000_dsp_config_activated, + e1000_dsp_config_undefined = 0xFF +} e1000_dsp_config; + +struct e1000_phy_info { + e1000_cable_length cable_length; + e1000_10bt_ext_dist_enable extended_10bt_distance; + e1000_rev_polarity cable_polarity; + e1000_downshift downshift; + e1000_polarity_reversal polarity_correction; + e1000_auto_x_mode mdix_mode; + e1000_1000t_rx_status local_rx; + e1000_1000t_rx_status remote_rx; +}; + +struct e1000_phy_stats { + uint32_t idle_errors; + uint32_t receive_errors; +}; + +struct e1000_eeprom_info { + e1000_eeprom_type type; + uint16_t word_size; + uint16_t opcode_bits; + uint16_t address_bits; + uint16_t delay_usec; + uint16_t page_size; +}; + + + +/* Error Codes */ +#define E1000_SUCCESS 0 +#define E1000_ERR_EEPROM 1 +#define E1000_ERR_PHY 2 +#define E1000_ERR_CONFIG 3 +#define E1000_ERR_PARAM 4 +#define E1000_ERR_MAC_TYPE 5 +#define E1000_ERR_PHY_TYPE 6 + +/* Function prototypes */ +/* Initialization */ +int32_t e1000_reset_hw(struct e1000_hw *hw); +int32_t e1000_init_hw(struct e1000_hw *hw); +int32_t e1000_set_mac_type(struct e1000_hw *hw); +void e1000_set_media_type(struct e1000_hw *hw); + +/* Link Configuration */ +int32_t e1000_setup_link(struct e1000_hw *hw); +int32_t e1000_phy_setup_autoneg(struct e1000_hw *hw); +void e1000_config_collision_dist(struct e1000_hw *hw); +int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw); +int32_t e1000_check_for_link(struct e1000_hw *hw); +int32_t e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed, uint16_t * duplex); +int32_t e1000_wait_autoneg(struct e1000_hw *hw); +int32_t e1000_force_mac_fc(struct e1000_hw *hw); + +/* PHY */ +int32_t e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy_data); +int32_t e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data); +void e1000_phy_hw_reset(struct e1000_hw *hw); +int32_t e1000_phy_reset(struct e1000_hw *hw); +int32_t e1000_detect_gig_phy(struct e1000_hw *hw); +int32_t e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info); +int32_t e1000_phy_m88_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info); +int32_t e1000_phy_igp_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info); +int32_t e1000_get_cable_length(struct e1000_hw *hw, uint16_t *min_length, uint16_t *max_length); +int32_t e1000_check_polarity(struct e1000_hw *hw, uint16_t *polarity); +int32_t e1000_check_downshift(struct e1000_hw *hw); +int32_t e1000_validate_mdi_setting(struct e1000_hw *hw); + +/* EEPROM Functions */ +void e1000_init_eeprom_params(struct e1000_hw *hw); +int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t reg, uint16_t words, uint16_t *data); +int32_t e1000_validate_eeprom_checksum(struct e1000_hw *hw); +int32_t e1000_update_eeprom_checksum(struct e1000_hw *hw); +int32_t e1000_write_eeprom(struct e1000_hw *hw, uint16_t reg, uint16_t words, uint16_t *data); +int32_t e1000_read_part_num(struct e1000_hw *hw, uint32_t * part_num); +int32_t e1000_read_mac_addr(struct e1000_hw * hw); + +/* Filters (multicast, vlan, receive) */ +void e1000_init_rx_addrs(struct e1000_hw *hw); +void e1000_mc_addr_list_update(struct e1000_hw *hw, uint8_t * mc_addr_list, uint32_t mc_addr_count, uint32_t pad, uint32_t rar_used_count); +uint32_t e1000_hash_mc_addr(struct e1000_hw *hw, uint8_t * mc_addr); +void e1000_mta_set(struct e1000_hw *hw, uint32_t hash_value); +void e1000_rar_set(struct e1000_hw *hw, uint8_t * mc_addr, uint32_t rar_index); +void e1000_write_vfta(struct e1000_hw *hw, uint32_t offset, uint32_t value); +void e1000_clear_vfta(struct e1000_hw *hw); + +/* LED functions */ +int32_t e1000_setup_led(struct e1000_hw *hw); +int32_t e1000_cleanup_led(struct e1000_hw *hw); +int32_t e1000_led_on(struct e1000_hw *hw); +int32_t e1000_led_off(struct e1000_hw *hw); + +/* Adaptive IFS Functions */ + +/* Everything else */ +uint32_t e1000_enable_mng_pass_thru(struct e1000_hw *hw); +void e1000_clear_hw_cntrs(struct e1000_hw *hw); +void e1000_reset_adaptive(struct e1000_hw *hw); +void e1000_update_adaptive(struct e1000_hw *hw); +void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats, uint32_t frame_len, uint8_t * mac_addr); +void e1000_get_bus_info(struct e1000_hw *hw); +void e1000_pci_set_mwi(struct e1000_hw *hw); +void e1000_pci_clear_mwi(struct e1000_hw *hw); +void e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t * value); +void e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t * value); +/* Port I/O is only supported on 82544 and newer */ +uint32_t e1000_io_read(struct e1000_hw *hw, unsigned long port); +uint32_t e1000_read_reg_io(struct e1000_hw *hw, uint32_t offset); +void e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value); +void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, uint32_t value); +int32_t e1000_config_dsp_after_link_change(struct e1000_hw *hw, boolean_t link_up); +int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active); + +#define E1000_READ_REG_IO(a, reg) \ + e1000_read_reg_io((a), E1000_##reg) +#define E1000_WRITE_REG_IO(a, reg, val) \ + e1000_write_reg_io((a), E1000_##reg, val) + +/* PCI Device IDs */ +#define E1000_DEV_ID_82542 0x1000 +#define E1000_DEV_ID_82543GC_FIBER 0x1001 +#define E1000_DEV_ID_82543GC_COPPER 0x1004 +#define E1000_DEV_ID_82544EI_COPPER 0x1008 +#define E1000_DEV_ID_82544EI_FIBER 0x1009 +#define E1000_DEV_ID_82544GC_COPPER 0x100C +#define E1000_DEV_ID_82544GC_LOM 0x100D +#define E1000_DEV_ID_82540EM 0x100E +#define E1000_DEV_ID_82540EM_LOM 0x1015 +#define E1000_DEV_ID_82540EP_LOM 0x1016 +#define E1000_DEV_ID_82540EP 0x1017 +#define E1000_DEV_ID_82540EP_LP 0x101E +#define E1000_DEV_ID_82545EM_COPPER 0x100F +#define E1000_DEV_ID_82545EM_FIBER 0x1011 +#define E1000_DEV_ID_82545GM_COPPER 0x1026 +#define E1000_DEV_ID_82545GM_FIBER 0x1027 +#define E1000_DEV_ID_82545GM_SERDES 0x1028 +#define E1000_DEV_ID_82546EB_COPPER 0x1010 +#define E1000_DEV_ID_82546EB_FIBER 0x1012 +#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D +#define E1000_DEV_ID_82541EI 0x1013 +#define E1000_DEV_ID_82541EI_MOBILE 0x1018 +#define E1000_DEV_ID_82541ER 0x1078 +#define E1000_DEV_ID_82547GI 0x1075 +#define E1000_DEV_ID_82541GI 0x1076 +#define E1000_DEV_ID_82541GI_MOBILE 0x1077 +#define E1000_DEV_ID_82541GI_LF 0x107C +#define E1000_DEV_ID_82546GB_COPPER 0x1079 +#define E1000_DEV_ID_82546GB_FIBER 0x107A +#define E1000_DEV_ID_82546GB_SERDES 0x107B +#define E1000_DEV_ID_82546GB_PCIE 0x108A +#define E1000_DEV_ID_82547EI 0x1019 + +#define NODE_ADDRESS_SIZE 6 +#define ETH_LENGTH_OF_ADDRESS 6 + +/* MAC decode size is 128K - This is the size of BAR0 */ +#define MAC_DECODE_SIZE (128 * 1024) + +#define E1000_82542_2_0_REV_ID 2 +#define E1000_82542_2_1_REV_ID 3 +#define E1000_REVISION_0 0 +#define E1000_REVISION_1 1 +#define E1000_REVISION_2 2 + +#define SPEED_10 10 +#define SPEED_100 100 +#define SPEED_1000 1000 +#define HALF_DUPLEX 1 +#define FULL_DUPLEX 2 + +/* The sizes (in bytes) of a ethernet packet */ +#define ENET_HEADER_SIZE 14 +#define MAXIMUM_ETHERNET_FRAME_SIZE 1518 /* With FCS */ +#define MINIMUM_ETHERNET_FRAME_SIZE 64 /* With FCS */ +#define ETHERNET_FCS_SIZE 4 +#define MAXIMUM_ETHERNET_PACKET_SIZE \ + (MAXIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE) +#define MINIMUM_ETHERNET_PACKET_SIZE \ + (MINIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE) +#define CRC_LENGTH ETHERNET_FCS_SIZE +#define MAX_JUMBO_FRAME_SIZE 0x3F00 + + +/* 802.1q VLAN Packet Sizes */ +#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMAed) */ + +/* Ethertype field values */ +#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */ +#define ETHERNET_IP_TYPE 0x0800 /* IP packets */ +#define ETHERNET_ARP_TYPE 0x0806 /* Address Resolution Protocol (ARP) */ + +/* Packet Header defines */ +#define IP_PROTOCOL_TCP 6 +#define IP_PROTOCOL_UDP 0x11 + +/* This defines the bits that are set in the Interrupt Mask + * Set/Read Register. Each bit is documented below: + * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) + * o RXSEQ = Receive Sequence Error + */ +#define POLL_IMS_ENABLE_MASK ( \ + E1000_IMS_RXDMT0 | \ + E1000_IMS_RXSEQ) + +/* This defines the bits that are set in the Interrupt Mask + * Set/Read Register. Each bit is documented below: + * o RXT0 = Receiver Timer Interrupt (ring 0) + * o TXDW = Transmit Descriptor Written Back + * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) + * o RXSEQ = Receive Sequence Error + * o LSC = Link Status Change + */ +#define IMS_ENABLE_MASK ( \ + E1000_IMS_RXT0 | \ + E1000_IMS_TXDW | \ + E1000_IMS_RXDMT0 | \ + E1000_IMS_RXSEQ | \ + E1000_IMS_LSC) + +/* Number of high/low register pairs in the RAR. The RAR (Receive Address + * Registers) holds the directed and multicast addresses that we monitor. We + * reserve one of these spots for our directed address, allowing us room for + * E1000_RAR_ENTRIES - 1 multicast addresses. + */ +#define E1000_RAR_ENTRIES 15 + +#define MIN_NUMBER_OF_DESCRIPTORS 8 +#define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8 + +/* Receive Descriptor */ +struct e1000_rx_desc { + uint64_t buffer_addr; /* Address of the descriptor's data buffer */ + uint16_t length; /* Length of data DMAed into data buffer */ + uint16_t csum; /* Packet checksum */ + uint8_t status; /* Descriptor status */ + uint8_t errors; /* Descriptor Errors */ + uint16_t special; +}; + +/* Receive Decriptor bit definitions */ +#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ +#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ +#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ +#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ +#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ +#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */ +#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */ +#define E1000_RXD_ERR_CE 0x01 /* CRC Error */ +#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */ +#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */ +#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */ +#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */ +#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */ +#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */ +#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */ +#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */ +#define E1000_RXD_SPC_PRI_SHIFT 0x000D /* Priority is in upper 3 of 16 */ +#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */ +#define E1000_RXD_SPC_CFI_SHIFT 0x000C /* CFI is bit 12 */ + +/* mask to determine if packets should be dropped due to frame errors */ +#define E1000_RXD_ERR_FRAME_ERR_MASK ( \ + E1000_RXD_ERR_CE | \ + E1000_RXD_ERR_SE | \ + E1000_RXD_ERR_SEQ | \ + E1000_RXD_ERR_CXE | \ + E1000_RXD_ERR_RXE) + +/* Transmit Descriptor */ +struct e1000_tx_desc { + uint64_t buffer_addr; /* Address of the descriptor's data buffer */ + union { + uint32_t data; + struct { + uint16_t length; /* Data buffer length */ + uint8_t cso; /* Checksum offset */ + uint8_t cmd; /* Descriptor control */ + } flags; + } lower; + union { + uint32_t data; + struct { + uint8_t status; /* Descriptor status */ + uint8_t css; /* Checksum start */ + uint16_t special; + } fields; + } upper; +}; + +/* Transmit Descriptor bit definitions */ +#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */ +#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */ +#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */ +#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */ +#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */ +#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ +#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */ +#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */ +#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */ +#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */ +#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */ +#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */ +#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */ +#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */ +#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */ +#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */ +#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */ +#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */ +#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */ +#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */ + +/* Offload Context Descriptor */ +struct e1000_context_desc { + union { + uint32_t ip_config; + struct { + uint8_t ipcss; /* IP checksum start */ + uint8_t ipcso; /* IP checksum offset */ + uint16_t ipcse; /* IP checksum end */ + } ip_fields; + } lower_setup; + union { + uint32_t tcp_config; + struct { + uint8_t tucss; /* TCP checksum start */ + uint8_t tucso; /* TCP checksum offset */ + uint16_t tucse; /* TCP checksum end */ + } tcp_fields; + } upper_setup; + uint32_t cmd_and_length; /* */ + union { + uint32_t data; + struct { + uint8_t status; /* Descriptor status */ + uint8_t hdr_len; /* Header length */ + uint16_t mss; /* Maximum segment size */ + } fields; + } tcp_seg_setup; +}; + +/* Offload data descriptor */ +struct e1000_data_desc { + uint64_t buffer_addr; /* Address of the descriptor's buffer address */ + union { + uint32_t data; + struct { + uint16_t length; /* Data buffer length */ + uint8_t typ_len_ext; /* */ + uint8_t cmd; /* */ + } flags; + } lower; + union { + uint32_t data; + struct { + uint8_t status; /* Descriptor status */ + uint8_t popts; /* Packet Options */ + uint16_t special; /* */ + } fields; + } upper; +}; + +/* Filters */ +#define E1000_NUM_UNICAST 16 /* Unicast filter entries */ +#define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */ +#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ + + +/* Receive Address Register */ +struct e1000_rar { + volatile uint32_t low; /* receive address low */ + volatile uint32_t high; /* receive address high */ +}; + +/* Number of entries in the Multicast Table Array (MTA). */ +#define E1000_NUM_MTA_REGISTERS 128 + +/* IPv4 Address Table Entry */ +struct e1000_ipv4_at_entry { + volatile uint32_t ipv4_addr; /* IP Address (RW) */ + volatile uint32_t reserved; +}; + +/* Four wakeup IP addresses are supported */ +#define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4 +#define E1000_IP4AT_SIZE E1000_WAKEUP_IP_ADDRESS_COUNT_MAX +#define E1000_IP6AT_SIZE 1 + +/* IPv6 Address Table Entry */ +struct e1000_ipv6_at_entry { + volatile uint8_t ipv6_addr[16]; +}; + +/* Flexible Filter Length Table Entry */ +struct e1000_fflt_entry { + volatile uint32_t length; /* Flexible Filter Length (RW) */ + volatile uint32_t reserved; +}; + +/* Flexible Filter Mask Table Entry */ +struct e1000_ffmt_entry { + volatile uint32_t mask; /* Flexible Filter Mask (RW) */ + volatile uint32_t reserved; +}; + +/* Flexible Filter Value Table Entry */ +struct e1000_ffvt_entry { + volatile uint32_t value; /* Flexible Filter Value (RW) */ + volatile uint32_t reserved; +}; + +/* Four Flexible Filters are supported */ +#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4 + +/* Each Flexible Filter is at most 128 (0x80) bytes in length */ +#define E1000_FLEXIBLE_FILTER_SIZE_MAX 128 + +#define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX +#define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX +#define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX + +/* Register Set. (82543, 82544) + * + * Registers are defined to be 32 bits and should be accessed as 32 bit values. + * These registers are physically located on the NIC, but are mapped into the + * host memory address space. + * + * RW - register is both readable and writable + * RO - register is read only + * WO - register is write only + * R/clr - register is read only and is cleared when read + * A - register array + */ +#define E1000_CTRL 0x00000 /* Device Control - RW */ +#define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */ +#define E1000_STATUS 0x00008 /* Device Status - RO */ +#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */ +#define E1000_EERD 0x00014 /* EEPROM Read - RW */ +#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */ +#define E1000_FLA 0x0001C /* Flash Access - RW */ +#define E1000_MDIC 0x00020 /* MDI Control - RW */ +#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */ +#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */ +#define E1000_FCT 0x00030 /* Flow Control Type - RW */ +#define E1000_VET 0x00038 /* VLAN Ether Type - RW */ +#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */ +#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */ +#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */ +#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */ +#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */ +#define E1000_RCTL 0x00100 /* RX Control - RW */ +#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */ +#define E1000_TXCW 0x00178 /* TX Configuration Word - RW */ +#define E1000_RXCW 0x00180 /* RX Configuration Word - RO */ +#define E1000_TCTL 0x00400 /* TX Control - RW */ +#define E1000_TIPG 0x00410 /* TX Inter-packet gap -RW */ +#define E1000_TBT 0x00448 /* TX Burst Timer - RW */ +#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */ +#define E1000_LEDCTL 0x00E00 /* LED Control - RW */ +#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ +#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */ +#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */ +#define E1000_RDBAL 0x02800 /* RX Descriptor Base Address Low - RW */ +#define E1000_RDBAH 0x02804 /* RX Descriptor Base Address High - RW */ +#define E1000_RDLEN 0x02808 /* RX Descriptor Length - RW */ +#define E1000_RDH 0x02810 /* RX Descriptor Head - RW */ +#define E1000_RDT 0x02818 /* RX Descriptor Tail - RW */ +#define E1000_RDTR 0x02820 /* RX Delay Timer - RW */ +#define E1000_RXDCTL 0x02828 /* RX Descriptor Control - RW */ +#define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */ +#define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */ +#define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */ +#define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */ +#define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */ +#define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */ +#define E1000_TDFTS 0x03428 /* TX Data FIFO Tail Saved - RW */ +#define E1000_TDFPC 0x03430 /* TX Data FIFO Packet Count - RW */ +#define E1000_TDBAL 0x03800 /* TX Descriptor Base Address Low - RW */ +#define E1000_TDBAH 0x03804 /* TX Descriptor Base Address High - RW */ +#define E1000_TDLEN 0x03808 /* TX Descriptor Length - RW */ +#define E1000_TDH 0x03810 /* TX Descriptor Head - RW */ +#define E1000_TDT 0x03818 /* TX Descripotr Tail - RW */ +#define E1000_TIDV 0x03820 /* TX Interrupt Delay Value - RW */ +#define E1000_TXDCTL 0x03828 /* TX Descriptor Control - RW */ +#define E1000_TADV 0x0382C /* TX Interrupt Absolute Delay Val - RW */ +#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */ +#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */ +#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */ +#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */ +#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */ +#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */ +#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */ +#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */ +#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */ +#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */ +#define E1000_COLC 0x04028 /* Collision Count - R/clr */ +#define E1000_DC 0x04030 /* Defer Count - R/clr */ +#define E1000_TNCRS 0x04034 /* TX-No CRS - R/clr */ +#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */ +#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */ +#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */ +#define E1000_XONRXC 0x04048 /* XON RX Count - R/clr */ +#define E1000_XONTXC 0x0404C /* XON TX Count - R/clr */ +#define E1000_XOFFRXC 0x04050 /* XOFF RX Count - R/clr */ +#define E1000_XOFFTXC 0x04054 /* XOFF TX Count - R/clr */ +#define E1000_FCRUC 0x04058 /* Flow Control RX Unsupported Count- R/clr */ +#define E1000_PRC64 0x0405C /* Packets RX (64 bytes) - R/clr */ +#define E1000_PRC127 0x04060 /* Packets RX (65-127 bytes) - R/clr */ +#define E1000_PRC255 0x04064 /* Packets RX (128-255 bytes) - R/clr */ +#define E1000_PRC511 0x04068 /* Packets RX (255-511 bytes) - R/clr */ +#define E1000_PRC1023 0x0406C /* Packets RX (512-1023 bytes) - R/clr */ +#define E1000_PRC1522 0x04070 /* Packets RX (1024-1522 bytes) - R/clr */ +#define E1000_GPRC 0x04074 /* Good Packets RX Count - R/clr */ +#define E1000_BPRC 0x04078 /* Broadcast Packets RX Count - R/clr */ +#define E1000_MPRC 0x0407C /* Multicast Packets RX Count - R/clr */ +#define E1000_GPTC 0x04080 /* Good Packets TX Count - R/clr */ +#define E1000_GORCL 0x04088 /* Good Octets RX Count Low - R/clr */ +#define E1000_GORCH 0x0408C /* Good Octets RX Count High - R/clr */ +#define E1000_GOTCL 0x04090 /* Good Octets TX Count Low - R/clr */ +#define E1000_GOTCH 0x04094 /* Good Octets TX Count High - R/clr */ +#define E1000_RNBC 0x040A0 /* RX No Buffers Count - R/clr */ +#define E1000_RUC 0x040A4 /* RX Undersize Count - R/clr */ +#define E1000_RFC 0x040A8 /* RX Fragment Count - R/clr */ +#define E1000_ROC 0x040AC /* RX Oversize Count - R/clr */ +#define E1000_RJC 0x040B0 /* RX Jabber Count - R/clr */ +#define E1000_MGTPRC 0x040B4 /* Management Packets RX Count - R/clr */ +#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */ +#define E1000_MGTPTC 0x040BC /* Management Packets TX Count - R/clr */ +#define E1000_TORL 0x040C0 /* Total Octets RX Low - R/clr */ +#define E1000_TORH 0x040C4 /* Total Octets RX High - R/clr */ +#define E1000_TOTL 0x040C8 /* Total Octets TX Low - R/clr */ +#define E1000_TOTH 0x040CC /* Total Octets TX High - R/clr */ +#define E1000_TPR 0x040D0 /* Total Packets RX - R/clr */ +#define E1000_TPT 0x040D4 /* Total Packets TX - R/clr */ +#define E1000_PTC64 0x040D8 /* Packets TX (64 bytes) - R/clr */ +#define E1000_PTC127 0x040DC /* Packets TX (65-127 bytes) - R/clr */ +#define E1000_PTC255 0x040E0 /* Packets TX (128-255 bytes) - R/clr */ +#define E1000_PTC511 0x040E4 /* Packets TX (256-511 bytes) - R/clr */ +#define E1000_PTC1023 0x040E8 /* Packets TX (512-1023 bytes) - R/clr */ +#define E1000_PTC1522 0x040EC /* Packets TX (1024-1522 Bytes) - R/clr */ +#define E1000_MPTC 0x040F0 /* Multicast Packets TX Count - R/clr */ +#define E1000_BPTC 0x040F4 /* Broadcast Packets TX Count - R/clr */ +#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context TX - R/clr */ +#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context TX Fail - R/clr */ +#define E1000_RXCSUM 0x05000 /* RX Checksum Control - RW */ +#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */ +#define E1000_RA 0x05400 /* Receive Address - RW Array */ +#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */ +#define E1000_WUC 0x05800 /* Wakeup Control - RW */ +#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */ +#define E1000_WUS 0x05810 /* Wakeup Status - RO */ +#define E1000_MANC 0x05820 /* Management Control - RW */ +#define E1000_IPAV 0x05838 /* IP Address Valid - RW */ +#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */ +#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */ +#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */ +#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */ +#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */ +#define E1000_HOST_IF 0x08800 /* Host Interface */ +#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */ +#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */ + +/* Register Set (82542) + * + * Some of the 82542 registers are located at different offsets than they are + * in more current versions of the 8254x. Despite the difference in location, + * the registers function in the same manner. + */ +#define E1000_82542_CTRL E1000_CTRL +#define E1000_82542_CTRL_DUP E1000_CTRL_DUP +#define E1000_82542_STATUS E1000_STATUS +#define E1000_82542_EECD E1000_EECD +#define E1000_82542_EERD E1000_EERD +#define E1000_82542_CTRL_EXT E1000_CTRL_EXT +#define E1000_82542_FLA E1000_FLA +#define E1000_82542_MDIC E1000_MDIC +#define E1000_82542_FCAL E1000_FCAL +#define E1000_82542_FCAH E1000_FCAH +#define E1000_82542_FCT E1000_FCT +#define E1000_82542_VET E1000_VET +#define E1000_82542_RA 0x00040 +#define E1000_82542_ICR E1000_ICR +#define E1000_82542_ITR E1000_ITR +#define E1000_82542_ICS E1000_ICS +#define E1000_82542_IMS E1000_IMS +#define E1000_82542_IMC E1000_IMC +#define E1000_82542_RCTL E1000_RCTL +#define E1000_82542_RDTR 0x00108 +#define E1000_82542_RDBAL 0x00110 +#define E1000_82542_RDBAH 0x00114 +#define E1000_82542_RDLEN 0x00118 +#define E1000_82542_RDH 0x00120 +#define E1000_82542_RDT 0x00128 +#define E1000_82542_FCRTH 0x00160 +#define E1000_82542_FCRTL 0x00168 +#define E1000_82542_FCTTV E1000_FCTTV +#define E1000_82542_TXCW E1000_TXCW +#define E1000_82542_RXCW E1000_RXCW +#define E1000_82542_MTA 0x00200 +#define E1000_82542_TCTL E1000_TCTL +#define E1000_82542_TIPG E1000_TIPG +#define E1000_82542_TDBAL 0x00420 +#define E1000_82542_TDBAH 0x00424 +#define E1000_82542_TDLEN 0x00428 +#define E1000_82542_TDH 0x00430 +#define E1000_82542_TDT 0x00438 +#define E1000_82542_TIDV 0x00440 +#define E1000_82542_TBT E1000_TBT +#define E1000_82542_AIT E1000_AIT +#define E1000_82542_VFTA 0x00600 +#define E1000_82542_LEDCTL E1000_LEDCTL +#define E1000_82542_PBA E1000_PBA +#define E1000_82542_RXDCTL E1000_RXDCTL +#define E1000_82542_RADV E1000_RADV +#define E1000_82542_RSRPD E1000_RSRPD +#define E1000_82542_TXDMAC E1000_TXDMAC +#define E1000_82542_TDFHS E1000_TDFHS +#define E1000_82542_TDFTS E1000_TDFTS +#define E1000_82542_TDFPC E1000_TDFPC +#define E1000_82542_TXDCTL E1000_TXDCTL +#define E1000_82542_TADV E1000_TADV +#define E1000_82542_TSPMT E1000_TSPMT +#define E1000_82542_CRCERRS E1000_CRCERRS +#define E1000_82542_ALGNERRC E1000_ALGNERRC +#define E1000_82542_SYMERRS E1000_SYMERRS +#define E1000_82542_RXERRC E1000_RXERRC +#define E1000_82542_MPC E1000_MPC +#define E1000_82542_SCC E1000_SCC +#define E1000_82542_ECOL E1000_ECOL +#define E1000_82542_MCC E1000_MCC +#define E1000_82542_LATECOL E1000_LATECOL +#define E1000_82542_COLC E1000_COLC +#define E1000_82542_DC E1000_DC +#define E1000_82542_TNCRS E1000_TNCRS +#define E1000_82542_SEC E1000_SEC +#define E1000_82542_CEXTERR E1000_CEXTERR +#define E1000_82542_RLEC E1000_RLEC +#define E1000_82542_XONRXC E1000_XONRXC +#define E1000_82542_XONTXC E1000_XONTXC +#define E1000_82542_XOFFRXC E1000_XOFFRXC +#define E1000_82542_XOFFTXC E1000_XOFFTXC +#define E1000_82542_FCRUC E1000_FCRUC +#define E1000_82542_PRC64 E1000_PRC64 +#define E1000_82542_PRC127 E1000_PRC127 +#define E1000_82542_PRC255 E1000_PRC255 +#define E1000_82542_PRC511 E1000_PRC511 +#define E1000_82542_PRC1023 E1000_PRC1023 +#define E1000_82542_PRC1522 E1000_PRC1522 +#define E1000_82542_GPRC E1000_GPRC +#define E1000_82542_BPRC E1000_BPRC +#define E1000_82542_MPRC E1000_MPRC +#define E1000_82542_GPTC E1000_GPTC +#define E1000_82542_GORCL E1000_GORCL +#define E1000_82542_GORCH E1000_GORCH +#define E1000_82542_GOTCL E1000_GOTCL +#define E1000_82542_GOTCH E1000_GOTCH +#define E1000_82542_RNBC E1000_RNBC +#define E1000_82542_RUC E1000_RUC +#define E1000_82542_RFC E1000_RFC +#define E1000_82542_ROC E1000_ROC +#define E1000_82542_RJC E1000_RJC +#define E1000_82542_MGTPRC E1000_MGTPRC +#define E1000_82542_MGTPDC E1000_MGTPDC +#define E1000_82542_MGTPTC E1000_MGTPTC +#define E1000_82542_TORL E1000_TORL +#define E1000_82542_TORH E1000_TORH +#define E1000_82542_TOTL E1000_TOTL +#define E1000_82542_TOTH E1000_TOTH +#define E1000_82542_TPR E1000_TPR +#define E1000_82542_TPT E1000_TPT +#define E1000_82542_PTC64 E1000_PTC64 +#define E1000_82542_PTC127 E1000_PTC127 +#define E1000_82542_PTC255 E1000_PTC255 +#define E1000_82542_PTC511 E1000_PTC511 +#define E1000_82542_PTC1023 E1000_PTC1023 +#define E1000_82542_PTC1522 E1000_PTC1522 +#define E1000_82542_MPTC E1000_MPTC +#define E1000_82542_BPTC E1000_BPTC +#define E1000_82542_TSCTC E1000_TSCTC +#define E1000_82542_TSCTFC E1000_TSCTFC +#define E1000_82542_RXCSUM E1000_RXCSUM +#define E1000_82542_WUC E1000_WUC +#define E1000_82542_WUFC E1000_WUFC +#define E1000_82542_WUS E1000_WUS +#define E1000_82542_MANC E1000_MANC +#define E1000_82542_IPAV E1000_IPAV +#define E1000_82542_IP4AT E1000_IP4AT +#define E1000_82542_IP6AT E1000_IP6AT +#define E1000_82542_WUPL E1000_WUPL +#define E1000_82542_WUPM E1000_WUPM +#define E1000_82542_FFLT E1000_FFLT +#define E1000_82542_TDFH 0x08010 +#define E1000_82542_TDFT 0x08018 +#define E1000_82542_FFMT E1000_FFMT +#define E1000_82542_FFVT E1000_FFVT +#define E1000_82542_HOST_IF E1000_HOST_IF + +/* Statistics counters collected by the MAC */ +struct e1000_hw_stats { + uint64_t crcerrs; + uint64_t algnerrc; + uint64_t symerrs; + uint64_t rxerrc; + uint64_t mpc; + uint64_t scc; + uint64_t ecol; + uint64_t mcc; + uint64_t latecol; + uint64_t colc; + uint64_t dc; + uint64_t tncrs; + uint64_t sec; + uint64_t cexterr; + uint64_t rlec; + uint64_t xonrxc; + uint64_t xontxc; + uint64_t xoffrxc; + uint64_t xofftxc; + uint64_t fcruc; + uint64_t prc64; + uint64_t prc127; + uint64_t prc255; + uint64_t prc511; + uint64_t prc1023; + uint64_t prc1522; + uint64_t gprc; + uint64_t bprc; + uint64_t mprc; + uint64_t gptc; + uint64_t gorcl; + uint64_t gorch; + uint64_t gotcl; + uint64_t gotch; + uint64_t rnbc; + uint64_t ruc; + uint64_t rfc; + uint64_t roc; + uint64_t rjc; + uint64_t mgprc; + uint64_t mgpdc; + uint64_t mgptc; + uint64_t torl; + uint64_t torh; + uint64_t totl; + uint64_t toth; + uint64_t tpr; + uint64_t tpt; + uint64_t ptc64; + uint64_t ptc127; + uint64_t ptc255; + uint64_t ptc511; + uint64_t ptc1023; + uint64_t ptc1522; + uint64_t mptc; + uint64_t bptc; + uint64_t tsctc; + uint64_t tsctfc; +}; + +/* Structure containing variables used by the shared code (e1000_hw.c) */ +struct e1000_hw { + uint8_t __iomem *hw_addr; + e1000_mac_type mac_type; + e1000_phy_type phy_type; + uint32_t phy_init_script; + e1000_media_type media_type; + void *back; + e1000_fc_type fc; + e1000_bus_speed bus_speed; + e1000_bus_width bus_width; + e1000_bus_type bus_type; + struct e1000_eeprom_info eeprom; + e1000_ms_type master_slave; + e1000_ms_type original_master_slave; + e1000_ffe_config ffe_config_state; + uint32_t asf_firmware_present; + unsigned long io_base; + uint32_t phy_id; + uint32_t phy_revision; + uint32_t phy_addr; + uint32_t original_fc; + uint32_t txcw; + uint32_t autoneg_failed; + uint32_t max_frame_size; + uint32_t min_frame_size; + uint32_t mc_filter_type; + uint32_t num_mc_addrs; + uint32_t collision_delta; + uint32_t tx_packet_delta; + uint32_t ledctl_default; + uint32_t ledctl_mode1; + uint32_t ledctl_mode2; + uint16_t phy_spd_default; + uint16_t autoneg_advertised; + uint16_t pci_cmd_word; + uint16_t fc_high_water; + uint16_t fc_low_water; + uint16_t fc_pause_time; + uint16_t current_ifs_val; + uint16_t ifs_min_val; + uint16_t ifs_max_val; + uint16_t ifs_step_size; + uint16_t ifs_ratio; + uint16_t device_id; + uint16_t vendor_id; + uint16_t subsystem_id; + uint16_t subsystem_vendor_id; + uint8_t revision_id; + uint8_t autoneg; + uint8_t mdix; + uint8_t forced_speed_duplex; + uint8_t wait_autoneg_complete; + uint8_t dma_fairness; + uint8_t mac_addr[NODE_ADDRESS_SIZE]; + uint8_t perm_mac_addr[NODE_ADDRESS_SIZE]; + boolean_t disable_polarity_correction; + boolean_t speed_downgraded; + e1000_smart_speed smart_speed; + e1000_dsp_config dsp_config_state; + boolean_t get_link_status; + boolean_t serdes_link_down; + boolean_t tbi_compatibility_en; + boolean_t tbi_compatibility_on; + boolean_t phy_reset_disable; + boolean_t fc_send_xon; + boolean_t fc_strict_ieee; + boolean_t report_tx_early; + boolean_t adaptive_ifs; + boolean_t ifs_params_forced; + boolean_t in_ifs_mode; +}; + + +#define E1000_EEPROM_SWDPIN0 0x0001 /* SWDPIN 0 EEPROM Value */ +#define E1000_EEPROM_LED_LOGIC 0x0020 /* Led Logic Word */ +/* Register Bit Masks */ +/* Device Control */ +#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ +#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */ +#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */ +#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */ +#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */ +#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */ +#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */ +#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */ +#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */ +#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */ +#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */ +#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */ +#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */ +#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */ +#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ +#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ +#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ +#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ +#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */ +#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */ +#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */ +#define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */ +#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */ +#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */ +#define E1000_CTRL_RST 0x04000000 /* Global reset */ +#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */ +#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */ +#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */ +#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ +#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ + +/* Device Status */ +#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ +#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ +#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ +#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */ +#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ +#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ +#define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */ +#define E1000_STATUS_SPEED_MASK 0x000000C0 +#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ +#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ +#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ +#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */ +#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */ +#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */ +#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */ +#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */ +#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */ + +/* Constants used to intrepret the masked PCI-X bus speed. */ +#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus speed 50-66 MHz */ +#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed 66-100 MHz */ +#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus speed 100-133 MHz */ + +/* EEPROM/Flash Control */ +#define E1000_EECD_SK 0x00000001 /* EEPROM Clock */ +#define E1000_EECD_CS 0x00000002 /* EEPROM Chip Select */ +#define E1000_EECD_DI 0x00000004 /* EEPROM Data In */ +#define E1000_EECD_DO 0x00000008 /* EEPROM Data Out */ +#define E1000_EECD_FWE_MASK 0x00000030 +#define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */ +#define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */ +#define E1000_EECD_FWE_SHIFT 4 +#define E1000_EECD_REQ 0x00000040 /* EEPROM Access Request */ +#define E1000_EECD_GNT 0x00000080 /* EEPROM Access Grant */ +#define E1000_EECD_PRES 0x00000100 /* EEPROM Present */ +#define E1000_EECD_SIZE 0x00000200 /* EEPROM Size (0=64 word 1=256 word) */ +#define E1000_EECD_ADDR_BITS 0x00000400 /* EEPROM Addressing bits based on type + * (0-small, 1-large) */ +#define E1000_EECD_TYPE 0x00002000 /* EEPROM Type (1-SPI, 0-Microwire) */ +#ifndef E1000_EEPROM_GRANT_ATTEMPTS +#define E1000_EEPROM_GRANT_ATTEMPTS 1000 /* EEPROM # attempts to gain grant */ +#endif + +/* EEPROM Read */ +#define E1000_EERD_START 0x00000001 /* Start Read */ +#define E1000_EERD_DONE 0x00000010 /* Read Done */ +#define E1000_EERD_ADDR_SHIFT 8 +#define E1000_EERD_ADDR_MASK 0x0000FF00 /* Read Address */ +#define E1000_EERD_DATA_SHIFT 16 +#define E1000_EERD_DATA_MASK 0xFFFF0000 /* Read Data */ + +/* SPI EEPROM Status Register */ +#define EEPROM_STATUS_RDY_SPI 0x01 +#define EEPROM_STATUS_WEN_SPI 0x02 +#define EEPROM_STATUS_BP0_SPI 0x04 +#define EEPROM_STATUS_BP1_SPI 0x08 +#define EEPROM_STATUS_WPEN_SPI 0x80 + +/* Extended Device Control */ +#define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */ +#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */ +#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN +#define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */ +#define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */ +#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Defineable Pin 4 */ +#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Defineable Pin 5 */ +#define E1000_CTRL_EXT_PHY_INT E1000_CTRL_EXT_SDP5_DATA +#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Defineable Pin 6 */ +#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */ +#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */ +#define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */ +#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */ +#define E1000_CTRL_EXT_SDP7_DIR 0x00000800 /* Direction of SDP7 0=in 1=out */ +#define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */ +#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */ +#define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */ +#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */ +#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000 +#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000 +#define E1000_CTRL_EXT_LINK_MODE_TBI 0x00C00000 +#define E1000_CTRL_EXT_WR_WMARK_MASK 0x03000000 +#define E1000_CTRL_EXT_WR_WMARK_256 0x00000000 +#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000 +#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000 +#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000 + +/* MDI Control */ +#define E1000_MDIC_DATA_MASK 0x0000FFFF +#define E1000_MDIC_REG_MASK 0x001F0000 +#define E1000_MDIC_REG_SHIFT 16 +#define E1000_MDIC_PHY_MASK 0x03E00000 +#define E1000_MDIC_PHY_SHIFT 21 +#define E1000_MDIC_OP_WRITE 0x04000000 +#define E1000_MDIC_OP_READ 0x08000000 +#define E1000_MDIC_READY 0x10000000 +#define E1000_MDIC_INT_EN 0x20000000 +#define E1000_MDIC_ERROR 0x40000000 + +/* LED Control */ +#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F +#define E1000_LEDCTL_LED0_MODE_SHIFT 0 +#define E1000_LEDCTL_LED0_IVRT 0x00000040 +#define E1000_LEDCTL_LED0_BLINK 0x00000080 +#define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00 +#define E1000_LEDCTL_LED1_MODE_SHIFT 8 +#define E1000_LEDCTL_LED1_IVRT 0x00004000 +#define E1000_LEDCTL_LED1_BLINK 0x00008000 +#define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000 +#define E1000_LEDCTL_LED2_MODE_SHIFT 16 +#define E1000_LEDCTL_LED2_IVRT 0x00400000 +#define E1000_LEDCTL_LED2_BLINK 0x00800000 +#define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000 +#define E1000_LEDCTL_LED3_MODE_SHIFT 24 +#define E1000_LEDCTL_LED3_IVRT 0x40000000 +#define E1000_LEDCTL_LED3_BLINK 0x80000000 + +#define E1000_LEDCTL_MODE_LINK_10_1000 0x0 +#define E1000_LEDCTL_MODE_LINK_100_1000 0x1 +#define E1000_LEDCTL_MODE_LINK_UP 0x2 +#define E1000_LEDCTL_MODE_ACTIVITY 0x3 +#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4 +#define E1000_LEDCTL_MODE_LINK_10 0x5 +#define E1000_LEDCTL_MODE_LINK_100 0x6 +#define E1000_LEDCTL_MODE_LINK_1000 0x7 +#define E1000_LEDCTL_MODE_PCIX_MODE 0x8 +#define E1000_LEDCTL_MODE_FULL_DUPLEX 0x9 +#define E1000_LEDCTL_MODE_COLLISION 0xA +#define E1000_LEDCTL_MODE_BUS_SPEED 0xB +#define E1000_LEDCTL_MODE_BUS_SIZE 0xC +#define E1000_LEDCTL_MODE_PAUSED 0xD +#define E1000_LEDCTL_MODE_LED_ON 0xE +#define E1000_LEDCTL_MODE_LED_OFF 0xF + +/* Receive Address */ +#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */ + +/* Interrupt Cause Read */ +#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */ +#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */ +#define E1000_ICR_LSC 0x00000004 /* Link Status Change */ +#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */ +#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */ +#define E1000_ICR_RXO 0x00000040 /* rx overrun */ +#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */ +#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */ +#define E1000_ICR_RXCFG 0x00000400 /* RX /c/ ordered set */ +#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */ +#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */ +#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */ +#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */ +#define E1000_ICR_TXD_LOW 0x00008000 +#define E1000_ICR_SRPD 0x00010000 + +/* Interrupt Cause Set */ +#define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ +#define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ +#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */ +#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ +#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ +#define E1000_ICS_RXO E1000_ICR_RXO /* rx overrun */ +#define E1000_ICS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ +#define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */ +#define E1000_ICS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ +#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ +#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ +#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ +#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ +#define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW +#define E1000_ICS_SRPD E1000_ICR_SRPD + +/* Interrupt Mask Set */ +#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ +#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ +#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */ +#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ +#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ +#define E1000_IMS_RXO E1000_ICR_RXO /* rx overrun */ +#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ +#define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */ +#define E1000_IMS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ +#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ +#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ +#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ +#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ +#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW +#define E1000_IMS_SRPD E1000_ICR_SRPD + +/* Interrupt Mask Clear */ +#define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */ +#define E1000_IMC_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ +#define E1000_IMC_LSC E1000_ICR_LSC /* Link Status Change */ +#define E1000_IMC_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ +#define E1000_IMC_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ +#define E1000_IMC_RXO E1000_ICR_RXO /* rx overrun */ +#define E1000_IMC_RXT0 E1000_ICR_RXT0 /* rx timer intr */ +#define E1000_IMC_MDAC E1000_ICR_MDAC /* MDIO access complete */ +#define E1000_IMC_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ +#define E1000_IMC_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ +#define E1000_IMC_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ +#define E1000_IMC_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ +#define E1000_IMC_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ +#define E1000_IMC_TXD_LOW E1000_ICR_TXD_LOW +#define E1000_IMC_SRPD E1000_ICR_SRPD + +/* Receive Control */ +#define E1000_RCTL_RST 0x00000001 /* Software reset */ +#define E1000_RCTL_EN 0x00000002 /* enable */ +#define E1000_RCTL_SBP 0x00000004 /* store bad packet */ +#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */ +#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */ +#define E1000_RCTL_LPE 0x00000020 /* long packet enable */ +#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */ +#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ +#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */ +#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ +#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */ +#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min threshold size */ +#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min threshold size */ +#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */ +#define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */ +#define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */ +#define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */ +#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */ +#define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */ +#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */ +/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */ +#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */ +#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */ +#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */ +#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */ +/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */ +#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */ +#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */ +#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */ +#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */ +#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */ +#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */ +#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */ +#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */ +#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */ +#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */ + +/* Receive Descriptor */ +#define E1000_RDT_DELAY 0x0000ffff /* Delay timer (1=1024us) */ +#define E1000_RDT_FPDB 0x80000000 /* Flush descriptor block */ +#define E1000_RDLEN_LEN 0x0007ff80 /* descriptor length */ +#define E1000_RDH_RDH 0x0000ffff /* receive descriptor head */ +#define E1000_RDT_RDT 0x0000ffff /* receive descriptor tail */ + +/* Flow Control */ +#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */ +#define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */ +#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */ +#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ + +/* Receive Descriptor Control */ +#define E1000_RXDCTL_PTHRESH 0x0000003F /* RXDCTL Prefetch Threshold */ +#define E1000_RXDCTL_HTHRESH 0x00003F00 /* RXDCTL Host Threshold */ +#define E1000_RXDCTL_WTHRESH 0x003F0000 /* RXDCTL Writeback Threshold */ +#define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */ + +/* Transmit Descriptor Control */ +#define E1000_TXDCTL_PTHRESH 0x000000FF /* TXDCTL Prefetch Threshold */ +#define E1000_TXDCTL_HTHRESH 0x0000FF00 /* TXDCTL Host Threshold */ +#define E1000_TXDCTL_WTHRESH 0x00FF0000 /* TXDCTL Writeback Threshold */ +#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */ +#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */ +#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */ + +/* Transmit Configuration Word */ +#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */ +#define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */ +#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */ +#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */ +#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */ +#define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */ +#define E1000_TXCW_NP 0x00008000 /* TXCW next page */ +#define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */ +#define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */ +#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */ + +/* Receive Configuration Word */ +#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */ +#define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */ +#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */ +#define E1000_RXCW_CC 0x10000000 /* Receive config change */ +#define E1000_RXCW_C 0x20000000 /* Receive config */ +#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */ +#define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */ + +/* Transmit Control */ +#define E1000_TCTL_RST 0x00000001 /* software reset */ +#define E1000_TCTL_EN 0x00000002 /* enable tx */ +#define E1000_TCTL_BCE 0x00000004 /* busy check enable */ +#define E1000_TCTL_PSP 0x00000008 /* pad short packets */ +#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */ +#define E1000_TCTL_COLD 0x003ff000 /* collision distance */ +#define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */ +#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */ +#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ +#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */ + +/* Receive Checksum Control */ +#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */ +#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */ +#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ +#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */ + +/* Definitions for power management and wakeup registers */ +/* Wake Up Control */ +#define E1000_WUC_APME 0x00000001 /* APM Enable */ +#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */ +#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */ +#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */ +#define E1000_WUC_SPM 0x80000000 /* Enable SPM */ + +/* Wake Up Filter Control */ +#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */ +#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */ +#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */ +#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */ +#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */ +#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */ +#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */ +#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */ +#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */ +#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */ +#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */ +#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */ +#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */ +#define E1000_WUFC_FLX_OFFSET 16 /* Offset to the Flexible Filters bits */ +#define E1000_WUFC_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */ + +/* Wake Up Status */ +#define E1000_WUS_LNKC 0x00000001 /* Link Status Changed */ +#define E1000_WUS_MAG 0x00000002 /* Magic Packet Received */ +#define E1000_WUS_EX 0x00000004 /* Directed Exact Received */ +#define E1000_WUS_MC 0x00000008 /* Directed Multicast Received */ +#define E1000_WUS_BC 0x00000010 /* Broadcast Received */ +#define E1000_WUS_ARP 0x00000020 /* ARP Request Packet Received */ +#define E1000_WUS_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Received */ +#define E1000_WUS_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Received */ +#define E1000_WUS_FLX0 0x00010000 /* Flexible Filter 0 Match */ +#define E1000_WUS_FLX1 0x00020000 /* Flexible Filter 1 Match */ +#define E1000_WUS_FLX2 0x00040000 /* Flexible Filter 2 Match */ +#define E1000_WUS_FLX3 0x00080000 /* Flexible Filter 3 Match */ +#define E1000_WUS_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */ + +/* Management Control */ +#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */ +#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */ +#define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */ +#define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */ +#define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */ +#define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */ +#define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */ +#define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */ +#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */ +#define E1000_MANC_NEIGHBOR_EN 0x00004000 /* Enable Neighbor Discovery + * Filtering */ +#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */ +#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ +#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */ +#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 /* Enable MAC address + * filtering */ +#define E1000_MANC_EN_MNG2HOST 0x00200000 /* Enable MNG packets to host + * memory */ +#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */ +#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */ +#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */ +#define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */ +#define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */ +#define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */ + +#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */ +#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */ + +/* Wake Up Packet Length */ +#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */ + +#define E1000_MDALIGN 4096 + +/* EEPROM Commands - Microwire */ +#define EEPROM_READ_OPCODE_MICROWIRE 0x6 /* EEPROM read opcode */ +#define EEPROM_WRITE_OPCODE_MICROWIRE 0x5 /* EEPROM write opcode */ +#define EEPROM_ERASE_OPCODE_MICROWIRE 0x7 /* EEPROM erase opcode */ +#define EEPROM_EWEN_OPCODE_MICROWIRE 0x13 /* EEPROM erase/write enable */ +#define EEPROM_EWDS_OPCODE_MICROWIRE 0x10 /* EEPROM erast/write disable */ + +/* EEPROM Commands - SPI */ +#define EEPROM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */ +#define EEPROM_READ_OPCODE_SPI 0x3 /* EEPROM read opcode */ +#define EEPROM_WRITE_OPCODE_SPI 0x2 /* EEPROM write opcode */ +#define EEPROM_A8_OPCODE_SPI 0x8 /* opcode bit-3 = address bit-8 */ +#define EEPROM_WREN_OPCODE_SPI 0x6 /* EEPROM set Write Enable latch */ +#define EEPROM_WRDI_OPCODE_SPI 0x4 /* EEPROM reset Write Enable latch */ +#define EEPROM_RDSR_OPCODE_SPI 0x5 /* EEPROM read Status register */ +#define EEPROM_WRSR_OPCODE_SPI 0x1 /* EEPROM write Status register */ + +/* EEPROM Size definitions */ +#define EEPROM_SIZE_16KB 0x1800 +#define EEPROM_SIZE_8KB 0x1400 +#define EEPROM_SIZE_4KB 0x1000 +#define EEPROM_SIZE_2KB 0x0C00 +#define EEPROM_SIZE_1KB 0x0800 +#define EEPROM_SIZE_512B 0x0400 +#define EEPROM_SIZE_128B 0x0000 +#define EEPROM_SIZE_MASK 0x1C00 + +/* EEPROM Word Offsets */ +#define EEPROM_COMPAT 0x0003 +#define EEPROM_ID_LED_SETTINGS 0x0004 +#define EEPROM_SERDES_AMPLITUDE 0x0006 /* For SERDES output amplitude adjustment. */ +#define EEPROM_PHY_CLASS_WORD 0x0007 +#define EEPROM_INIT_CONTROL1_REG 0x000A +#define EEPROM_INIT_CONTROL2_REG 0x000F +#define EEPROM_INIT_CONTROL3_PORT_B 0x0014 +#define EEPROM_INIT_CONTROL3_PORT_A 0x0024 +#define EEPROM_CFG 0x0012 +#define EEPROM_FLASH_VERSION 0x0032 +#define EEPROM_CHECKSUM_REG 0x003F + +/* Word definitions for ID LED Settings */ +#define ID_LED_RESERVED_0000 0x0000 +#define ID_LED_RESERVED_FFFF 0xFFFF +#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ + (ID_LED_OFF1_OFF2 << 8) | \ + (ID_LED_DEF1_DEF2 << 4) | \ + (ID_LED_DEF1_DEF2)) +#define ID_LED_DEF1_DEF2 0x1 +#define ID_LED_DEF1_ON2 0x2 +#define ID_LED_DEF1_OFF2 0x3 +#define ID_LED_ON1_DEF2 0x4 +#define ID_LED_ON1_ON2 0x5 +#define ID_LED_ON1_OFF2 0x6 +#define ID_LED_OFF1_DEF2 0x7 +#define ID_LED_OFF1_ON2 0x8 +#define ID_LED_OFF1_OFF2 0x9 + +#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF +#define IGP_ACTIVITY_LED_ENABLE 0x0300 +#define IGP_LED3_MODE 0x07000000 + + +/* Mask bits for SERDES amplitude adjustment in Word 6 of the EEPROM */ +#define EEPROM_SERDES_AMPLITUDE_MASK 0x000F + +/* Mask bit for PHY class in Word 7 of the EEPROM */ +#define EEPROM_PHY_CLASS_A 0x8000 + +/* Mask bits for fields in Word 0x0a of the EEPROM */ +#define EEPROM_WORD0A_ILOS 0x0010 +#define EEPROM_WORD0A_SWDPIO 0x01E0 +#define EEPROM_WORD0A_LRST 0x0200 +#define EEPROM_WORD0A_FD 0x0400 +#define EEPROM_WORD0A_66MHZ 0x0800 + +/* Mask bits for fields in Word 0x0f of the EEPROM */ +#define EEPROM_WORD0F_PAUSE_MASK 0x3000 +#define EEPROM_WORD0F_PAUSE 0x1000 +#define EEPROM_WORD0F_ASM_DIR 0x2000 +#define EEPROM_WORD0F_ANE 0x0800 +#define EEPROM_WORD0F_SWPDIO_EXT 0x00F0 + +/* For checksumming, the sum of all words in the EEPROM should equal 0xBABA. */ +#define EEPROM_SUM 0xBABA + +/* EEPROM Map defines (WORD OFFSETS)*/ +#define EEPROM_NODE_ADDRESS_BYTE_0 0 +#define EEPROM_PBA_BYTE_1 8 + +#define EEPROM_RESERVED_WORD 0xFFFF + +/* EEPROM Map Sizes (Byte Counts) */ +#define PBA_SIZE 4 + +/* Collision related configuration parameters */ +#define E1000_COLLISION_THRESHOLD 15 +#define E1000_CT_SHIFT 4 +#define E1000_COLLISION_DISTANCE 64 +#define E1000_FDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE +#define E1000_HDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE +#define E1000_COLD_SHIFT 12 + +/* Number of Transmit and Receive Descriptors must be a multiple of 8 */ +#define REQ_TX_DESCRIPTOR_MULTIPLE 8 +#define REQ_RX_DESCRIPTOR_MULTIPLE 8 + +/* Default values for the transmit IPG register */ +#define DEFAULT_82542_TIPG_IPGT 10 +#define DEFAULT_82543_TIPG_IPGT_FIBER 9 +#define DEFAULT_82543_TIPG_IPGT_COPPER 8 + +#define E1000_TIPG_IPGT_MASK 0x000003FF +#define E1000_TIPG_IPGR1_MASK 0x000FFC00 +#define E1000_TIPG_IPGR2_MASK 0x3FF00000 + +#define DEFAULT_82542_TIPG_IPGR1 2 +#define DEFAULT_82543_TIPG_IPGR1 8 +#define E1000_TIPG_IPGR1_SHIFT 10 + +#define DEFAULT_82542_TIPG_IPGR2 10 +#define DEFAULT_82543_TIPG_IPGR2 6 +#define E1000_TIPG_IPGR2_SHIFT 20 + +#define E1000_TXDMAC_DPP 0x00000001 + +/* Adaptive IFS defines */ +#define TX_THRESHOLD_START 8 +#define TX_THRESHOLD_INCREMENT 10 +#define TX_THRESHOLD_DECREMENT 1 +#define TX_THRESHOLD_STOP 190 +#define TX_THRESHOLD_DISABLE 0 +#define TX_THRESHOLD_TIMER_MS 10000 +#define MIN_NUM_XMITS 1000 +#define IFS_MAX 80 +#define IFS_STEP 10 +#define IFS_MIN 40 +#define IFS_RATIO 4 + +/* PBA constants */ +#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */ +#define E1000_PBA_22K 0x0016 +#define E1000_PBA_24K 0x0018 +#define E1000_PBA_30K 0x001E +#define E1000_PBA_40K 0x0028 +#define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */ + +/* Flow Control Constants */ +#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 +#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 +#define FLOW_CONTROL_TYPE 0x8808 + +/* The historical defaults for the flow control values are given below. */ +#define FC_DEFAULT_HI_THRESH (0x8000) /* 32KB */ +#define FC_DEFAULT_LO_THRESH (0x4000) /* 16KB */ +#define FC_DEFAULT_TX_TIMER (0x100) /* ~130 us */ + +/* PCIX Config space */ +#define PCIX_COMMAND_REGISTER 0xE6 +#define PCIX_STATUS_REGISTER_LO 0xE8 +#define PCIX_STATUS_REGISTER_HI 0xEA + +#define PCIX_COMMAND_MMRBC_MASK 0x000C +#define PCIX_COMMAND_MMRBC_SHIFT 0x2 +#define PCIX_STATUS_HI_MMRBC_MASK 0x0060 +#define PCIX_STATUS_HI_MMRBC_SHIFT 0x5 +#define PCIX_STATUS_HI_MMRBC_4K 0x3 +#define PCIX_STATUS_HI_MMRBC_2K 0x2 + + +/* Number of bits required to shift right the "pause" bits from the + * EEPROM (bits 13:12) to the "pause" (bits 8:7) field in the TXCW register. + */ +#define PAUSE_SHIFT 5 + +/* Number of bits required to shift left the "SWDPIO" bits from the + * EEPROM (bits 8:5) to the "SWDPIO" (bits 25:22) field in the CTRL register. + */ +#define SWDPIO_SHIFT 17 + +/* Number of bits required to shift left the "SWDPIO_EXT" bits from the + * EEPROM word F (bits 7:4) to the bits 11:8 of The Extended CTRL register. + */ +#define SWDPIO__EXT_SHIFT 4 + +/* Number of bits required to shift left the "ILOS" bit from the EEPROM + * (bit 4) to the "ILOS" (bit 7) field in the CTRL register. + */ +#define ILOS_SHIFT 3 + + +#define RECEIVE_BUFFER_ALIGN_SIZE (256) + +/* Number of milliseconds we wait for auto-negotiation to complete */ +#define LINK_UP_TIMEOUT 500 + +#define E1000_TX_BUFFER_SIZE ((uint32_t)1514) + +/* The carrier extension symbol, as received by the NIC. */ +#define CARRIER_EXTENSION 0x0F + +/* TBI_ACCEPT macro definition: + * + * This macro requires: + * adapter = a pointer to struct e1000_hw + * status = the 8 bit status field of the RX descriptor with EOP set + * error = the 8 bit error field of the RX descriptor with EOP set + * length = the sum of all the length fields of the RX descriptors that + * make up the current frame + * last_byte = the last byte of the frame DMAed by the hardware + * max_frame_length = the maximum frame length we want to accept. + * min_frame_length = the minimum frame length we want to accept. + * + * This macro is a conditional that should be used in the interrupt + * handler's Rx processing routine when RxErrors have been detected. + * + * Typical use: + * ... + * if (TBI_ACCEPT) { + * accept_frame = TRUE; + * e1000_tbi_adjust_stats(adapter, MacAddress); + * frame_length--; + * } else { + * accept_frame = FALSE; + * } + * ... + */ + +#define TBI_ACCEPT(adapter, status, errors, length, last_byte) \ + ((adapter)->tbi_compatibility_on && \ + (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \ + ((last_byte) == CARRIER_EXTENSION) && \ + (((status) & E1000_RXD_STAT_VP) ? \ + (((length) > ((adapter)->min_frame_size - VLAN_TAG_SIZE)) && \ + ((length) <= ((adapter)->max_frame_size + 1))) : \ + (((length) > (adapter)->min_frame_size) && \ + ((length) <= ((adapter)->max_frame_size + VLAN_TAG_SIZE + 1))))) + + +/* Structures, enums, and macros for the PHY */ + +/* Bit definitions for the Management Data IO (MDIO) and Management Data + * Clock (MDC) pins in the Device Control Register. + */ +#define E1000_CTRL_PHY_RESET_DIR E1000_CTRL_SWDPIO0 +#define E1000_CTRL_PHY_RESET E1000_CTRL_SWDPIN0 +#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2 +#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2 +#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3 +#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3 +#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR +#define E1000_CTRL_PHY_RESET4 E1000_CTRL_EXT_SDP4_DATA + +/* PHY 1000 MII Register/Bit Definitions */ +/* PHY Registers defined by IEEE */ +#define PHY_CTRL 0x00 /* Control Register */ +#define PHY_STATUS 0x01 /* Status Regiser */ +#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */ +#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */ +#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */ +#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */ +#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */ +#define PHY_NEXT_PAGE_TX 0x07 /* Next Page TX */ +#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */ +#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */ +#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */ +#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */ + +#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */ +#define MAX_PHY_MULTI_PAGE_REG 0xF /* Registers equal on all pages */ + +/* M88E1000 Specific Registers */ +#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */ +#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */ +#define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */ +#define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */ +#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */ +#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */ + +#define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */ +#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */ +#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */ +#define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */ +#define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */ + +#define IGP01E1000_IEEE_REGS_PAGE 0x0000 +#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300 +#define IGP01E1000_IEEE_FORCE_GIGA 0x0140 + +/* IGP01E1000 Specific Registers */ +#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* PHY Specific Port Config Register */ +#define IGP01E1000_PHY_PORT_STATUS 0x11 /* PHY Specific Status Register */ +#define IGP01E1000_PHY_PORT_CTRL 0x12 /* PHY Specific Control Register */ +#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health Register */ +#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO Register */ +#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality Register */ +#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* PHY Page Select Core Register */ + +/* IGP01E1000 AGC Registers - stores the cable length values*/ +#define IGP01E1000_PHY_AGC_A 0x1172 +#define IGP01E1000_PHY_AGC_B 0x1272 +#define IGP01E1000_PHY_AGC_C 0x1472 +#define IGP01E1000_PHY_AGC_D 0x1872 + +/* IGP01E1000 DSP Reset Register */ +#define IGP01E1000_PHY_DSP_RESET 0x1F33 +#define IGP01E1000_PHY_DSP_SET 0x1F71 +#define IGP01E1000_PHY_DSP_FFE 0x1F35 + +#define IGP01E1000_PHY_CHANNEL_NUM 4 +#define IGP01E1000_PHY_AGC_PARAM_A 0x1171 +#define IGP01E1000_PHY_AGC_PARAM_B 0x1271 +#define IGP01E1000_PHY_AGC_PARAM_C 0x1471 +#define IGP01E1000_PHY_AGC_PARAM_D 0x1871 + +#define IGP01E1000_PHY_EDAC_MU_INDEX 0xC000 +#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000 + +#define IGP01E1000_PHY_ANALOG_TX_STATE 0x2890 +#define IGP01E1000_PHY_ANALOG_CLASS_A 0x2000 +#define IGP01E1000_PHY_FORCE_ANALOG_ENABLE 0x0004 +#define IGP01E1000_PHY_DSP_FFE_CM_CP 0x0069 + +#define IGP01E1000_PHY_DSP_FFE_DEFAULT 0x002A +/* IGP01E1000 PCS Initialization register - stores the polarity status when + * speed = 1000 Mbps. */ +#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4 +#define IGP01E1000_PHY_PCS_CTRL_REG 0x00B5 + +#define IGP01E1000_ANALOG_REGS_PAGE 0x20C0 + + +/* PHY Control Register */ +#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */ +#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */ +#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */ +#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */ +#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */ +#define MII_CR_POWER_DOWN 0x0800 /* Power down */ +#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */ +#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */ +#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */ +#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */ + +/* PHY Status Register */ +#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */ +#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */ +#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */ +#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */ +#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */ +#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */ +#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */ +#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */ +#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */ +#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */ +#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */ +#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */ +#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */ +#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */ +#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */ + +/* Autoneg Advertisement Register */ +#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */ +#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */ +#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */ +#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */ +#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */ +#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */ +#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */ +#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */ +#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */ +#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */ + +/* Link Partner Ability Register (Base Page) */ +#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */ +#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */ +#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */ +#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */ +#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */ +#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */ +#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */ +#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */ +#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */ +#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */ +#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */ + +/* Autoneg Expansion Register */ +#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */ +#define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */ +#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */ +#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */ +#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP is 100TX Full Duplex Capable */ + +/* Next Page TX Register */ +#define NPTX_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */ +#define NPTX_TOGGLE 0x0800 /* Toggles between exchanges + * of different NP + */ +#define NPTX_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg + * 0 = cannot comply with msg + */ +#define NPTX_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */ +#define NPTX_NEXT_PAGE 0x8000 /* 1 = addition NP will follow + * 0 = sending last NP + */ + +/* Link Partner Next Page Register */ +#define LP_RNPR_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */ +#define LP_RNPR_TOGGLE 0x0800 /* Toggles between exchanges + * of different NP + */ +#define LP_RNPR_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg + * 0 = cannot comply with msg + */ +#define LP_RNPR_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */ +#define LP_RNPR_ACKNOWLDGE 0x4000 /* 1 = ACK / 0 = NO ACK */ +#define LP_RNPR_NEXT_PAGE 0x8000 /* 1 = addition NP will follow + * 0 = sending last NP + */ + +/* 1000BASE-T Control Register */ +#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */ +#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */ +#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */ +#define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */ + /* 0=DTE device */ +#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */ + /* 0=Configure PHY as Slave */ +#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */ + /* 0=Automatic Master/Slave config */ +#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */ +#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */ +#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */ +#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */ +#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */ + +/* 1000BASE-T Status Register */ +#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */ +#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */ +#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */ +#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */ +#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */ +#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */ +#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local TX is Master, 0=Slave */ +#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */ +#define SR_1000T_REMOTE_RX_STATUS_SHIFT 12 +#define SR_1000T_LOCAL_RX_STATUS_SHIFT 13 +#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5 +#define FFE_IDLE_ERR_COUNT_TIMEOUT_20 20 +#define FFE_IDLE_ERR_COUNT_TIMEOUT_100 100 + +/* Extended Status Register */ +#define IEEE_ESR_1000T_HD_CAPS 0x1000 /* 1000T HD capable */ +#define IEEE_ESR_1000T_FD_CAPS 0x2000 /* 1000T FD capable */ +#define IEEE_ESR_1000X_HD_CAPS 0x4000 /* 1000X HD capable */ +#define IEEE_ESR_1000X_FD_CAPS 0x8000 /* 1000X FD capable */ + +#define PHY_TX_POLARITY_MASK 0x0100 /* register 10h bit 8 (polarity bit) */ +#define PHY_TX_NORMAL_POLARITY 0 /* register 10h bit 8 (normal polarity) */ + +#define AUTO_POLARITY_DISABLE 0x0010 /* register 11h bit 4 */ + /* (0=enable, 1=disable) */ + +/* M88E1000 PHY Specific Control Register */ +#define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */ +#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */ +#define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */ +#define M88E1000_PSCR_CLK125_DISABLE 0x0010 /* 1=CLK125 low, + * 0=CLK125 toggling + */ +#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */ + /* Manual MDI configuration */ +#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */ +#define M88E1000_PSCR_AUTO_X_1000T 0x0040 /* 1000BASE-T: Auto crossover, + * 100BASE-TX/10BASE-T: + * MDI Mode + */ +#define M88E1000_PSCR_AUTO_X_MODE 0x0060 /* Auto crossover enabled + * all speeds. + */ +#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE 0x0080 + /* 1=Enable Extended 10BASE-T distance + * (Lower 10BASE-T RX Threshold) + * 0=Normal 10BASE-T RX Threshold */ +#define M88E1000_PSCR_MII_5BIT_ENABLE 0x0100 + /* 1=5-Bit interface in 100BASE-TX + * 0=MII interface in 100BASE-TX */ +#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */ +#define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */ +#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */ + +#define M88E1000_PSCR_POLARITY_REVERSAL_SHIFT 1 +#define M88E1000_PSCR_AUTO_X_MODE_SHIFT 5 +#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT 7 + +/* M88E1000 PHY Specific Status Register */ +#define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */ +#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */ +#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */ +#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */ +#define M88E1000_PSSR_CABLE_LENGTH 0x0380 /* 0=<50M;1=50-80M;2=80-110M; + * 3=110-140M;4=>140M */ +#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */ +#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */ +#define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */ +#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */ +#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */ +#define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */ +#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */ +#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */ + +#define M88E1000_PSSR_REV_POLARITY_SHIFT 1 +#define M88E1000_PSSR_DOWNSHIFT_SHIFT 5 +#define M88E1000_PSSR_MDIX_SHIFT 6 +#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7 + +/* M88E1000 Extended PHY Specific Control Register */ +#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */ +#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000 /* 1=Lost lock detect enabled. + * Will assert lost lock and bring + * link down if idle not seen + * within 1ms in 1000BASE-T + */ +/* Number of times we will attempt to autonegotiate before downshifting if we + * are the master */ +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X 0x0400 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X 0x0800 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X 0x0C00 +/* Number of times we will attempt to autonegotiate before downshifting if we + * are the slave */ +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS 0x0000 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X 0x0200 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X 0x0300 +#define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */ +#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ +#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */ + +/* IGP01E1000 Specific Port Config Register - R/W */ +#define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT 0x0010 +#define IGP01E1000_PSCFR_PRE_EN 0x0020 +#define IGP01E1000_PSCFR_SMART_SPEED 0x0080 +#define IGP01E1000_PSCFR_DISABLE_TPLOOPBACK 0x0100 +#define IGP01E1000_PSCFR_DISABLE_JABBER 0x0400 +#define IGP01E1000_PSCFR_DISABLE_TRANSMIT 0x2000 + +/* IGP01E1000 Specific Port Status Register - R/O */ +#define IGP01E1000_PSSR_AUTONEG_FAILED 0x0001 /* RO LH SC */ +#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002 +#define IGP01E1000_PSSR_CABLE_LENGTH 0x007C +#define IGP01E1000_PSSR_FULL_DUPLEX 0x0200 +#define IGP01E1000_PSSR_LINK_UP 0x0400 +#define IGP01E1000_PSSR_MDIX 0x0800 +#define IGP01E1000_PSSR_SPEED_MASK 0xC000 /* speed bits mask */ +#define IGP01E1000_PSSR_SPEED_10MBPS 0x4000 +#define IGP01E1000_PSSR_SPEED_100MBPS 0x8000 +#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000 +#define IGP01E1000_PSSR_CABLE_LENGTH_SHIFT 0x0002 /* shift right 2 */ +#define IGP01E1000_PSSR_MDIX_SHIFT 0x000B /* shift right 11 */ + +/* IGP01E1000 Specific Port Control Register - R/W */ +#define IGP01E1000_PSCR_TP_LOOPBACK 0x0010 +#define IGP01E1000_PSCR_CORRECT_NC_SCMBLR 0x0200 +#define IGP01E1000_PSCR_TEN_CRS_SELECT 0x0400 +#define IGP01E1000_PSCR_FLIP_CHIP 0x0800 +#define IGP01E1000_PSCR_AUTO_MDIX 0x1000 +#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0-MDI, 1-MDIX */ + +/* IGP01E1000 Specific Port Link Health Register */ +#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000 +#define IGP01E1000_PLHR_GIG_SCRAMBLER_ERROR 0x4000 +#define IGP01E1000_PLHR_MASTER_FAULT 0x2000 +#define IGP01E1000_PLHR_MASTER_RESOLUTION 0x1000 +#define IGP01E1000_PLHR_GIG_REM_RCVR_NOK 0x0800 /* LH */ +#define IGP01E1000_PLHR_IDLE_ERROR_CNT_OFLOW 0x0400 /* LH */ +#define IGP01E1000_PLHR_DATA_ERR_1 0x0200 /* LH */ +#define IGP01E1000_PLHR_DATA_ERR_0 0x0100 +#define IGP01E1000_PLHR_AUTONEG_FAULT 0x0040 +#define IGP01E1000_PLHR_AUTONEG_ACTIVE 0x0010 +#define IGP01E1000_PLHR_VALID_CHANNEL_D 0x0008 +#define IGP01E1000_PLHR_VALID_CHANNEL_C 0x0004 +#define IGP01E1000_PLHR_VALID_CHANNEL_B 0x0002 +#define IGP01E1000_PLHR_VALID_CHANNEL_A 0x0001 + +/* IGP01E1000 Channel Quality Register */ +#define IGP01E1000_MSE_CHANNEL_D 0x000F +#define IGP01E1000_MSE_CHANNEL_C 0x00F0 +#define IGP01E1000_MSE_CHANNEL_B 0x0F00 +#define IGP01E1000_MSE_CHANNEL_A 0xF000 + +/* IGP01E1000 DSP reset macros */ +#define DSP_RESET_ENABLE 0x0 +#define DSP_RESET_DISABLE 0x2 +#define E1000_MAX_DSP_RESETS 10 + +/* IGP01E1000 AGC Registers */ + +#define IGP01E1000_AGC_LENGTH_SHIFT 7 /* Coarse - 13:11, Fine - 10:7 */ + +/* 7 bits (3 Coarse + 4 Fine) --> 128 optional values */ +#define IGP01E1000_AGC_LENGTH_TABLE_SIZE 128 + +/* The precision of the length is +/- 10 meters */ +#define IGP01E1000_AGC_RANGE 10 + +/* IGP01E1000 PCS Initialization register */ +/* bits 3:6 in the PCS registers stores the channels polarity */ +#define IGP01E1000_PHY_POLARITY_MASK 0x0078 + +/* IGP01E1000 GMII FIFO Register */ +#define IGP01E1000_GMII_FLEX_SPD 0x10 /* Enable flexible speed + * on Link-Up */ +#define IGP01E1000_GMII_SPD 0x20 /* Enable SPD */ + +/* IGP01E1000 Analog Register */ +#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS 0x20D1 +#define IGP01E1000_ANALOG_FUSE_STATUS 0x20D0 +#define IGP01E1000_ANALOG_FUSE_CONTROL 0x20DC +#define IGP01E1000_ANALOG_FUSE_BYPASS 0x20DE + +#define IGP01E1000_ANALOG_FUSE_POLY_MASK 0xF000 +#define IGP01E1000_ANALOG_FUSE_FINE_MASK 0x0F80 +#define IGP01E1000_ANALOG_FUSE_COARSE_MASK 0x0070 +#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED 0x0100 +#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL 0x0002 + +#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH 0x0040 +#define IGP01E1000_ANALOG_FUSE_COARSE_10 0x0010 +#define IGP01E1000_ANALOG_FUSE_FINE_1 0x0080 +#define IGP01E1000_ANALOG_FUSE_FINE_10 0x0500 + + +/* Bit definitions for valid PHY IDs. */ +/* I = Integrated + * E = External + */ +#define M88E1000_E_PHY_ID 0x01410C50 +#define M88E1000_I_PHY_ID 0x01410C30 +#define M88E1011_I_PHY_ID 0x01410C20 +#define IGP01E1000_I_PHY_ID 0x02A80380 +#define M88E1000_12_PHY_ID M88E1000_E_PHY_ID +#define M88E1000_14_PHY_ID M88E1000_E_PHY_ID +#define M88E1011_I_REV_4 0x04 + +/* Miscellaneous PHY bit definitions. */ +#define PHY_PREAMBLE 0xFFFFFFFF +#define PHY_SOF 0x01 +#define PHY_OP_READ 0x02 +#define PHY_OP_WRITE 0x01 +#define PHY_TURNAROUND 0x02 +#define PHY_PREAMBLE_SIZE 32 +#define MII_CR_SPEED_1000 0x0040 +#define MII_CR_SPEED_100 0x2000 +#define MII_CR_SPEED_10 0x0000 +#define E1000_PHY_ADDRESS 0x01 +#define PHY_AUTO_NEG_TIME 45 /* 4.5 Seconds */ +#define PHY_FORCE_TIME 20 /* 2.0 Seconds */ +#define PHY_REVISION_MASK 0xFFFFFFF0 +#define DEVICE_SPEED_MASK 0x00000300 /* Device Ctrl Reg Speed Mask */ +#define REG4_SPEED_MASK 0x01E0 +#define REG9_SPEED_MASK 0x0300 +#define ADVERTISE_10_HALF 0x0001 +#define ADVERTISE_10_FULL 0x0002 +#define ADVERTISE_100_HALF 0x0004 +#define ADVERTISE_100_FULL 0x0008 +#define ADVERTISE_1000_HALF 0x0010 +#define ADVERTISE_1000_FULL 0x0020 +#define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x002F /* Everything but 1000-Half */ +#define AUTONEG_ADVERTISE_10_100_ALL 0x000F /* All 10/100 speeds*/ +#define AUTONEG_ADVERTISE_10_ALL 0x0003 /* 10Mbps Full & Half speeds*/ + +#endif /* _E1000_HW_H_ */ diff --git a/drivers/net/e1000/e1000_main.c b/drivers/net/e1000/e1000_main.c new file mode 100644 index 00000000000..82549a6fcfb --- /dev/null +++ b/drivers/net/e1000/e1000_main.c @@ -0,0 +1,3162 @@ +/******************************************************************************* + + + Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. + + This program is free software; you can redistribute it and/or modify it + under the terms of the GNU General Public License as published by the Free + Software Foundation; either version 2 of the License, or (at your option) + any later version. + + This program is distributed in the hope that it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., 59 + Temple Place - Suite 330, Boston, MA 02111-1307, USA. + + The full GNU General Public License is included in this distribution in the + file called LICENSE. + + Contact Information: + Linux NICS <linux.nics@intel.com> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +#include "e1000.h" + +/* Change Log + * 5.3.12 6/7/04 + * - kcompat NETIF_MSG for older kernels (2.4.9) <sean.p.mcdermott@intel.com> + * - if_mii support and associated kcompat for older kernels + * - More errlogging support from Jon Mason <jonmason@us.ibm.com> + * - Fix TSO issues on PPC64 machines -- Jon Mason <jonmason@us.ibm.com> + * + * 5.7.1 12/16/04 + * - Resurrect 82547EI/GI related fix in e1000_intr to avoid deadlocks. This + * fix was removed as it caused system instability. The suspected cause of + * this is the called to e1000_irq_disable in e1000_intr. Inlined the + * required piece of e1000_irq_disable into e1000_intr - Anton Blanchard + * 5.7.0 12/10/04 + * - include fix to the condition that determines when to quit NAPI - Robert Olsson + * - use netif_poll_{disable/enable} to synchronize between NAPI and i/f up/down + * 5.6.5 11/01/04 + * - Enabling NETIF_F_SG without checksum offload is illegal - + John Mason <jdmason@us.ibm.com> + * 5.6.3 10/26/04 + * - Remove redundant initialization - Jamal Hadi + * - Reset buffer_info->dma in tx resource cleanup logic + * 5.6.2 10/12/04 + * - Avoid filling tx_ring completely - shemminger@osdl.org + * - Replace schedule_timeout() with msleep()/msleep_interruptible() - + * nacc@us.ibm.com + * - Sparse cleanup - shemminger@osdl.org + * - Fix tx resource cleanup logic + * - LLTX support - ak@suse.de and hadi@cyberus.ca + */ + +char e1000_driver_name[] = "e1000"; +char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; +#ifndef CONFIG_E1000_NAPI +#define DRIVERNAPI +#else +#define DRIVERNAPI "-NAPI" +#endif +#define DRV_VERSION "5.7.6-k2"DRIVERNAPI +char e1000_driver_version[] = DRV_VERSION; +char e1000_copyright[] = "Copyright (c) 1999-2004 Intel Corporation."; + +/* e1000_pci_tbl - PCI Device ID Table + * + * Last entry must be all 0s + * + * Macro expands to... + * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} + */ +static struct pci_device_id e1000_pci_tbl[] = { + INTEL_E1000_ETHERNET_DEVICE(0x1000), + INTEL_E1000_ETHERNET_DEVICE(0x1001), + INTEL_E1000_ETHERNET_DEVICE(0x1004), + INTEL_E1000_ETHERNET_DEVICE(0x1008), + INTEL_E1000_ETHERNET_DEVICE(0x1009), + INTEL_E1000_ETHERNET_DEVICE(0x100C), + INTEL_E1000_ETHERNET_DEVICE(0x100D), + INTEL_E1000_ETHERNET_DEVICE(0x100E), + INTEL_E1000_ETHERNET_DEVICE(0x100F), + INTEL_E1000_ETHERNET_DEVICE(0x1010), + INTEL_E1000_ETHERNET_DEVICE(0x1011), + INTEL_E1000_ETHERNET_DEVICE(0x1012), + INTEL_E1000_ETHERNET_DEVICE(0x1013), + INTEL_E1000_ETHERNET_DEVICE(0x1014), + INTEL_E1000_ETHERNET_DEVICE(0x1015), + INTEL_E1000_ETHERNET_DEVICE(0x1016), + INTEL_E1000_ETHERNET_DEVICE(0x1017), + INTEL_E1000_ETHERNET_DEVICE(0x1018), + INTEL_E1000_ETHERNET_DEVICE(0x1019), + INTEL_E1000_ETHERNET_DEVICE(0x101D), + INTEL_E1000_ETHERNET_DEVICE(0x101E), + INTEL_E1000_ETHERNET_DEVICE(0x1026), + INTEL_E1000_ETHERNET_DEVICE(0x1027), + INTEL_E1000_ETHERNET_DEVICE(0x1028), + INTEL_E1000_ETHERNET_DEVICE(0x1075), + INTEL_E1000_ETHERNET_DEVICE(0x1076), + INTEL_E1000_ETHERNET_DEVICE(0x1077), + INTEL_E1000_ETHERNET_DEVICE(0x1078), + INTEL_E1000_ETHERNET_DEVICE(0x1079), + INTEL_E1000_ETHERNET_DEVICE(0x107A), + INTEL_E1000_ETHERNET_DEVICE(0x107B), + INTEL_E1000_ETHERNET_DEVICE(0x107C), + INTEL_E1000_ETHERNET_DEVICE(0x108A), + /* required last entry */ + {0,} +}; + +MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); + +int e1000_up(struct e1000_adapter *adapter); +void e1000_down(struct e1000_adapter *adapter); +void e1000_reset(struct e1000_adapter *adapter); +int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx); +int e1000_setup_tx_resources(struct e1000_adapter *adapter); +int e1000_setup_rx_resources(struct e1000_adapter *adapter); +void e1000_free_tx_resources(struct e1000_adapter *adapter); +void e1000_free_rx_resources(struct e1000_adapter *adapter); +void e1000_update_stats(struct e1000_adapter *adapter); + +/* Local Function Prototypes */ + +static int e1000_init_module(void); +static void e1000_exit_module(void); +static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); +static void __devexit e1000_remove(struct pci_dev *pdev); +static int e1000_sw_init(struct e1000_adapter *adapter); +static int e1000_open(struct net_device *netdev); +static int e1000_close(struct net_device *netdev); +static void e1000_configure_tx(struct e1000_adapter *adapter); +static void e1000_configure_rx(struct e1000_adapter *adapter); +static void e1000_setup_rctl(struct e1000_adapter *adapter); +static void e1000_clean_tx_ring(struct e1000_adapter *adapter); +static void e1000_clean_rx_ring(struct e1000_adapter *adapter); +static void e1000_set_multi(struct net_device *netdev); +static void e1000_update_phy_info(unsigned long data); +static void e1000_watchdog(unsigned long data); +static void e1000_watchdog_task(struct e1000_adapter *adapter); +static void e1000_82547_tx_fifo_stall(unsigned long data); +static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev); +static struct net_device_stats * e1000_get_stats(struct net_device *netdev); +static int e1000_change_mtu(struct net_device *netdev, int new_mtu); +static int e1000_set_mac(struct net_device *netdev, void *p); +static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs); +static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter); +#ifdef CONFIG_E1000_NAPI +static int e1000_clean(struct net_device *netdev, int *budget); +static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter, + int *work_done, int work_to_do); +#else +static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter); +#endif +static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter); +static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); +static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, + int cmd); +void e1000_set_ethtool_ops(struct net_device *netdev); +static void e1000_enter_82542_rst(struct e1000_adapter *adapter); +static void e1000_leave_82542_rst(struct e1000_adapter *adapter); +static void e1000_tx_timeout(struct net_device *dev); +static void e1000_tx_timeout_task(struct net_device *dev); +static void e1000_smartspeed(struct e1000_adapter *adapter); +static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, + struct sk_buff *skb); + +static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp); +static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid); +static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid); +static void e1000_restore_vlan(struct e1000_adapter *adapter); + +static int e1000_notify_reboot(struct notifier_block *, unsigned long event, void *ptr); +static int e1000_suspend(struct pci_dev *pdev, uint32_t state); +#ifdef CONFIG_PM +static int e1000_resume(struct pci_dev *pdev); +#endif + +#ifdef CONFIG_NET_POLL_CONTROLLER +/* for netdump / net console */ +static void e1000_netpoll (struct net_device *netdev); +#endif + +struct notifier_block e1000_notifier_reboot = { + .notifier_call = e1000_notify_reboot, + .next = NULL, + .priority = 0 +}; + +/* Exported from other modules */ + +extern void e1000_check_options(struct e1000_adapter *adapter); + +static struct pci_driver e1000_driver = { + .name = e1000_driver_name, + .id_table = e1000_pci_tbl, + .probe = e1000_probe, + .remove = __devexit_p(e1000_remove), + /* Power Managment Hooks */ +#ifdef CONFIG_PM + .suspend = e1000_suspend, + .resume = e1000_resume +#endif +}; + +MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); +MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); +MODULE_LICENSE("GPL"); +MODULE_VERSION(DRV_VERSION); + +static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE; +module_param(debug, int, 0); +MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); + +/** + * e1000_init_module - Driver Registration Routine + * + * e1000_init_module is the first routine called when the driver is + * loaded. All it does is register with the PCI subsystem. + **/ + +static int __init +e1000_init_module(void) +{ + int ret; + printk(KERN_INFO "%s - version %s\n", + e1000_driver_string, e1000_driver_version); + + printk(KERN_INFO "%s\n", e1000_copyright); + + ret = pci_module_init(&e1000_driver); + if(ret >= 0) { + register_reboot_notifier(&e1000_notifier_reboot); + } + return ret; +} + +module_init(e1000_init_module); + +/** + * e1000_exit_module - Driver Exit Cleanup Routine + * + * e1000_exit_module is called just before the driver is removed + * from memory. + **/ + +static void __exit +e1000_exit_module(void) +{ + unregister_reboot_notifier(&e1000_notifier_reboot); + pci_unregister_driver(&e1000_driver); +} + +module_exit(e1000_exit_module); + +/** + * e1000_irq_disable - Mask off interrupt generation on the NIC + * @adapter: board private structure + **/ + +static inline void +e1000_irq_disable(struct e1000_adapter *adapter) +{ + atomic_inc(&adapter->irq_sem); + E1000_WRITE_REG(&adapter->hw, IMC, ~0); + E1000_WRITE_FLUSH(&adapter->hw); + synchronize_irq(adapter->pdev->irq); +} + +/** + * e1000_irq_enable - Enable default interrupt generation settings + * @adapter: board private structure + **/ + +static inline void +e1000_irq_enable(struct e1000_adapter *adapter) +{ + if(likely(atomic_dec_and_test(&adapter->irq_sem))) { + E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK); + E1000_WRITE_FLUSH(&adapter->hw); + } +} + +int +e1000_up(struct e1000_adapter *adapter) +{ + struct net_device *netdev = adapter->netdev; + int err; + + /* hardware has been reset, we need to reload some things */ + + /* Reset the PHY if it was previously powered down */ + if(adapter->hw.media_type == e1000_media_type_copper) { + uint16_t mii_reg; + e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg); + if(mii_reg & MII_CR_POWER_DOWN) + e1000_phy_reset(&adapter->hw); + } + + e1000_set_multi(netdev); + + e1000_restore_vlan(adapter); + + e1000_configure_tx(adapter); + e1000_setup_rctl(adapter); + e1000_configure_rx(adapter); + e1000_alloc_rx_buffers(adapter); + + if((err = request_irq(adapter->pdev->irq, &e1000_intr, + SA_SHIRQ | SA_SAMPLE_RANDOM, + netdev->name, netdev))) + return err; + + mod_timer(&adapter->watchdog_timer, jiffies); + e1000_irq_enable(adapter); + +#ifdef CONFIG_E1000_NAPI + netif_poll_enable(netdev); +#endif + return 0; +} + +void +e1000_down(struct e1000_adapter *adapter) +{ + struct net_device *netdev = adapter->netdev; + + e1000_irq_disable(adapter); + free_irq(adapter->pdev->irq, netdev); + del_timer_sync(&adapter->tx_fifo_stall_timer); + del_timer_sync(&adapter->watchdog_timer); + del_timer_sync(&adapter->phy_info_timer); + +#ifdef CONFIG_E1000_NAPI + netif_poll_disable(netdev); +#endif + adapter->link_speed = 0; + adapter->link_duplex = 0; + netif_carrier_off(netdev); + netif_stop_queue(netdev); + + e1000_reset(adapter); + e1000_clean_tx_ring(adapter); + e1000_clean_rx_ring(adapter); + + /* If WoL is not enabled + * Power down the PHY so no link is implied when interface is down */ + if(!adapter->wol && adapter->hw.media_type == e1000_media_type_copper) { + uint16_t mii_reg; + e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg); + mii_reg |= MII_CR_POWER_DOWN; + e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg); + } +} + +void +e1000_reset(struct e1000_adapter *adapter) +{ + uint32_t pba; + + /* Repartition Pba for greater than 9k mtu + * To take effect CTRL.RST is required. + */ + + if(adapter->hw.mac_type < e1000_82547) { + if(adapter->rx_buffer_len > E1000_RXBUFFER_8192) + pba = E1000_PBA_40K; + else + pba = E1000_PBA_48K; + } else { + if(adapter->rx_buffer_len > E1000_RXBUFFER_8192) + pba = E1000_PBA_22K; + else + pba = E1000_PBA_30K; + adapter->tx_fifo_head = 0; + adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; + adapter->tx_fifo_size = + (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; + atomic_set(&adapter->tx_fifo_stall, 0); + } + E1000_WRITE_REG(&adapter->hw, PBA, pba); + + /* flow control settings */ + adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) - + E1000_FC_HIGH_DIFF; + adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) - + E1000_FC_LOW_DIFF; + adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME; + adapter->hw.fc_send_xon = 1; + adapter->hw.fc = adapter->hw.original_fc; + + e1000_reset_hw(&adapter->hw); + if(adapter->hw.mac_type >= e1000_82544) + E1000_WRITE_REG(&adapter->hw, WUC, 0); + if(e1000_init_hw(&adapter->hw)) + DPRINTK(PROBE, ERR, "Hardware Error\n"); + + /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ + E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE); + + e1000_reset_adaptive(&adapter->hw); + e1000_phy_get_info(&adapter->hw, &adapter->phy_info); +} + +/** + * e1000_probe - Device Initialization Routine + * @pdev: PCI device information struct + * @ent: entry in e1000_pci_tbl + * + * Returns 0 on success, negative on failure + * + * e1000_probe initializes an adapter identified by a pci_dev structure. + * The OS initialization, configuring of the adapter private structure, + * and a hardware reset occur. + **/ + +static int __devinit +e1000_probe(struct pci_dev *pdev, + const struct pci_device_id *ent) +{ + struct net_device *netdev; + struct e1000_adapter *adapter; + static int cards_found = 0; + unsigned long mmio_start; + int mmio_len; + int pci_using_dac; + int i; + int err; + uint16_t eeprom_data; + uint16_t eeprom_apme_mask = E1000_EEPROM_APME; + + if((err = pci_enable_device(pdev))) + return err; + + if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) { + pci_using_dac = 1; + } else { + if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) { + E1000_ERR("No usable DMA configuration, aborting\n"); + return err; + } + pci_using_dac = 0; + } + + if((err = pci_request_regions(pdev, e1000_driver_name))) + return err; + + pci_set_master(pdev); + + netdev = alloc_etherdev(sizeof(struct e1000_adapter)); + if(!netdev) { + err = -ENOMEM; + goto err_alloc_etherdev; + } + + SET_MODULE_OWNER(netdev); + SET_NETDEV_DEV(netdev, &pdev->dev); + + pci_set_drvdata(pdev, netdev); + adapter = netdev->priv; + adapter->netdev = netdev; + adapter->pdev = pdev; + adapter->hw.back = adapter; + adapter->msg_enable = (1 << debug) - 1; + + mmio_start = pci_resource_start(pdev, BAR_0); + mmio_len = pci_resource_len(pdev, BAR_0); + + adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); + if(!adapter->hw.hw_addr) { + err = -EIO; + goto err_ioremap; + } + + for(i = BAR_1; i <= BAR_5; i++) { + if(pci_resource_len(pdev, i) == 0) + continue; + if(pci_resource_flags(pdev, i) & IORESOURCE_IO) { + adapter->hw.io_base = pci_resource_start(pdev, i); + break; + } + } + + netdev->open = &e1000_open; + netdev->stop = &e1000_close; + netdev->hard_start_xmit = &e1000_xmit_frame; + netdev->get_stats = &e1000_get_stats; + netdev->set_multicast_list = &e1000_set_multi; + netdev->set_mac_address = &e1000_set_mac; + netdev->change_mtu = &e1000_change_mtu; + netdev->do_ioctl = &e1000_ioctl; + e1000_set_ethtool_ops(netdev); + netdev->tx_timeout = &e1000_tx_timeout; + netdev->watchdog_timeo = 5 * HZ; +#ifdef CONFIG_E1000_NAPI + netdev->poll = &e1000_clean; + netdev->weight = 64; +#endif + netdev->vlan_rx_register = e1000_vlan_rx_register; + netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid; + netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid; +#ifdef CONFIG_NET_POLL_CONTROLLER + netdev->poll_controller = e1000_netpoll; +#endif + strcpy(netdev->name, pci_name(pdev)); + + netdev->mem_start = mmio_start; + netdev->mem_end = mmio_start + mmio_len; + netdev->base_addr = adapter->hw.io_base; + + adapter->bd_number = cards_found; + + /* setup the private structure */ + + if((err = e1000_sw_init(adapter))) + goto err_sw_init; + + if(adapter->hw.mac_type >= e1000_82543) { + netdev->features = NETIF_F_SG | + NETIF_F_HW_CSUM | + NETIF_F_HW_VLAN_TX | + NETIF_F_HW_VLAN_RX | + NETIF_F_HW_VLAN_FILTER; + } + +#ifdef NETIF_F_TSO + if((adapter->hw.mac_type >= e1000_82544) && + (adapter->hw.mac_type != e1000_82547)) + netdev->features |= NETIF_F_TSO; +#endif + if(pci_using_dac) + netdev->features |= NETIF_F_HIGHDMA; + + /* hard_start_xmit is safe against parallel locking */ + netdev->features |= NETIF_F_LLTX; + + /* before reading the EEPROM, reset the controller to + * put the device in a known good starting state */ + + e1000_reset_hw(&adapter->hw); + + /* make sure the EEPROM is good */ + + if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) { + DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n"); + err = -EIO; + goto err_eeprom; + } + + /* copy the MAC address out of the EEPROM */ + + if (e1000_read_mac_addr(&adapter->hw)) + DPRINTK(PROBE, ERR, "EEPROM Read Error\n"); + memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len); + + if(!is_valid_ether_addr(netdev->dev_addr)) { + DPRINTK(PROBE, ERR, "Invalid MAC Address\n"); + err = -EIO; + goto err_eeprom; + } + + e1000_read_part_num(&adapter->hw, &(adapter->part_num)); + + e1000_get_bus_info(&adapter->hw); + + init_timer(&adapter->tx_fifo_stall_timer); + adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall; + adapter->tx_fifo_stall_timer.data = (unsigned long) adapter; + + init_timer(&adapter->watchdog_timer); + adapter->watchdog_timer.function = &e1000_watchdog; + adapter->watchdog_timer.data = (unsigned long) adapter; + + INIT_WORK(&adapter->watchdog_task, + (void (*)(void *))e1000_watchdog_task, adapter); + + init_timer(&adapter->phy_info_timer); + adapter->phy_info_timer.function = &e1000_update_phy_info; + adapter->phy_info_timer.data = (unsigned long) adapter; + + INIT_WORK(&adapter->tx_timeout_task, + (void (*)(void *))e1000_tx_timeout_task, netdev); + + /* we're going to reset, so assume we have no link for now */ + + netif_carrier_off(netdev); + netif_stop_queue(netdev); + + e1000_check_options(adapter); + + /* Initial Wake on LAN setting + * If APM wake is enabled in the EEPROM, + * enable the ACPI Magic Packet filter + */ + + switch(adapter->hw.mac_type) { + case e1000_82542_rev2_0: + case e1000_82542_rev2_1: + case e1000_82543: + break; + case e1000_82544: + e1000_read_eeprom(&adapter->hw, + EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); + eeprom_apme_mask = E1000_EEPROM_82544_APM; + break; + case e1000_82546: + case e1000_82546_rev_3: + if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1) + && (adapter->hw.media_type == e1000_media_type_copper)) { + e1000_read_eeprom(&adapter->hw, + EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); + break; + } + /* Fall Through */ + default: + e1000_read_eeprom(&adapter->hw, + EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); + break; + } + if(eeprom_data & eeprom_apme_mask) + adapter->wol |= E1000_WUFC_MAG; + + /* reset the hardware with the new settings */ + e1000_reset(adapter); + + strcpy(netdev->name, "eth%d"); + if((err = register_netdev(netdev))) + goto err_register; + + DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n"); + + cards_found++; + return 0; + +err_register: +err_sw_init: +err_eeprom: + iounmap(adapter->hw.hw_addr); +err_ioremap: + free_netdev(netdev); +err_alloc_etherdev: + pci_release_regions(pdev); + return err; +} + +/** + * e1000_remove - Device Removal Routine + * @pdev: PCI device information struct + * + * e1000_remove is called by the PCI subsystem to alert the driver + * that it should release a PCI device. The could be caused by a + * Hot-Plug event, or because the driver is going to be removed from + * memory. + **/ + +static void __devexit +e1000_remove(struct pci_dev *pdev) +{ + struct net_device *netdev = pci_get_drvdata(pdev); + struct e1000_adapter *adapter = netdev->priv; + uint32_t manc; + + flush_scheduled_work(); + + if(adapter->hw.mac_type >= e1000_82540 && + adapter->hw.media_type == e1000_media_type_copper) { + manc = E1000_READ_REG(&adapter->hw, MANC); + if(manc & E1000_MANC_SMBUS_EN) { + manc |= E1000_MANC_ARP_EN; + E1000_WRITE_REG(&adapter->hw, MANC, manc); + } + } + + unregister_netdev(netdev); + + e1000_phy_hw_reset(&adapter->hw); + + iounmap(adapter->hw.hw_addr); + pci_release_regions(pdev); + + free_netdev(netdev); + + pci_disable_device(pdev); +} + +/** + * e1000_sw_init - Initialize general software structures (struct e1000_adapter) + * @adapter: board private structure to initialize + * + * e1000_sw_init initializes the Adapter private data structure. + * Fields are initialized based on PCI device information and + * OS network device settings (MTU size). + **/ + +static int __devinit +e1000_sw_init(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + struct net_device *netdev = adapter->netdev; + struct pci_dev *pdev = adapter->pdev; + + /* PCI config space info */ + + hw->vendor_id = pdev->vendor; + hw->device_id = pdev->device; + hw->subsystem_vendor_id = pdev->subsystem_vendor; + hw->subsystem_id = pdev->subsystem_device; + + pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); + + pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); + + adapter->rx_buffer_len = E1000_RXBUFFER_2048; + hw->max_frame_size = netdev->mtu + + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; + hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; + + /* identify the MAC */ + + if(e1000_set_mac_type(hw)) { + DPRINTK(PROBE, ERR, "Unknown MAC Type\n"); + return -EIO; + } + + /* initialize eeprom parameters */ + + e1000_init_eeprom_params(hw); + + switch(hw->mac_type) { + default: + break; + case e1000_82541: + case e1000_82547: + case e1000_82541_rev_2: + case e1000_82547_rev_2: + hw->phy_init_script = 1; + break; + } + + e1000_set_media_type(hw); + + hw->wait_autoneg_complete = FALSE; + hw->tbi_compatibility_en = TRUE; + hw->adaptive_ifs = TRUE; + + /* Copper options */ + + if(hw->media_type == e1000_media_type_copper) { + hw->mdix = AUTO_ALL_MODES; + hw->disable_polarity_correction = FALSE; + hw->master_slave = E1000_MASTER_SLAVE; + } + + atomic_set(&adapter->irq_sem, 1); + spin_lock_init(&adapter->stats_lock); + spin_lock_init(&adapter->tx_lock); + + return 0; +} + +/** + * e1000_open - Called when a network interface is made active + * @netdev: network interface device structure + * + * Returns 0 on success, negative value on failure + * + * The open entry point is called when a network interface is made + * active by the system (IFF_UP). At this point all resources needed + * for transmit and receive operations are allocated, the interrupt + * handler is registered with the OS, the watchdog timer is started, + * and the stack is notified that the interface is ready. + **/ + +static int +e1000_open(struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev->priv; + int err; + + /* allocate transmit descriptors */ + + if((err = e1000_setup_tx_resources(adapter))) + goto err_setup_tx; + + /* allocate receive descriptors */ + + if((err = e1000_setup_rx_resources(adapter))) + goto err_setup_rx; + + if((err = e1000_up(adapter))) + goto err_up; + + return E1000_SUCCESS; + +err_up: + e1000_free_rx_resources(adapter); +err_setup_rx: + e1000_free_tx_resources(adapter); +err_setup_tx: + e1000_reset(adapter); + + return err; +} + +/** + * e1000_close - Disables a network interface + * @netdev: network interface device structure + * + * Returns 0, this is not allowed to fail + * + * The close entry point is called when an interface is de-activated + * by the OS. The hardware is still under the drivers control, but + * needs to be disabled. A global MAC reset is issued to stop the + * hardware, and all transmit and receive resources are freed. + **/ + +static int +e1000_close(struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev->priv; + + e1000_down(adapter); + + e1000_free_tx_resources(adapter); + e1000_free_rx_resources(adapter); + + return 0; +} + +/** + * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary + * @adapter: address of board private structure + * @begin: address of beginning of memory + * @end: address of end of memory + **/ +static inline boolean_t +e1000_check_64k_bound(struct e1000_adapter *adapter, + void *start, unsigned long len) +{ + unsigned long begin = (unsigned long) start; + unsigned long end = begin + len; + + /* first rev 82545 and 82546 need to not allow any memory + * write location to cross a 64k boundary due to errata 23 */ + if (adapter->hw.mac_type == e1000_82545 || + adapter->hw.mac_type == e1000_82546 ) { + + /* check buffer doesn't cross 64kB */ + return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE; + } + + return TRUE; +} + +/** + * e1000_setup_tx_resources - allocate Tx resources (Descriptors) + * @adapter: board private structure + * + * Return 0 on success, negative on failure + **/ + +int +e1000_setup_tx_resources(struct e1000_adapter *adapter) +{ + struct e1000_desc_ring *txdr = &adapter->tx_ring; + struct pci_dev *pdev = adapter->pdev; + int size; + + size = sizeof(struct e1000_buffer) * txdr->count; + txdr->buffer_info = vmalloc(size); + if(!txdr->buffer_info) { + DPRINTK(PROBE, ERR, + "Unable to Allocate Memory for the Transmit descriptor ring\n"); + return -ENOMEM; + } + memset(txdr->buffer_info, 0, size); + + /* round up to nearest 4K */ + + txdr->size = txdr->count * sizeof(struct e1000_tx_desc); + E1000_ROUNDUP(txdr->size, 4096); + + txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); + if(!txdr->desc) { +setup_tx_desc_die: + DPRINTK(PROBE, ERR, + "Unable to Allocate Memory for the Transmit descriptor ring\n"); + vfree(txdr->buffer_info); + return -ENOMEM; + } + + /* fix for errata 23, cant cross 64kB boundary */ + if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { + void *olddesc = txdr->desc; + dma_addr_t olddma = txdr->dma; + DPRINTK(TX_ERR,ERR,"txdr align check failed: %u bytes at %p\n", + txdr->size, txdr->desc); + /* try again, without freeing the previous */ + txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); + /* failed allocation, critial failure */ + if(!txdr->desc) { + pci_free_consistent(pdev, txdr->size, olddesc, olddma); + goto setup_tx_desc_die; + } + + if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { + /* give up */ + pci_free_consistent(pdev, txdr->size, + txdr->desc, txdr->dma); + pci_free_consistent(pdev, txdr->size, olddesc, olddma); + DPRINTK(PROBE, ERR, + "Unable to Allocate aligned Memory for the Transmit" + " descriptor ring\n"); + vfree(txdr->buffer_info); + return -ENOMEM; + } else { + /* free old, move on with the new one since its okay */ + pci_free_consistent(pdev, txdr->size, olddesc, olddma); + } + } + memset(txdr->desc, 0, txdr->size); + + txdr->next_to_use = 0; + txdr->next_to_clean = 0; + + return 0; +} + +/** + * e1000_configure_tx - Configure 8254x Transmit Unit after Reset + * @adapter: board private structure + * + * Configure the Tx unit of the MAC after a reset. + **/ + +static void +e1000_configure_tx(struct e1000_adapter *adapter) +{ + uint64_t tdba = adapter->tx_ring.dma; + uint32_t tdlen = adapter->tx_ring.count * sizeof(struct e1000_tx_desc); + uint32_t tctl, tipg; + + E1000_WRITE_REG(&adapter->hw, TDBAL, (tdba & 0x00000000ffffffffULL)); + E1000_WRITE_REG(&adapter->hw, TDBAH, (tdba >> 32)); + + E1000_WRITE_REG(&adapter->hw, TDLEN, tdlen); + + /* Setup the HW Tx Head and Tail descriptor pointers */ + + E1000_WRITE_REG(&adapter->hw, TDH, 0); + E1000_WRITE_REG(&adapter->hw, TDT, 0); + + /* Set the default values for the Tx Inter Packet Gap timer */ + + switch (adapter->hw.mac_type) { + case e1000_82542_rev2_0: + case e1000_82542_rev2_1: + tipg = DEFAULT_82542_TIPG_IPGT; + tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; + tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; + break; + default: + if(adapter->hw.media_type == e1000_media_type_fiber || + adapter->hw.media_type == e1000_media_type_internal_serdes) + tipg = DEFAULT_82543_TIPG_IPGT_FIBER; + else + tipg = DEFAULT_82543_TIPG_IPGT_COPPER; + tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; + tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; + } + E1000_WRITE_REG(&adapter->hw, TIPG, tipg); + + /* Set the Tx Interrupt Delay register */ + + E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay); + if(adapter->hw.mac_type >= e1000_82540) + E1000_WRITE_REG(&adapter->hw, TADV, adapter->tx_abs_int_delay); + + /* Program the Transmit Control Register */ + + tctl = E1000_READ_REG(&adapter->hw, TCTL); + + tctl &= ~E1000_TCTL_CT; + tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | + (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); + + E1000_WRITE_REG(&adapter->hw, TCTL, tctl); + + e1000_config_collision_dist(&adapter->hw); + + /* Setup Transmit Descriptor Settings for eop descriptor */ + adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP | + E1000_TXD_CMD_IFCS; + + if(adapter->hw.mac_type < e1000_82543) + adapter->txd_cmd |= E1000_TXD_CMD_RPS; + else + adapter->txd_cmd |= E1000_TXD_CMD_RS; + + /* Cache if we're 82544 running in PCI-X because we'll + * need this to apply a workaround later in the send path. */ + if(adapter->hw.mac_type == e1000_82544 && + adapter->hw.bus_type == e1000_bus_type_pcix) + adapter->pcix_82544 = 1; +} + +/** + * e1000_setup_rx_resources - allocate Rx resources (Descriptors) + * @adapter: board private structure + * + * Returns 0 on success, negative on failure + **/ + +int +e1000_setup_rx_resources(struct e1000_adapter *adapter) +{ + struct e1000_desc_ring *rxdr = &adapter->rx_ring; + struct pci_dev *pdev = adapter->pdev; + int size; + + size = sizeof(struct e1000_buffer) * rxdr->count; + rxdr->buffer_info = vmalloc(size); + if(!rxdr->buffer_info) { + DPRINTK(PROBE, ERR, + "Unable to Allocate Memory for the Recieve descriptor ring\n"); + return -ENOMEM; + } + memset(rxdr->buffer_info, 0, size); + + /* Round up to nearest 4K */ + + rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc); + E1000_ROUNDUP(rxdr->size, 4096); + + rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); + + if(!rxdr->desc) { +setup_rx_desc_die: + DPRINTK(PROBE, ERR, + "Unble to Allocate Memory for the Recieve descriptor ring\n"); + vfree(rxdr->buffer_info); + return -ENOMEM; + } + + /* fix for errata 23, cant cross 64kB boundary */ + if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { + void *olddesc = rxdr->desc; + dma_addr_t olddma = rxdr->dma; + DPRINTK(RX_ERR,ERR, + "rxdr align check failed: %u bytes at %p\n", + rxdr->size, rxdr->desc); + /* try again, without freeing the previous */ + rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); + /* failed allocation, critial failure */ + if(!rxdr->desc) { + pci_free_consistent(pdev, rxdr->size, olddesc, olddma); + goto setup_rx_desc_die; + } + + if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { + /* give up */ + pci_free_consistent(pdev, rxdr->size, + rxdr->desc, rxdr->dma); + pci_free_consistent(pdev, rxdr->size, olddesc, olddma); + DPRINTK(PROBE, ERR, + "Unable to Allocate aligned Memory for the" + " Receive descriptor ring\n"); + vfree(rxdr->buffer_info); + return -ENOMEM; + } else { + /* free old, move on with the new one since its okay */ + pci_free_consistent(pdev, rxdr->size, olddesc, olddma); + } + } + memset(rxdr->desc, 0, rxdr->size); + + rxdr->next_to_clean = 0; + rxdr->next_to_use = 0; + + return 0; +} + +/** + * e1000_setup_rctl - configure the receive control register + * @adapter: Board private structure + **/ + +static void +e1000_setup_rctl(struct e1000_adapter *adapter) +{ + uint32_t rctl; + + rctl = E1000_READ_REG(&adapter->hw, RCTL); + + rctl &= ~(3 << E1000_RCTL_MO_SHIFT); + + rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | + E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | + (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT); + + if(adapter->hw.tbi_compatibility_on == 1) + rctl |= E1000_RCTL_SBP; + else + rctl &= ~E1000_RCTL_SBP; + + /* Setup buffer sizes */ + rctl &= ~(E1000_RCTL_SZ_4096); + rctl |= (E1000_RCTL_BSEX | E1000_RCTL_LPE); + switch (adapter->rx_buffer_len) { + case E1000_RXBUFFER_2048: + default: + rctl |= E1000_RCTL_SZ_2048; + rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE); + break; + case E1000_RXBUFFER_4096: + rctl |= E1000_RCTL_SZ_4096; + break; + case E1000_RXBUFFER_8192: + rctl |= E1000_RCTL_SZ_8192; + break; + case E1000_RXBUFFER_16384: + rctl |= E1000_RCTL_SZ_16384; + break; + } + + E1000_WRITE_REG(&adapter->hw, RCTL, rctl); +} + +/** + * e1000_configure_rx - Configure 8254x Receive Unit after Reset + * @adapter: board private structure + * + * Configure the Rx unit of the MAC after a reset. + **/ + +static void +e1000_configure_rx(struct e1000_adapter *adapter) +{ + uint64_t rdba = adapter->rx_ring.dma; + uint32_t rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc); + uint32_t rctl; + uint32_t rxcsum; + + /* disable receives while setting up the descriptors */ + rctl = E1000_READ_REG(&adapter->hw, RCTL); + E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN); + + /* set the Receive Delay Timer Register */ + E1000_WRITE_REG(&adapter->hw, RDTR, adapter->rx_int_delay); + + if(adapter->hw.mac_type >= e1000_82540) { + E1000_WRITE_REG(&adapter->hw, RADV, adapter->rx_abs_int_delay); + if(adapter->itr > 1) + E1000_WRITE_REG(&adapter->hw, ITR, + 1000000000 / (adapter->itr * 256)); + } + + /* Setup the Base and Length of the Rx Descriptor Ring */ + E1000_WRITE_REG(&adapter->hw, RDBAL, (rdba & 0x00000000ffffffffULL)); + E1000_WRITE_REG(&adapter->hw, RDBAH, (rdba >> 32)); + + E1000_WRITE_REG(&adapter->hw, RDLEN, rdlen); + + /* Setup the HW Rx Head and Tail Descriptor Pointers */ + E1000_WRITE_REG(&adapter->hw, RDH, 0); + E1000_WRITE_REG(&adapter->hw, RDT, 0); + + /* Enable 82543 Receive Checksum Offload for TCP and UDP */ + if((adapter->hw.mac_type >= e1000_82543) && + (adapter->rx_csum == TRUE)) { + rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM); + rxcsum |= E1000_RXCSUM_TUOFL; + E1000_WRITE_REG(&adapter->hw, RXCSUM, rxcsum); + } + + /* Enable Receives */ + E1000_WRITE_REG(&adapter->hw, RCTL, rctl); +} + +/** + * e1000_free_tx_resources - Free Tx Resources + * @adapter: board private structure + * + * Free all transmit software resources + **/ + +void +e1000_free_tx_resources(struct e1000_adapter *adapter) +{ + struct pci_dev *pdev = adapter->pdev; + + e1000_clean_tx_ring(adapter); + + vfree(adapter->tx_ring.buffer_info); + adapter->tx_ring.buffer_info = NULL; + + pci_free_consistent(pdev, adapter->tx_ring.size, + adapter->tx_ring.desc, adapter->tx_ring.dma); + + adapter->tx_ring.desc = NULL; +} + +static inline void +e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, + struct e1000_buffer *buffer_info) +{ + struct pci_dev *pdev = adapter->pdev; + + if(buffer_info->dma) { + pci_unmap_page(pdev, + buffer_info->dma, + buffer_info->length, + PCI_DMA_TODEVICE); + buffer_info->dma = 0; + } + if(buffer_info->skb) { + dev_kfree_skb_any(buffer_info->skb); + buffer_info->skb = NULL; + } +} + +/** + * e1000_clean_tx_ring - Free Tx Buffers + * @adapter: board private structure + **/ + +static void +e1000_clean_tx_ring(struct e1000_adapter *adapter) +{ + struct e1000_desc_ring *tx_ring = &adapter->tx_ring; + struct e1000_buffer *buffer_info; + unsigned long size; + unsigned int i; + + /* Free all the Tx ring sk_buffs */ + + if (likely(adapter->previous_buffer_info.skb != NULL)) { + e1000_unmap_and_free_tx_resource(adapter, + &adapter->previous_buffer_info); + } + + for(i = 0; i < tx_ring->count; i++) { + buffer_info = &tx_ring->buffer_info[i]; + e1000_unmap_and_free_tx_resource(adapter, buffer_info); + } + + size = sizeof(struct e1000_buffer) * tx_ring->count; + memset(tx_ring->buffer_info, 0, size); + + /* Zero out the descriptor ring */ + + memset(tx_ring->desc, 0, tx_ring->size); + + tx_ring->next_to_use = 0; + tx_ring->next_to_clean = 0; + + E1000_WRITE_REG(&adapter->hw, TDH, 0); + E1000_WRITE_REG(&adapter->hw, TDT, 0); +} + +/** + * e1000_free_rx_resources - Free Rx Resources + * @adapter: board private structure + * + * Free all receive software resources + **/ + +void +e1000_free_rx_resources(struct e1000_adapter *adapter) +{ + struct e1000_desc_ring *rx_ring = &adapter->rx_ring; + struct pci_dev *pdev = adapter->pdev; + + e1000_clean_rx_ring(adapter); + + vfree(rx_ring->buffer_info); + rx_ring->buffer_info = NULL; + + pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma); + + rx_ring->desc = NULL; +} + +/** + * e1000_clean_rx_ring - Free Rx Buffers + * @adapter: board private structure + **/ + +static void +e1000_clean_rx_ring(struct e1000_adapter *adapter) +{ + struct e1000_desc_ring *rx_ring = &adapter->rx_ring; + struct e1000_buffer *buffer_info; + struct pci_dev *pdev = adapter->pdev; + unsigned long size; + unsigned int i; + + /* Free all the Rx ring sk_buffs */ + + for(i = 0; i < rx_ring->count; i++) { + buffer_info = &rx_ring->buffer_info[i]; + if(buffer_info->skb) { + + pci_unmap_single(pdev, + buffer_info->dma, + buffer_info->length, + PCI_DMA_FROMDEVICE); + + dev_kfree_skb(buffer_info->skb); + buffer_info->skb = NULL; + } + } + + size = sizeof(struct e1000_buffer) * rx_ring->count; + memset(rx_ring->buffer_info, 0, size); + + /* Zero out the descriptor ring */ + + memset(rx_ring->desc, 0, rx_ring->size); + + rx_ring->next_to_clean = 0; + rx_ring->next_to_use = 0; + + E1000_WRITE_REG(&adapter->hw, RDH, 0); + E1000_WRITE_REG(&adapter->hw, RDT, 0); +} + +/* The 82542 2.0 (revision 2) needs to have the receive unit in reset + * and memory write and invalidate disabled for certain operations + */ +static void +e1000_enter_82542_rst(struct e1000_adapter *adapter) +{ + struct net_device *netdev = adapter->netdev; + uint32_t rctl; + + e1000_pci_clear_mwi(&adapter->hw); + + rctl = E1000_READ_REG(&adapter->hw, RCTL); + rctl |= E1000_RCTL_RST; + E1000_WRITE_REG(&adapter->hw, RCTL, rctl); + E1000_WRITE_FLUSH(&adapter->hw); + mdelay(5); + + if(netif_running(netdev)) + e1000_clean_rx_ring(adapter); +} + +static void +e1000_leave_82542_rst(struct e1000_adapter *adapter) +{ + struct net_device *netdev = adapter->netdev; + uint32_t rctl; + + rctl = E1000_READ_REG(&adapter->hw, RCTL); + rctl &= ~E1000_RCTL_RST; + E1000_WRITE_REG(&adapter->hw, RCTL, rctl); + E1000_WRITE_FLUSH(&adapter->hw); + mdelay(5); + + if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE) + e1000_pci_set_mwi(&adapter->hw); + + if(netif_running(netdev)) { + e1000_configure_rx(adapter); + e1000_alloc_rx_buffers(adapter); + } +} + +/** + * e1000_set_mac - Change the Ethernet Address of the NIC + * @netdev: network interface device structure + * @p: pointer to an address structure + * + * Returns 0 on success, negative on failure + **/ + +static int +e1000_set_mac(struct net_device *netdev, void *p) +{ + struct e1000_adapter *adapter = netdev->priv; + struct sockaddr *addr = p; + + if(!is_valid_ether_addr(addr->sa_data)) + return -EADDRNOTAVAIL; + + /* 82542 2.0 needs to be in reset to write receive address registers */ + + if(adapter->hw.mac_type == e1000_82542_rev2_0) + e1000_enter_82542_rst(adapter); + + memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); + memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len); + + e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0); + + if(adapter->hw.mac_type == e1000_82542_rev2_0) + e1000_leave_82542_rst(adapter); + + return 0; +} + +/** + * e1000_set_multi - Multicast and Promiscuous mode set + * @netdev: network interface device structure + * + * The set_multi entry point is called whenever the multicast address + * list or the network interface flags are updated. This routine is + * responsible for configuring the hardware for proper multicast, + * promiscuous mode, and all-multi behavior. + **/ + +static void +e1000_set_multi(struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev->priv; + struct e1000_hw *hw = &adapter->hw; + struct dev_mc_list *mc_ptr; + uint32_t rctl; + uint32_t hash_value; + int i; + unsigned long flags; + + /* Check for Promiscuous and All Multicast modes */ + + spin_lock_irqsave(&adapter->tx_lock, flags); + + rctl = E1000_READ_REG(hw, RCTL); + + if(netdev->flags & IFF_PROMISC) { + rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); + } else if(netdev->flags & IFF_ALLMULTI) { + rctl |= E1000_RCTL_MPE; + rctl &= ~E1000_RCTL_UPE; + } else { + rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); + } + + E1000_WRITE_REG(hw, RCTL, rctl); + + /* 82542 2.0 needs to be in reset to write receive address registers */ + + if(hw->mac_type == e1000_82542_rev2_0) + e1000_enter_82542_rst(adapter); + + /* load the first 14 multicast address into the exact filters 1-14 + * RAR 0 is used for the station MAC adddress + * if there are not 14 addresses, go ahead and clear the filters + */ + mc_ptr = netdev->mc_list; + + for(i = 1; i < E1000_RAR_ENTRIES; i++) { + if(mc_ptr) { + e1000_rar_set(hw, mc_ptr->dmi_addr, i); + mc_ptr = mc_ptr->next; + } else { + E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); + E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); + } + } + + /* clear the old settings from the multicast hash table */ + + for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++) + E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); + + /* load any remaining addresses into the hash table */ + + for(; mc_ptr; mc_ptr = mc_ptr->next) { + hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr); + e1000_mta_set(hw, hash_value); + } + + if(hw->mac_type == e1000_82542_rev2_0) + e1000_leave_82542_rst(adapter); + + spin_unlock_irqrestore(&adapter->tx_lock, flags); +} + +/* Need to wait a few seconds after link up to get diagnostic information from + * the phy */ + +static void +e1000_update_phy_info(unsigned long data) +{ + struct e1000_adapter *adapter = (struct e1000_adapter *) data; + e1000_phy_get_info(&adapter->hw, &adapter->phy_info); +} + +/** + * e1000_82547_tx_fifo_stall - Timer Call-back + * @data: pointer to adapter cast into an unsigned long + **/ + +static void +e1000_82547_tx_fifo_stall(unsigned long data) +{ + struct e1000_adapter *adapter = (struct e1000_adapter *) data; + struct net_device *netdev = adapter->netdev; + uint32_t tctl; + + if(atomic_read(&adapter->tx_fifo_stall)) { + if((E1000_READ_REG(&adapter->hw, TDT) == + E1000_READ_REG(&adapter->hw, TDH)) && + (E1000_READ_REG(&adapter->hw, TDFT) == + E1000_READ_REG(&adapter->hw, TDFH)) && + (E1000_READ_REG(&adapter->hw, TDFTS) == + E1000_READ_REG(&adapter->hw, TDFHS))) { + tctl = E1000_READ_REG(&adapter->hw, TCTL); + E1000_WRITE_REG(&adapter->hw, TCTL, + tctl & ~E1000_TCTL_EN); + E1000_WRITE_REG(&adapter->hw, TDFT, + adapter->tx_head_addr); + E1000_WRITE_REG(&adapter->hw, TDFH, + adapter->tx_head_addr); + E1000_WRITE_REG(&adapter->hw, TDFTS, + adapter->tx_head_addr); + E1000_WRITE_REG(&adapter->hw, TDFHS, + adapter->tx_head_addr); + E1000_WRITE_REG(&adapter->hw, TCTL, tctl); + E1000_WRITE_FLUSH(&adapter->hw); + + adapter->tx_fifo_head = 0; + atomic_set(&adapter->tx_fifo_stall, 0); + netif_wake_queue(netdev); + } else { + mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1); + } + } +} + +/** + * e1000_watchdog - Timer Call-back + * @data: pointer to adapter cast into an unsigned long + **/ +static void +e1000_watchdog(unsigned long data) +{ + struct e1000_adapter *adapter = (struct e1000_adapter *) data; + + /* Do the rest outside of interrupt context */ + schedule_work(&adapter->watchdog_task); +} + +static void +e1000_watchdog_task(struct e1000_adapter *adapter) +{ + struct net_device *netdev = adapter->netdev; + struct e1000_desc_ring *txdr = &adapter->tx_ring; + uint32_t link; + + e1000_check_for_link(&adapter->hw); + + if((adapter->hw.media_type == e1000_media_type_internal_serdes) && + !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE)) + link = !adapter->hw.serdes_link_down; + else + link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU; + + if(link) { + if(!netif_carrier_ok(netdev)) { + e1000_get_speed_and_duplex(&adapter->hw, + &adapter->link_speed, + &adapter->link_duplex); + + DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n", + adapter->link_speed, + adapter->link_duplex == FULL_DUPLEX ? + "Full Duplex" : "Half Duplex"); + + netif_carrier_on(netdev); + netif_wake_queue(netdev); + mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ); + adapter->smartspeed = 0; + } + } else { + if(netif_carrier_ok(netdev)) { + adapter->link_speed = 0; + adapter->link_duplex = 0; + DPRINTK(LINK, INFO, "NIC Link is Down\n"); + netif_carrier_off(netdev); + netif_stop_queue(netdev); + mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ); + } + + e1000_smartspeed(adapter); + } + + e1000_update_stats(adapter); + + adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; + adapter->tpt_old = adapter->stats.tpt; + adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old; + adapter->colc_old = adapter->stats.colc; + + adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; + adapter->gorcl_old = adapter->stats.gorcl; + adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; + adapter->gotcl_old = adapter->stats.gotcl; + + e1000_update_adaptive(&adapter->hw); + + if(!netif_carrier_ok(netdev)) { + if(E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { + /* We've lost link, so the controller stops DMA, + * but we've got queued Tx work that's never going + * to get done, so reset controller to flush Tx. + * (Do the reset outside of interrupt context). */ + schedule_work(&adapter->tx_timeout_task); + } + } + + /* Dynamic mode for Interrupt Throttle Rate (ITR) */ + if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) { + /* Symmetric Tx/Rx gets a reduced ITR=2000; Total + * asymmetrical Tx or Rx gets ITR=8000; everyone + * else is between 2000-8000. */ + uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000; + uint32_t dif = (adapter->gotcl > adapter->gorcl ? + adapter->gotcl - adapter->gorcl : + adapter->gorcl - adapter->gotcl) / 10000; + uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; + E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256)); + } + + /* Cause software interrupt to ensure rx ring is cleaned */ + E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0); + + /* Force detection of hung controller every watchdog period*/ + adapter->detect_tx_hung = TRUE; + + /* Reset the timer */ + mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ); +} + +#define E1000_TX_FLAGS_CSUM 0x00000001 +#define E1000_TX_FLAGS_VLAN 0x00000002 +#define E1000_TX_FLAGS_TSO 0x00000004 +#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 +#define E1000_TX_FLAGS_VLAN_SHIFT 16 + +static inline int +e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb) +{ +#ifdef NETIF_F_TSO + struct e1000_context_desc *context_desc; + unsigned int i; + uint32_t cmd_length = 0; + uint16_t ipcse, tucse, mss; + uint8_t ipcss, ipcso, tucss, tucso, hdr_len; + int err; + + if(skb_shinfo(skb)->tso_size) { + if (skb_header_cloned(skb)) { + err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); + if (err) + return err; + } + + hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2)); + mss = skb_shinfo(skb)->tso_size; + skb->nh.iph->tot_len = 0; + skb->nh.iph->check = 0; + skb->h.th->check = ~csum_tcpudp_magic(skb->nh.iph->saddr, + skb->nh.iph->daddr, + 0, + IPPROTO_TCP, + 0); + ipcss = skb->nh.raw - skb->data; + ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data; + ipcse = skb->h.raw - skb->data - 1; + tucss = skb->h.raw - skb->data; + tucso = (void *)&(skb->h.th->check) - (void *)skb->data; + tucse = 0; + + cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | + E1000_TXD_CMD_IP | E1000_TXD_CMD_TCP | + (skb->len - (hdr_len))); + + i = adapter->tx_ring.next_to_use; + context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i); + + context_desc->lower_setup.ip_fields.ipcss = ipcss; + context_desc->lower_setup.ip_fields.ipcso = ipcso; + context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); + context_desc->upper_setup.tcp_fields.tucss = tucss; + context_desc->upper_setup.tcp_fields.tucso = tucso; + context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); + context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); + context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; + context_desc->cmd_and_length = cpu_to_le32(cmd_length); + + if(++i == adapter->tx_ring.count) i = 0; + adapter->tx_ring.next_to_use = i; + + return 1; + } +#endif + + return 0; +} + +static inline boolean_t +e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb) +{ + struct e1000_context_desc *context_desc; + unsigned int i; + uint8_t css; + + if(likely(skb->ip_summed == CHECKSUM_HW)) { + css = skb->h.raw - skb->data; + + i = adapter->tx_ring.next_to_use; + context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i); + + context_desc->upper_setup.tcp_fields.tucss = css; + context_desc->upper_setup.tcp_fields.tucso = css + skb->csum; + context_desc->upper_setup.tcp_fields.tucse = 0; + context_desc->tcp_seg_setup.data = 0; + context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT); + + if(unlikely(++i == adapter->tx_ring.count)) i = 0; + adapter->tx_ring.next_to_use = i; + + return TRUE; + } + + return FALSE; +} + +#define E1000_MAX_TXD_PWR 12 +#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) + +static inline int +e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb, + unsigned int first, unsigned int max_per_txd, + unsigned int nr_frags, unsigned int mss) +{ + struct e1000_desc_ring *tx_ring = &adapter->tx_ring; + struct e1000_buffer *buffer_info; + unsigned int len = skb->len; + unsigned int offset = 0, size, count = 0, i; + unsigned int f; + len -= skb->data_len; + + i = tx_ring->next_to_use; + + while(len) { + buffer_info = &tx_ring->buffer_info[i]; + size = min(len, max_per_txd); +#ifdef NETIF_F_TSO + /* Workaround for premature desc write-backs + * in TSO mode. Append 4-byte sentinel desc */ + if(unlikely(mss && !nr_frags && size == len && size > 8)) + size -= 4; +#endif + /* Workaround for potential 82544 hang in PCI-X. Avoid + * terminating buffers within evenly-aligned dwords. */ + if(unlikely(adapter->pcix_82544 && + !((unsigned long)(skb->data + offset + size - 1) & 4) && + size > 4)) + size -= 4; + + buffer_info->length = size; + buffer_info->dma = + pci_map_single(adapter->pdev, + skb->data + offset, + size, + PCI_DMA_TODEVICE); + buffer_info->time_stamp = jiffies; + + len -= size; + offset += size; + count++; + if(unlikely(++i == tx_ring->count)) i = 0; + } + + for(f = 0; f < nr_frags; f++) { + struct skb_frag_struct *frag; + + frag = &skb_shinfo(skb)->frags[f]; + len = frag->size; + offset = frag->page_offset; + + while(len) { + buffer_info = &tx_ring->buffer_info[i]; + size = min(len, max_per_txd); +#ifdef NETIF_F_TSO + /* Workaround for premature desc write-backs + * in TSO mode. Append 4-byte sentinel desc */ + if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8)) + size -= 4; +#endif + /* Workaround for potential 82544 hang in PCI-X. + * Avoid terminating buffers within evenly-aligned + * dwords. */ + if(unlikely(adapter->pcix_82544 && + !((unsigned long)(frag->page+offset+size-1) & 4) && + size > 4)) + size -= 4; + + buffer_info->length = size; + buffer_info->dma = + pci_map_page(adapter->pdev, + frag->page, + offset, + size, + PCI_DMA_TODEVICE); + buffer_info->time_stamp = jiffies; + + len -= size; + offset += size; + count++; + if(unlikely(++i == tx_ring->count)) i = 0; + } + } + + i = (i == 0) ? tx_ring->count - 1 : i - 1; + tx_ring->buffer_info[i].skb = skb; + tx_ring->buffer_info[first].next_to_watch = i; + + return count; +} + +static inline void +e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags) +{ + struct e1000_desc_ring *tx_ring = &adapter->tx_ring; + struct e1000_tx_desc *tx_desc = NULL; + struct e1000_buffer *buffer_info; + uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; + unsigned int i; + + if(likely(tx_flags & E1000_TX_FLAGS_TSO)) { + txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | + E1000_TXD_CMD_TSE; + txd_upper |= (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8; + } + + if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) { + txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; + txd_upper |= E1000_TXD_POPTS_TXSM << 8; + } + + if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { + txd_lower |= E1000_TXD_CMD_VLE; + txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); + } + + i = tx_ring->next_to_use; + + while(count--) { + buffer_info = &tx_ring->buffer_info[i]; + tx_desc = E1000_TX_DESC(*tx_ring, i); + tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); + tx_desc->lower.data = + cpu_to_le32(txd_lower | buffer_info->length); + tx_desc->upper.data = cpu_to_le32(txd_upper); + if(unlikely(++i == tx_ring->count)) i = 0; + } + + tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); + + /* Force memory writes to complete before letting h/w + * know there are new descriptors to fetch. (Only + * applicable for weak-ordered memory model archs, + * such as IA-64). */ + wmb(); + + tx_ring->next_to_use = i; + E1000_WRITE_REG(&adapter->hw, TDT, i); +} + +/** + * 82547 workaround to avoid controller hang in half-duplex environment. + * The workaround is to avoid queuing a large packet that would span + * the internal Tx FIFO ring boundary by notifying the stack to resend + * the packet at a later time. This gives the Tx FIFO an opportunity to + * flush all packets. When that occurs, we reset the Tx FIFO pointers + * to the beginning of the Tx FIFO. + **/ + +#define E1000_FIFO_HDR 0x10 +#define E1000_82547_PAD_LEN 0x3E0 + +static inline int +e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb) +{ + uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; + uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR; + + E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR); + + if(adapter->link_duplex != HALF_DUPLEX) + goto no_fifo_stall_required; + + if(atomic_read(&adapter->tx_fifo_stall)) + return 1; + + if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { + atomic_set(&adapter->tx_fifo_stall, 1); + return 1; + } + +no_fifo_stall_required: + adapter->tx_fifo_head += skb_fifo_len; + if(adapter->tx_fifo_head >= adapter->tx_fifo_size) + adapter->tx_fifo_head -= adapter->tx_fifo_size; + return 0; +} + +#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) +static int +e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev->priv; + unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; + unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; + unsigned int tx_flags = 0; + unsigned int len = skb->len; + unsigned long flags; + unsigned int nr_frags = 0; + unsigned int mss = 0; + int count = 0; + int tso; + unsigned int f; + len -= skb->data_len; + + if(unlikely(skb->len <= 0)) { + dev_kfree_skb_any(skb); + return NETDEV_TX_OK; + } + +#ifdef NETIF_F_TSO + mss = skb_shinfo(skb)->tso_size; + /* The controller does a simple calculation to + * make sure there is enough room in the FIFO before + * initiating the DMA for each buffer. The calc is: + * 4 = ceil(buffer len/mss). To make sure we don't + * overrun the FIFO, adjust the max buffer len if mss + * drops. */ + if(mss) { + max_per_txd = min(mss << 2, max_per_txd); + max_txd_pwr = fls(max_per_txd) - 1; + } + + if((mss) || (skb->ip_summed == CHECKSUM_HW)) + count++; + count++; /* for sentinel desc */ +#else + if(skb->ip_summed == CHECKSUM_HW) + count++; +#endif + count += TXD_USE_COUNT(len, max_txd_pwr); + + if(adapter->pcix_82544) + count++; + + nr_frags = skb_shinfo(skb)->nr_frags; + for(f = 0; f < nr_frags; f++) + count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, + max_txd_pwr); + if(adapter->pcix_82544) + count += nr_frags; + + local_irq_save(flags); + if (!spin_trylock(&adapter->tx_lock)) { + /* Collision - tell upper layer to requeue */ + local_irq_restore(flags); + return NETDEV_TX_LOCKED; + } + + /* need: count + 2 desc gap to keep tail from touching + * head, otherwise try next time */ + if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < count + 2)) { + netif_stop_queue(netdev); + spin_unlock_irqrestore(&adapter->tx_lock, flags); + return NETDEV_TX_BUSY; + } + + if(unlikely(adapter->hw.mac_type == e1000_82547)) { + if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) { + netif_stop_queue(netdev); + mod_timer(&adapter->tx_fifo_stall_timer, jiffies); + spin_unlock_irqrestore(&adapter->tx_lock, flags); + return NETDEV_TX_BUSY; + } + } + + if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) { + tx_flags |= E1000_TX_FLAGS_VLAN; + tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); + } + + first = adapter->tx_ring.next_to_use; + + tso = e1000_tso(adapter, skb); + if (tso < 0) { + dev_kfree_skb_any(skb); + return NETDEV_TX_OK; + } + + if (likely(tso)) + tx_flags |= E1000_TX_FLAGS_TSO; + else if(likely(e1000_tx_csum(adapter, skb))) + tx_flags |= E1000_TX_FLAGS_CSUM; + + e1000_tx_queue(adapter, + e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss), + tx_flags); + + netdev->trans_start = jiffies; + + /* Make sure there is space in the ring for the next send. */ + if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < MAX_SKB_FRAGS + 2)) + netif_stop_queue(netdev); + + spin_unlock_irqrestore(&adapter->tx_lock, flags); + return NETDEV_TX_OK; +} + +/** + * e1000_tx_timeout - Respond to a Tx Hang + * @netdev: network interface device structure + **/ + +static void +e1000_tx_timeout(struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev->priv; + + /* Do the reset outside of interrupt context */ + schedule_work(&adapter->tx_timeout_task); +} + +static void +e1000_tx_timeout_task(struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev->priv; + + e1000_down(adapter); + e1000_up(adapter); +} + +/** + * e1000_get_stats - Get System Network Statistics + * @netdev: network interface device structure + * + * Returns the address of the device statistics structure. + * The statistics are actually updated from the timer callback. + **/ + +static struct net_device_stats * +e1000_get_stats(struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev->priv; + + e1000_update_stats(adapter); + return &adapter->net_stats; +} + +/** + * e1000_change_mtu - Change the Maximum Transfer Unit + * @netdev: network interface device structure + * @new_mtu: new value for maximum frame size + * + * Returns 0 on success, negative on failure + **/ + +static int +e1000_change_mtu(struct net_device *netdev, int new_mtu) +{ + struct e1000_adapter *adapter = netdev->priv; + int old_mtu = adapter->rx_buffer_len; + int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; + + if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || + (max_frame > MAX_JUMBO_FRAME_SIZE)) { + DPRINTK(PROBE, ERR, "Invalid MTU setting\n"); + return -EINVAL; + } + + if(max_frame <= MAXIMUM_ETHERNET_FRAME_SIZE) { + adapter->rx_buffer_len = E1000_RXBUFFER_2048; + + } else if(adapter->hw.mac_type < e1000_82543) { + DPRINTK(PROBE, ERR, "Jumbo Frames not supported on 82542\n"); + return -EINVAL; + + } else if(max_frame <= E1000_RXBUFFER_4096) { + adapter->rx_buffer_len = E1000_RXBUFFER_4096; + + } else if(max_frame <= E1000_RXBUFFER_8192) { + adapter->rx_buffer_len = E1000_RXBUFFER_8192; + + } else { + adapter->rx_buffer_len = E1000_RXBUFFER_16384; + } + + if(old_mtu != adapter->rx_buffer_len && netif_running(netdev)) { + e1000_down(adapter); + e1000_up(adapter); + } + + netdev->mtu = new_mtu; + adapter->hw.max_frame_size = max_frame; + + return 0; +} + +/** + * e1000_update_stats - Update the board statistics counters + * @adapter: board private structure + **/ + +void +e1000_update_stats(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + unsigned long flags; + uint16_t phy_tmp; + +#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF + + spin_lock_irqsave(&adapter->stats_lock, flags); + + /* these counters are modified from e1000_adjust_tbi_stats, + * called from the interrupt context, so they must only + * be written while holding adapter->stats_lock + */ + + adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS); + adapter->stats.gprc += E1000_READ_REG(hw, GPRC); + adapter->stats.gorcl += E1000_READ_REG(hw, GORCL); + adapter->stats.gorch += E1000_READ_REG(hw, GORCH); + adapter->stats.bprc += E1000_READ_REG(hw, BPRC); + adapter->stats.mprc += E1000_READ_REG(hw, MPRC); + adapter->stats.roc += E1000_READ_REG(hw, ROC); + adapter->stats.prc64 += E1000_READ_REG(hw, PRC64); + adapter->stats.prc127 += E1000_READ_REG(hw, PRC127); + adapter->stats.prc255 += E1000_READ_REG(hw, PRC255); + adapter->stats.prc511 += E1000_READ_REG(hw, PRC511); + adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023); + adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522); + + adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS); + adapter->stats.mpc += E1000_READ_REG(hw, MPC); + adapter->stats.scc += E1000_READ_REG(hw, SCC); + adapter->stats.ecol += E1000_READ_REG(hw, ECOL); + adapter->stats.mcc += E1000_READ_REG(hw, MCC); + adapter->stats.latecol += E1000_READ_REG(hw, LATECOL); + adapter->stats.dc += E1000_READ_REG(hw, DC); + adapter->stats.sec += E1000_READ_REG(hw, SEC); + adapter->stats.rlec += E1000_READ_REG(hw, RLEC); + adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC); + adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC); + adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC); + adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC); + adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC); + adapter->stats.gptc += E1000_READ_REG(hw, GPTC); + adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL); + adapter->stats.gotch += E1000_READ_REG(hw, GOTCH); + adapter->stats.rnbc += E1000_READ_REG(hw, RNBC); + adapter->stats.ruc += E1000_READ_REG(hw, RUC); + adapter->stats.rfc += E1000_READ_REG(hw, RFC); + adapter->stats.rjc += E1000_READ_REG(hw, RJC); + adapter->stats.torl += E1000_READ_REG(hw, TORL); + adapter->stats.torh += E1000_READ_REG(hw, TORH); + adapter->stats.totl += E1000_READ_REG(hw, TOTL); + adapter->stats.toth += E1000_READ_REG(hw, TOTH); + adapter->stats.tpr += E1000_READ_REG(hw, TPR); + adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64); + adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127); + adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255); + adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511); + adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023); + adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522); + adapter->stats.mptc += E1000_READ_REG(hw, MPTC); + adapter->stats.bptc += E1000_READ_REG(hw, BPTC); + + /* used for adaptive IFS */ + + hw->tx_packet_delta = E1000_READ_REG(hw, TPT); + adapter->stats.tpt += hw->tx_packet_delta; + hw->collision_delta = E1000_READ_REG(hw, COLC); + adapter->stats.colc += hw->collision_delta; + + if(hw->mac_type >= e1000_82543) { + adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC); + adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC); + adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS); + adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR); + adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC); + adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC); + } + + /* Fill out the OS statistics structure */ + + adapter->net_stats.rx_packets = adapter->stats.gprc; + adapter->net_stats.tx_packets = adapter->stats.gptc; + adapter->net_stats.rx_bytes = adapter->stats.gorcl; + adapter->net_stats.tx_bytes = adapter->stats.gotcl; + adapter->net_stats.multicast = adapter->stats.mprc; + adapter->net_stats.collisions = adapter->stats.colc; + + /* Rx Errors */ + + adapter->net_stats.rx_errors = adapter->stats.rxerrc + + adapter->stats.crcerrs + adapter->stats.algnerrc + + adapter->stats.rlec + adapter->stats.rnbc + + adapter->stats.mpc + adapter->stats.cexterr; + adapter->net_stats.rx_dropped = adapter->stats.rnbc; + adapter->net_stats.rx_length_errors = adapter->stats.rlec; + adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs; + adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc; + adapter->net_stats.rx_fifo_errors = adapter->stats.mpc; + adapter->net_stats.rx_missed_errors = adapter->stats.mpc; + + /* Tx Errors */ + + adapter->net_stats.tx_errors = adapter->stats.ecol + + adapter->stats.latecol; + adapter->net_stats.tx_aborted_errors = adapter->stats.ecol; + adapter->net_stats.tx_window_errors = adapter->stats.latecol; + adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs; + + /* Tx Dropped needs to be maintained elsewhere */ + + /* Phy Stats */ + + if(hw->media_type == e1000_media_type_copper) { + if((adapter->link_speed == SPEED_1000) && + (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { + phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; + adapter->phy_stats.idle_errors += phy_tmp; + } + + if((hw->mac_type <= e1000_82546) && + (hw->phy_type == e1000_phy_m88) && + !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) + adapter->phy_stats.receive_errors += phy_tmp; + } + + spin_unlock_irqrestore(&adapter->stats_lock, flags); +} + +/** + * e1000_intr - Interrupt Handler + * @irq: interrupt number + * @data: pointer to a network interface device structure + * @pt_regs: CPU registers structure + **/ + +static irqreturn_t +e1000_intr(int irq, void *data, struct pt_regs *regs) +{ + struct net_device *netdev = data; + struct e1000_adapter *adapter = netdev->priv; + struct e1000_hw *hw = &adapter->hw; + uint32_t icr = E1000_READ_REG(hw, ICR); +#ifndef CONFIG_E1000_NAPI + unsigned int i; +#endif + + if(unlikely(!icr)) + return IRQ_NONE; /* Not our interrupt */ + + if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { + hw->get_link_status = 1; + mod_timer(&adapter->watchdog_timer, jiffies); + } + +#ifdef CONFIG_E1000_NAPI + if(likely(netif_rx_schedule_prep(netdev))) { + + /* Disable interrupts and register for poll. The flush + of the posted write is intentionally left out. + */ + + atomic_inc(&adapter->irq_sem); + E1000_WRITE_REG(hw, IMC, ~0); + __netif_rx_schedule(netdev); + } +#else + /* Writing IMC and IMS is needed for 82547. + Due to Hub Link bus being occupied, an interrupt + de-assertion message is not able to be sent. + When an interrupt assertion message is generated later, + two messages are re-ordered and sent out. + That causes APIC to think 82547 is in de-assertion + state, while 82547 is in assertion state, resulting + in dead lock. Writing IMC forces 82547 into + de-assertion state. + */ + if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){ + atomic_inc(&adapter->irq_sem); + E1000_WRITE_REG(&adapter->hw, IMC, ~0); + } + + for(i = 0; i < E1000_MAX_INTR; i++) + if(unlikely(!e1000_clean_rx_irq(adapter) & + !e1000_clean_tx_irq(adapter))) + break; + + if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) + e1000_irq_enable(adapter); +#endif + + return IRQ_HANDLED; +} + +#ifdef CONFIG_E1000_NAPI +/** + * e1000_clean - NAPI Rx polling callback + * @adapter: board private structure + **/ + +static int +e1000_clean(struct net_device *netdev, int *budget) +{ + struct e1000_adapter *adapter = netdev->priv; + int work_to_do = min(*budget, netdev->quota); + int tx_cleaned; + int work_done = 0; + + tx_cleaned = e1000_clean_tx_irq(adapter); + e1000_clean_rx_irq(adapter, &work_done, work_to_do); + + *budget -= work_done; + netdev->quota -= work_done; + + /* if no Tx and not enough Rx work done, exit the polling mode */ + if((!tx_cleaned && (work_done < work_to_do)) || + !netif_running(netdev)) { + netif_rx_complete(netdev); + e1000_irq_enable(adapter); + return 0; + } + + return 1; +} + +#endif +/** + * e1000_clean_tx_irq - Reclaim resources after transmit completes + * @adapter: board private structure + **/ + +static boolean_t +e1000_clean_tx_irq(struct e1000_adapter *adapter) +{ + struct e1000_desc_ring *tx_ring = &adapter->tx_ring; + struct net_device *netdev = adapter->netdev; + struct e1000_tx_desc *tx_desc, *eop_desc; + struct e1000_buffer *buffer_info; + unsigned int i, eop; + boolean_t cleaned = FALSE; + + i = tx_ring->next_to_clean; + eop = tx_ring->buffer_info[i].next_to_watch; + eop_desc = E1000_TX_DESC(*tx_ring, eop); + + while(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) { + /* pre-mature writeback of Tx descriptors */ + /* clear (free buffers and unmap pci_mapping) */ + /* previous_buffer_info */ + if (likely(adapter->previous_buffer_info.skb != NULL)) { + e1000_unmap_and_free_tx_resource(adapter, + &adapter->previous_buffer_info); + } + + for(cleaned = FALSE; !cleaned; ) { + tx_desc = E1000_TX_DESC(*tx_ring, i); + buffer_info = &tx_ring->buffer_info[i]; + cleaned = (i == eop); + + /* pre-mature writeback of Tx descriptors */ + /* save the cleaning of the this for the */ + /* next iteration */ + if (cleaned) { + memcpy(&adapter->previous_buffer_info, + buffer_info, + sizeof(struct e1000_buffer)); + memset(buffer_info, + 0, + sizeof(struct e1000_buffer)); + } else { + e1000_unmap_and_free_tx_resource(adapter, + buffer_info); + } + + tx_desc->buffer_addr = 0; + tx_desc->lower.data = 0; + tx_desc->upper.data = 0; + + cleaned = (i == eop); + if(unlikely(++i == tx_ring->count)) i = 0; + } + + eop = tx_ring->buffer_info[i].next_to_watch; + eop_desc = E1000_TX_DESC(*tx_ring, eop); + } + + tx_ring->next_to_clean = i; + + spin_lock(&adapter->tx_lock); + + if(unlikely(cleaned && netif_queue_stopped(netdev) && + netif_carrier_ok(netdev))) + netif_wake_queue(netdev); + + spin_unlock(&adapter->tx_lock); + + if(adapter->detect_tx_hung) { + /* detect a transmit hang in hardware, this serializes the + * check with the clearing of time_stamp and movement of i */ + adapter->detect_tx_hung = FALSE; + if(tx_ring->buffer_info[i].dma && + time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ) && + !(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_TXOFF)) + netif_stop_queue(netdev); + } + + return cleaned; +} + +/** + * e1000_rx_checksum - Receive Checksum Offload for 82543 + * @adapter: board private structure + * @rx_desc: receive descriptor + * @sk_buff: socket buffer with received data + **/ + +static inline void +e1000_rx_checksum(struct e1000_adapter *adapter, + struct e1000_rx_desc *rx_desc, + struct sk_buff *skb) +{ + /* 82543 or newer only */ + if(unlikely((adapter->hw.mac_type < e1000_82543) || + /* Ignore Checksum bit is set */ + (rx_desc->status & E1000_RXD_STAT_IXSM) || + /* TCP Checksum has not been calculated */ + (!(rx_desc->status & E1000_RXD_STAT_TCPCS)))) { + skb->ip_summed = CHECKSUM_NONE; + return; + } + + /* At this point we know the hardware did the TCP checksum */ + /* now look at the TCP checksum error bit */ + if(rx_desc->errors & E1000_RXD_ERR_TCPE) { + /* let the stack verify checksum errors */ + skb->ip_summed = CHECKSUM_NONE; + adapter->hw_csum_err++; + } else { + /* TCP checksum is good */ + skb->ip_summed = CHECKSUM_UNNECESSARY; + adapter->hw_csum_good++; + } +} + +/** + * e1000_clean_rx_irq - Send received data up the network stack + * @adapter: board private structure + **/ + +static boolean_t +#ifdef CONFIG_E1000_NAPI +e1000_clean_rx_irq(struct e1000_adapter *adapter, int *work_done, + int work_to_do) +#else +e1000_clean_rx_irq(struct e1000_adapter *adapter) +#endif +{ + struct e1000_desc_ring *rx_ring = &adapter->rx_ring; + struct net_device *netdev = adapter->netdev; + struct pci_dev *pdev = adapter->pdev; + struct e1000_rx_desc *rx_desc; + struct e1000_buffer *buffer_info; + struct sk_buff *skb; + unsigned long flags; + uint32_t length; + uint8_t last_byte; + unsigned int i; + boolean_t cleaned = FALSE; + + i = rx_ring->next_to_clean; + rx_desc = E1000_RX_DESC(*rx_ring, i); + + while(rx_desc->status & E1000_RXD_STAT_DD) { + buffer_info = &rx_ring->buffer_info[i]; +#ifdef CONFIG_E1000_NAPI + if(*work_done >= work_to_do) + break; + (*work_done)++; +#endif + cleaned = TRUE; + + pci_unmap_single(pdev, + buffer_info->dma, + buffer_info->length, + PCI_DMA_FROMDEVICE); + + skb = buffer_info->skb; + length = le16_to_cpu(rx_desc->length); + + if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) { + /* All receives must fit into a single buffer */ + E1000_DBG("%s: Receive packet consumed multiple" + " buffers\n", netdev->name); + dev_kfree_skb_irq(skb); + goto next_desc; + } + + if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { + last_byte = *(skb->data + length - 1); + if(TBI_ACCEPT(&adapter->hw, rx_desc->status, + rx_desc->errors, length, last_byte)) { + spin_lock_irqsave(&adapter->stats_lock, flags); + e1000_tbi_adjust_stats(&adapter->hw, + &adapter->stats, + length, skb->data); + spin_unlock_irqrestore(&adapter->stats_lock, + flags); + length--; + } else { + dev_kfree_skb_irq(skb); + goto next_desc; + } + } + + /* Good Receive */ + skb_put(skb, length - ETHERNET_FCS_SIZE); + + /* Receive Checksum Offload */ + e1000_rx_checksum(adapter, rx_desc, skb); + + skb->protocol = eth_type_trans(skb, netdev); +#ifdef CONFIG_E1000_NAPI + if(unlikely(adapter->vlgrp && + (rx_desc->status & E1000_RXD_STAT_VP))) { + vlan_hwaccel_receive_skb(skb, adapter->vlgrp, + le16_to_cpu(rx_desc->special) & + E1000_RXD_SPC_VLAN_MASK); + } else { + netif_receive_skb(skb); + } +#else /* CONFIG_E1000_NAPI */ + if(unlikely(adapter->vlgrp && + (rx_desc->status & E1000_RXD_STAT_VP))) { + vlan_hwaccel_rx(skb, adapter->vlgrp, + le16_to_cpu(rx_desc->special) & + E1000_RXD_SPC_VLAN_MASK); + } else { + netif_rx(skb); + } +#endif /* CONFIG_E1000_NAPI */ + netdev->last_rx = jiffies; + +next_desc: + rx_desc->status = 0; + buffer_info->skb = NULL; + if(unlikely(++i == rx_ring->count)) i = 0; + + rx_desc = E1000_RX_DESC(*rx_ring, i); + } + + rx_ring->next_to_clean = i; + + e1000_alloc_rx_buffers(adapter); + + return cleaned; +} + +/** + * e1000_alloc_rx_buffers - Replace used receive buffers + * @adapter: address of board private structure + **/ + +static void +e1000_alloc_rx_buffers(struct e1000_adapter *adapter) +{ + struct e1000_desc_ring *rx_ring = &adapter->rx_ring; + struct net_device *netdev = adapter->netdev; + struct pci_dev *pdev = adapter->pdev; + struct e1000_rx_desc *rx_desc; + struct e1000_buffer *buffer_info; + struct sk_buff *skb; + unsigned int i, bufsz; + + i = rx_ring->next_to_use; + buffer_info = &rx_ring->buffer_info[i]; + + while(!buffer_info->skb) { + bufsz = adapter->rx_buffer_len + NET_IP_ALIGN; + + skb = dev_alloc_skb(bufsz); + if(unlikely(!skb)) { + /* Better luck next round */ + break; + } + + /* fix for errata 23, cant cross 64kB boundary */ + if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { + struct sk_buff *oldskb = skb; + DPRINTK(RX_ERR,ERR, + "skb align check failed: %u bytes at %p\n", + bufsz, skb->data); + /* try again, without freeing the previous */ + skb = dev_alloc_skb(bufsz); + if (!skb) { + dev_kfree_skb(oldskb); + break; + } + if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { + /* give up */ + dev_kfree_skb(skb); + dev_kfree_skb(oldskb); + break; /* while !buffer_info->skb */ + } else { + /* move on with the new one */ + dev_kfree_skb(oldskb); + } + } + + /* Make buffer alignment 2 beyond a 16 byte boundary + * this will result in a 16 byte aligned IP header after + * the 14 byte MAC header is removed + */ + skb_reserve(skb, NET_IP_ALIGN); + + skb->dev = netdev; + + buffer_info->skb = skb; + buffer_info->length = adapter->rx_buffer_len; + buffer_info->dma = pci_map_single(pdev, + skb->data, + adapter->rx_buffer_len, + PCI_DMA_FROMDEVICE); + + /* fix for errata 23, cant cross 64kB boundary */ + if(!e1000_check_64k_bound(adapter, + (void *)(unsigned long)buffer_info->dma, + adapter->rx_buffer_len)) { + DPRINTK(RX_ERR,ERR, + "dma align check failed: %u bytes at %ld\n", + adapter->rx_buffer_len, (unsigned long)buffer_info->dma); + + dev_kfree_skb(skb); + buffer_info->skb = NULL; + + pci_unmap_single(pdev, + buffer_info->dma, + adapter->rx_buffer_len, + PCI_DMA_FROMDEVICE); + + break; /* while !buffer_info->skb */ + } + + rx_desc = E1000_RX_DESC(*rx_ring, i); + rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); + + if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) { + /* Force memory writes to complete before letting h/w + * know there are new descriptors to fetch. (Only + * applicable for weak-ordered memory model archs, + * such as IA-64). */ + wmb(); + + E1000_WRITE_REG(&adapter->hw, RDT, i); + } + + if(unlikely(++i == rx_ring->count)) i = 0; + buffer_info = &rx_ring->buffer_info[i]; + } + + rx_ring->next_to_use = i; +} + +/** + * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. + * @adapter: + **/ + +static void +e1000_smartspeed(struct e1000_adapter *adapter) +{ + uint16_t phy_status; + uint16_t phy_ctrl; + + if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg || + !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL)) + return; + + if(adapter->smartspeed == 0) { + /* If Master/Slave config fault is asserted twice, + * we assume back-to-back */ + e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status); + if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; + e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status); + if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; + e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl); + if(phy_ctrl & CR_1000T_MS_ENABLE) { + phy_ctrl &= ~CR_1000T_MS_ENABLE; + e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, + phy_ctrl); + adapter->smartspeed++; + if(!e1000_phy_setup_autoneg(&adapter->hw) && + !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, + &phy_ctrl)) { + phy_ctrl |= (MII_CR_AUTO_NEG_EN | + MII_CR_RESTART_AUTO_NEG); + e1000_write_phy_reg(&adapter->hw, PHY_CTRL, + phy_ctrl); + } + } + return; + } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { + /* If still no link, perhaps using 2/3 pair cable */ + e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl); + phy_ctrl |= CR_1000T_MS_ENABLE; + e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl); + if(!e1000_phy_setup_autoneg(&adapter->hw) && + !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) { + phy_ctrl |= (MII_CR_AUTO_NEG_EN | + MII_CR_RESTART_AUTO_NEG); + e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl); + } + } + /* Restart process after E1000_SMARTSPEED_MAX iterations */ + if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX) + adapter->smartspeed = 0; +} + +/** + * e1000_ioctl - + * @netdev: + * @ifreq: + * @cmd: + **/ + +static int +e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) +{ + switch (cmd) { + case SIOCGMIIPHY: + case SIOCGMIIREG: + case SIOCSMIIREG: + return e1000_mii_ioctl(netdev, ifr, cmd); + default: + return -EOPNOTSUPP; + } +} + +/** + * e1000_mii_ioctl - + * @netdev: + * @ifreq: + * @cmd: + **/ + +static int +e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) +{ + struct e1000_adapter *adapter = netdev->priv; + struct mii_ioctl_data *data = if_mii(ifr); + int retval; + uint16_t mii_reg; + uint16_t spddplx; + + if(adapter->hw.media_type != e1000_media_type_copper) + return -EOPNOTSUPP; + + switch (cmd) { + case SIOCGMIIPHY: + data->phy_id = adapter->hw.phy_addr; + break; + case SIOCGMIIREG: + if (!capable(CAP_NET_ADMIN)) + return -EPERM; + if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, + &data->val_out)) + return -EIO; + break; + case SIOCSMIIREG: + if (!capable(CAP_NET_ADMIN)) + return -EPERM; + if (data->reg_num & ~(0x1F)) + return -EFAULT; + mii_reg = data->val_in; + if (e1000_write_phy_reg(&adapter->hw, data->reg_num, + mii_reg)) + return -EIO; + if (adapter->hw.phy_type == e1000_phy_m88) { + switch (data->reg_num) { + case PHY_CTRL: + if(mii_reg & MII_CR_POWER_DOWN) + break; + if(mii_reg & MII_CR_AUTO_NEG_EN) { + adapter->hw.autoneg = 1; + adapter->hw.autoneg_advertised = 0x2F; + } else { + if (mii_reg & 0x40) + spddplx = SPEED_1000; + else if (mii_reg & 0x2000) + spddplx = SPEED_100; + else + spddplx = SPEED_10; + spddplx += (mii_reg & 0x100) + ? FULL_DUPLEX : + HALF_DUPLEX; + retval = e1000_set_spd_dplx(adapter, + spddplx); + if(retval) + return retval; + } + if(netif_running(adapter->netdev)) { + e1000_down(adapter); + e1000_up(adapter); + } else + e1000_reset(adapter); + break; + case M88E1000_PHY_SPEC_CTRL: + case M88E1000_EXT_PHY_SPEC_CTRL: + if (e1000_phy_reset(&adapter->hw)) + return -EIO; + break; + } + } else { + switch (data->reg_num) { + case PHY_CTRL: + if(mii_reg & MII_CR_POWER_DOWN) + break; + if(netif_running(adapter->netdev)) { + e1000_down(adapter); + e1000_up(adapter); + } else + e1000_reset(adapter); + break; + } + } + break; + default: + return -EOPNOTSUPP; + } + return E1000_SUCCESS; +} + +void +e1000_pci_set_mwi(struct e1000_hw *hw) +{ + struct e1000_adapter *adapter = hw->back; + + int ret; + ret = pci_set_mwi(adapter->pdev); +} + +void +e1000_pci_clear_mwi(struct e1000_hw *hw) +{ + struct e1000_adapter *adapter = hw->back; + + pci_clear_mwi(adapter->pdev); +} + +void +e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value) +{ + struct e1000_adapter *adapter = hw->back; + + pci_read_config_word(adapter->pdev, reg, value); +} + +void +e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value) +{ + struct e1000_adapter *adapter = hw->back; + + pci_write_config_word(adapter->pdev, reg, *value); +} + +uint32_t +e1000_io_read(struct e1000_hw *hw, unsigned long port) +{ + return inl(port); +} + +void +e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value) +{ + outl(value, port); +} + +static void +e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp) +{ + struct e1000_adapter *adapter = netdev->priv; + uint32_t ctrl, rctl; + + e1000_irq_disable(adapter); + adapter->vlgrp = grp; + + if(grp) { + /* enable VLAN tag insert/strip */ + ctrl = E1000_READ_REG(&adapter->hw, CTRL); + ctrl |= E1000_CTRL_VME; + E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); + + /* enable VLAN receive filtering */ + rctl = E1000_READ_REG(&adapter->hw, RCTL); + rctl |= E1000_RCTL_VFE; + rctl &= ~E1000_RCTL_CFIEN; + E1000_WRITE_REG(&adapter->hw, RCTL, rctl); + } else { + /* disable VLAN tag insert/strip */ + ctrl = E1000_READ_REG(&adapter->hw, CTRL); + ctrl &= ~E1000_CTRL_VME; + E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); + + /* disable VLAN filtering */ + rctl = E1000_READ_REG(&adapter->hw, RCTL); + rctl &= ~E1000_RCTL_VFE; + E1000_WRITE_REG(&adapter->hw, RCTL, rctl); + } + + e1000_irq_enable(adapter); +} + +static void +e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid) +{ + struct e1000_adapter *adapter = netdev->priv; + uint32_t vfta, index; + + /* add VID to filter table */ + index = (vid >> 5) & 0x7F; + vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index); + vfta |= (1 << (vid & 0x1F)); + e1000_write_vfta(&adapter->hw, index, vfta); +} + +static void +e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid) +{ + struct e1000_adapter *adapter = netdev->priv; + uint32_t vfta, index; + + e1000_irq_disable(adapter); + + if(adapter->vlgrp) + adapter->vlgrp->vlan_devices[vid] = NULL; + + e1000_irq_enable(adapter); + + /* remove VID from filter table */ + index = (vid >> 5) & 0x7F; + vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index); + vfta &= ~(1 << (vid & 0x1F)); + e1000_write_vfta(&adapter->hw, index, vfta); +} + +static void +e1000_restore_vlan(struct e1000_adapter *adapter) +{ + e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); + + if(adapter->vlgrp) { + uint16_t vid; + for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { + if(!adapter->vlgrp->vlan_devices[vid]) + continue; + e1000_vlan_rx_add_vid(adapter->netdev, vid); + } + } +} + +int +e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx) +{ + adapter->hw.autoneg = 0; + + switch(spddplx) { + case SPEED_10 + DUPLEX_HALF: + adapter->hw.forced_speed_duplex = e1000_10_half; + break; + case SPEED_10 + DUPLEX_FULL: + adapter->hw.forced_speed_duplex = e1000_10_full; + break; + case SPEED_100 + DUPLEX_HALF: + adapter->hw.forced_speed_duplex = e1000_100_half; + break; + case SPEED_100 + DUPLEX_FULL: + adapter->hw.forced_speed_duplex = e1000_100_full; + break; + case SPEED_1000 + DUPLEX_FULL: + adapter->hw.autoneg = 1; + adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL; + break; + case SPEED_1000 + DUPLEX_HALF: /* not supported */ + default: + DPRINTK(PROBE, ERR, + "Unsupported Speed/Duplexity configuration\n"); + return -EINVAL; + } + return 0; +} + +static int +e1000_notify_reboot(struct notifier_block *nb, unsigned long event, void *p) +{ + struct pci_dev *pdev = NULL; + + switch(event) { + case SYS_DOWN: + case SYS_HALT: + case SYS_POWER_OFF: + while((pdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) { + if(pci_dev_driver(pdev) == &e1000_driver) + e1000_suspend(pdev, 3); + } + } + return NOTIFY_DONE; +} + +static int +e1000_suspend(struct pci_dev *pdev, uint32_t state) +{ + struct net_device *netdev = pci_get_drvdata(pdev); + struct e1000_adapter *adapter = netdev->priv; + uint32_t ctrl, ctrl_ext, rctl, manc, status; + uint32_t wufc = adapter->wol; + + netif_device_detach(netdev); + + if(netif_running(netdev)) + e1000_down(adapter); + + status = E1000_READ_REG(&adapter->hw, STATUS); + if(status & E1000_STATUS_LU) + wufc &= ~E1000_WUFC_LNKC; + + if(wufc) { + e1000_setup_rctl(adapter); + e1000_set_multi(netdev); + + /* turn on all-multi mode if wake on multicast is enabled */ + if(adapter->wol & E1000_WUFC_MC) { + rctl = E1000_READ_REG(&adapter->hw, RCTL); + rctl |= E1000_RCTL_MPE; + E1000_WRITE_REG(&adapter->hw, RCTL, rctl); + } + + if(adapter->hw.mac_type >= e1000_82540) { + ctrl = E1000_READ_REG(&adapter->hw, CTRL); + /* advertise wake from D3Cold */ + #define E1000_CTRL_ADVD3WUC 0x00100000 + /* phy power management enable */ + #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 + ctrl |= E1000_CTRL_ADVD3WUC | + E1000_CTRL_EN_PHY_PWR_MGMT; + E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); + } + + if(adapter->hw.media_type == e1000_media_type_fiber || + adapter->hw.media_type == e1000_media_type_internal_serdes) { + /* keep the laser running in D3 */ + ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; + E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext); + } + + E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN); + E1000_WRITE_REG(&adapter->hw, WUFC, wufc); + pci_enable_wake(pdev, 3, 1); + pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */ + } else { + E1000_WRITE_REG(&adapter->hw, WUC, 0); + E1000_WRITE_REG(&adapter->hw, WUFC, 0); + pci_enable_wake(pdev, 3, 0); + pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */ + } + + pci_save_state(pdev); + + if(adapter->hw.mac_type >= e1000_82540 && + adapter->hw.media_type == e1000_media_type_copper) { + manc = E1000_READ_REG(&adapter->hw, MANC); + if(manc & E1000_MANC_SMBUS_EN) { + manc |= E1000_MANC_ARP_EN; + E1000_WRITE_REG(&adapter->hw, MANC, manc); + pci_enable_wake(pdev, 3, 1); + pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */ + } + } + + pci_disable_device(pdev); + + state = (state > 0) ? 3 : 0; + pci_set_power_state(pdev, state); + + return 0; +} + +#ifdef CONFIG_PM +static int +e1000_resume(struct pci_dev *pdev) +{ + struct net_device *netdev = pci_get_drvdata(pdev); + struct e1000_adapter *adapter = netdev->priv; + uint32_t manc, ret; + + pci_set_power_state(pdev, 0); + pci_restore_state(pdev); + ret = pci_enable_device(pdev); + if (pdev->is_busmaster) + pci_set_master(pdev); + + pci_enable_wake(pdev, 3, 0); + pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */ + + e1000_reset(adapter); + E1000_WRITE_REG(&adapter->hw, WUS, ~0); + + if(netif_running(netdev)) + e1000_up(adapter); + + netif_device_attach(netdev); + + if(adapter->hw.mac_type >= e1000_82540 && + adapter->hw.media_type == e1000_media_type_copper) { + manc = E1000_READ_REG(&adapter->hw, MANC); + manc &= ~(E1000_MANC_ARP_EN); + E1000_WRITE_REG(&adapter->hw, MANC, manc); + } + + return 0; +} +#endif + +#ifdef CONFIG_NET_POLL_CONTROLLER +/* + * Polling 'interrupt' - used by things like netconsole to send skbs + * without having to re-enable interrupts. It's not called while + * the interrupt routine is executing. + */ +static void +e1000_netpoll (struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev->priv; + disable_irq(adapter->pdev->irq); + e1000_intr(adapter->pdev->irq, netdev, NULL); + enable_irq(adapter->pdev->irq); +} +#endif + +/* e1000_main.c */ diff --git a/drivers/net/e1000/e1000_osdep.h b/drivers/net/e1000/e1000_osdep.h new file mode 100644 index 00000000000..970c656a517 --- /dev/null +++ b/drivers/net/e1000/e1000_osdep.h @@ -0,0 +1,101 @@ +/******************************************************************************* + + + Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. + + This program is free software; you can redistribute it and/or modify it + under the terms of the GNU General Public License as published by the Free + Software Foundation; either version 2 of the License, or (at your option) + any later version. + + This program is distributed in the hope that it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., 59 + Temple Place - Suite 330, Boston, MA 02111-1307, USA. + + The full GNU General Public License is included in this distribution in the + file called LICENSE. + + Contact Information: + Linux NICS <linux.nics@intel.com> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + + +/* glue for the OS independent part of e1000 + * includes register access macros + */ + +#ifndef _E1000_OSDEP_H_ +#define _E1000_OSDEP_H_ + +#include <linux/types.h> +#include <linux/pci.h> +#include <linux/delay.h> +#include <asm/io.h> +#include <linux/interrupt.h> +#include <linux/sched.h> + +#ifndef msec_delay +#define msec_delay(x) msleep(x) + +/* Some workarounds require millisecond delays and are run during interrupt + * context. Most notably, when establishing link, the phy may need tweaking + * but cannot process phy register reads/writes faster than millisecond + * intervals...and we establish link due to a "link status change" interrupt. + */ +#define msec_delay_irq(x) mdelay(x) +#endif + +#define PCI_COMMAND_REGISTER PCI_COMMAND +#define CMD_MEM_WRT_INVALIDATE PCI_COMMAND_INVALIDATE + +typedef enum { +#undef FALSE + FALSE = 0, +#undef TRUE + TRUE = 1 +} boolean_t; + +#define MSGOUT(S, A, B) printk(KERN_DEBUG S "\n", A, B) + +#ifdef DBG +#define DEBUGOUT(S) printk(KERN_DEBUG S "\n") +#define DEBUGOUT1(S, A...) printk(KERN_DEBUG S "\n", A) +#else +#define DEBUGOUT(S) +#define DEBUGOUT1(S, A...) +#endif + +#define DEBUGFUNC(F) DEBUGOUT(F) +#define DEBUGOUT2 DEBUGOUT1 +#define DEBUGOUT3 DEBUGOUT2 +#define DEBUGOUT7 DEBUGOUT3 + + +#define E1000_WRITE_REG(a, reg, value) ( \ + writel((value), ((a)->hw_addr + \ + (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg)))) + +#define E1000_READ_REG(a, reg) ( \ + readl((a)->hw_addr + \ + (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg))) + +#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) ( \ + writel((value), ((a)->hw_addr + \ + (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \ + ((offset) << 2)))) + +#define E1000_READ_REG_ARRAY(a, reg, offset) ( \ + readl((a)->hw_addr + \ + (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \ + ((offset) << 2))) + +#define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, STATUS) + +#endif /* _E1000_OSDEP_H_ */ diff --git a/drivers/net/e1000/e1000_param.c b/drivers/net/e1000/e1000_param.c new file mode 100644 index 00000000000..e914d09fe6f --- /dev/null +++ b/drivers/net/e1000/e1000_param.c @@ -0,0 +1,744 @@ +/******************************************************************************* + + + Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. + + This program is free software; you can redistribute it and/or modify it + under the terms of the GNU General Public License as published by the Free + Software Foundation; either version 2 of the License, or (at your option) + any later version. + + This program is distributed in the hope that it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., 59 + Temple Place - Suite 330, Boston, MA 02111-1307, USA. + + The full GNU General Public License is included in this distribution in the + file called LICENSE. + + Contact Information: + Linux NICS <linux.nics@intel.com> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +#include "e1000.h" + +/* This is the only thing that needs to be changed to adjust the + * maximum number of ports that the driver can manage. + */ + +#define E1000_MAX_NIC 32 + +#define OPTION_UNSET -1 +#define OPTION_DISABLED 0 +#define OPTION_ENABLED 1 + +/* All parameters are treated the same, as an integer array of values. + * This macro just reduces the need to repeat the same declaration code + * over and over (plus this helps to avoid typo bugs). + */ + +#define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET } +#define E1000_PARAM(X, desc) \ + static int __devinitdata X[E1000_MAX_NIC+1] = E1000_PARAM_INIT; \ + static int num_##X = 0; \ + module_param_array_named(X, X, int, &num_##X, 0); \ + MODULE_PARM_DESC(X, desc); + +/* Transmit Descriptor Count + * + * Valid Range: 80-256 for 82542 and 82543 gigabit ethernet controllers + * Valid Range: 80-4096 for 82544 and newer + * + * Default Value: 256 + */ + +E1000_PARAM(TxDescriptors, "Number of transmit descriptors"); + +/* Receive Descriptor Count + * + * Valid Range: 80-256 for 82542 and 82543 gigabit ethernet controllers + * Valid Range: 80-4096 for 82544 and newer + * + * Default Value: 256 + */ + +E1000_PARAM(RxDescriptors, "Number of receive descriptors"); + +/* User Specified Speed Override + * + * Valid Range: 0, 10, 100, 1000 + * - 0 - auto-negotiate at all supported speeds + * - 10 - only link at 10 Mbps + * - 100 - only link at 100 Mbps + * - 1000 - only link at 1000 Mbps + * + * Default Value: 0 + */ + +E1000_PARAM(Speed, "Speed setting"); + +/* User Specified Duplex Override + * + * Valid Range: 0-2 + * - 0 - auto-negotiate for duplex + * - 1 - only link at half duplex + * - 2 - only link at full duplex + * + * Default Value: 0 + */ + +E1000_PARAM(Duplex, "Duplex setting"); + +/* Auto-negotiation Advertisement Override + * + * Valid Range: 0x01-0x0F, 0x20-0x2F (copper); 0x20 (fiber) + * + * The AutoNeg value is a bit mask describing which speed and duplex + * combinations should be advertised during auto-negotiation. + * The supported speed and duplex modes are listed below + * + * Bit 7 6 5 4 3 2 1 0 + * Speed (Mbps) N/A N/A 1000 N/A 100 100 10 10 + * Duplex Full Full Half Full Half + * + * Default Value: 0x2F (copper); 0x20 (fiber) + */ + +E1000_PARAM(AutoNeg, "Advertised auto-negotiation setting"); + +/* User Specified Flow Control Override + * + * Valid Range: 0-3 + * - 0 - No Flow Control + * - 1 - Rx only, respond to PAUSE frames but do not generate them + * - 2 - Tx only, generate PAUSE frames but ignore them on receive + * - 3 - Full Flow Control Support + * + * Default Value: Read flow control settings from the EEPROM + */ + +E1000_PARAM(FlowControl, "Flow Control setting"); + +/* XsumRX - Receive Checksum Offload Enable/Disable + * + * Valid Range: 0, 1 + * - 0 - disables all checksum offload + * - 1 - enables receive IP/TCP/UDP checksum offload + * on 82543 and newer -based NICs + * + * Default Value: 1 + */ + +E1000_PARAM(XsumRX, "Disable or enable Receive Checksum offload"); + +/* Transmit Interrupt Delay in units of 1.024 microseconds + * + * Valid Range: 0-65535 + * + * Default Value: 64 + */ + +E1000_PARAM(TxIntDelay, "Transmit Interrupt Delay"); + +/* Transmit Absolute Interrupt Delay in units of 1.024 microseconds + * + * Valid Range: 0-65535 + * + * Default Value: 0 + */ + +E1000_PARAM(TxAbsIntDelay, "Transmit Absolute Interrupt Delay"); + +/* Receive Interrupt Delay in units of 1.024 microseconds + * + * Valid Range: 0-65535 + * + * Default Value: 0 + */ + +E1000_PARAM(RxIntDelay, "Receive Interrupt Delay"); + +/* Receive Absolute Interrupt Delay in units of 1.024 microseconds + * + * Valid Range: 0-65535 + * + * Default Value: 128 + */ + +E1000_PARAM(RxAbsIntDelay, "Receive Absolute Interrupt Delay"); + +/* Interrupt Throttle Rate (interrupts/sec) + * + * Valid Range: 100-100000 (0=off, 1=dynamic) + * + * Default Value: 1 + */ + +E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate"); + +#define AUTONEG_ADV_DEFAULT 0x2F +#define AUTONEG_ADV_MASK 0x2F +#define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL + +#define DEFAULT_RDTR 0 +#define MAX_RXDELAY 0xFFFF +#define MIN_RXDELAY 0 + +#define DEFAULT_RADV 128 +#define MAX_RXABSDELAY 0xFFFF +#define MIN_RXABSDELAY 0 + +#define DEFAULT_TIDV 64 +#define MAX_TXDELAY 0xFFFF +#define MIN_TXDELAY 0 + +#define DEFAULT_TADV 64 +#define MAX_TXABSDELAY 0xFFFF +#define MIN_TXABSDELAY 0 + +#define DEFAULT_ITR 8000 +#define MAX_ITR 100000 +#define MIN_ITR 100 + +struct e1000_option { + enum { enable_option, range_option, list_option } type; + char *name; + char *err; + int def; + union { + struct { /* range_option info */ + int min; + int max; + } r; + struct { /* list_option info */ + int nr; + struct e1000_opt_list { int i; char *str; } *p; + } l; + } arg; +}; + +static int __devinit +e1000_validate_option(int *value, struct e1000_option *opt, + struct e1000_adapter *adapter) +{ + if(*value == OPTION_UNSET) { + *value = opt->def; + return 0; + } + + switch (opt->type) { + case enable_option: + switch (*value) { + case OPTION_ENABLED: + DPRINTK(PROBE, INFO, "%s Enabled\n", opt->name); + return 0; + case OPTION_DISABLED: + DPRINTK(PROBE, INFO, "%s Disabled\n", opt->name); + return 0; + } + break; + case range_option: + if(*value >= opt->arg.r.min && *value <= opt->arg.r.max) { + DPRINTK(PROBE, INFO, + "%s set to %i\n", opt->name, *value); + return 0; + } + break; + case list_option: { + int i; + struct e1000_opt_list *ent; + + for(i = 0; i < opt->arg.l.nr; i++) { + ent = &opt->arg.l.p[i]; + if(*value == ent->i) { + if(ent->str[0] != '\0') + DPRINTK(PROBE, INFO, "%s\n", ent->str); + return 0; + } + } + } + break; + default: + BUG(); + } + + DPRINTK(PROBE, INFO, "Invalid %s specified (%i) %s\n", + opt->name, *value, opt->err); + *value = opt->def; + return -1; +} + +static void e1000_check_fiber_options(struct e1000_adapter *adapter); +static void e1000_check_copper_options(struct e1000_adapter *adapter); + +/** + * e1000_check_options - Range Checking for Command Line Parameters + * @adapter: board private structure + * + * This routine checks all command line parameters for valid user + * input. If an invalid value is given, or if no user specified + * value exists, a default value is used. The final value is stored + * in a variable in the adapter structure. + **/ + +void __devinit +e1000_check_options(struct e1000_adapter *adapter) +{ + int bd = adapter->bd_number; + if(bd >= E1000_MAX_NIC) { + DPRINTK(PROBE, NOTICE, + "Warning: no configuration for board #%i\n", bd); + DPRINTK(PROBE, NOTICE, "Using defaults for all values\n"); + } + + { /* Transmit Descriptor Count */ + struct e1000_option opt = { + .type = range_option, + .name = "Transmit Descriptors", + .err = "using default of " + __MODULE_STRING(E1000_DEFAULT_TXD), + .def = E1000_DEFAULT_TXD, + .arg = { .r = { .min = E1000_MIN_TXD }} + }; + struct e1000_desc_ring *tx_ring = &adapter->tx_ring; + e1000_mac_type mac_type = adapter->hw.mac_type; + opt.arg.r.max = mac_type < e1000_82544 ? + E1000_MAX_TXD : E1000_MAX_82544_TXD; + + if (num_TxDescriptors > bd) { + tx_ring->count = TxDescriptors[bd]; + e1000_validate_option(&tx_ring->count, &opt, adapter); + E1000_ROUNDUP(tx_ring->count, + REQ_TX_DESCRIPTOR_MULTIPLE); + } else { + tx_ring->count = opt.def; + } + } + { /* Receive Descriptor Count */ + struct e1000_option opt = { + .type = range_option, + .name = "Receive Descriptors", + .err = "using default of " + __MODULE_STRING(E1000_DEFAULT_RXD), + .def = E1000_DEFAULT_RXD, + .arg = { .r = { .min = E1000_MIN_RXD }} + }; + struct e1000_desc_ring *rx_ring = &adapter->rx_ring; + e1000_mac_type mac_type = adapter->hw.mac_type; + opt.arg.r.max = mac_type < e1000_82544 ? E1000_MAX_RXD : + E1000_MAX_82544_RXD; + + if (num_RxDescriptors > bd) { + rx_ring->count = RxDescriptors[bd]; + e1000_validate_option(&rx_ring->count, &opt, adapter); + E1000_ROUNDUP(rx_ring->count, + REQ_RX_DESCRIPTOR_MULTIPLE); + } else { + rx_ring->count = opt.def; + } + } + { /* Checksum Offload Enable/Disable */ + struct e1000_option opt = { + .type = enable_option, + .name = "Checksum Offload", + .err = "defaulting to Enabled", + .def = OPTION_ENABLED + }; + + if (num_XsumRX > bd) { + int rx_csum = XsumRX[bd]; + e1000_validate_option(&rx_csum, &opt, adapter); + adapter->rx_csum = rx_csum; + } else { + adapter->rx_csum = opt.def; + } + } + { /* Flow Control */ + + struct e1000_opt_list fc_list[] = + {{ e1000_fc_none, "Flow Control Disabled" }, + { e1000_fc_rx_pause,"Flow Control Receive Only" }, + { e1000_fc_tx_pause,"Flow Control Transmit Only" }, + { e1000_fc_full, "Flow Control Enabled" }, + { e1000_fc_default, "Flow Control Hardware Default" }}; + + struct e1000_option opt = { + .type = list_option, + .name = "Flow Control", + .err = "reading default settings from EEPROM", + .def = e1000_fc_default, + .arg = { .l = { .nr = ARRAY_SIZE(fc_list), + .p = fc_list }} + }; + + if (num_FlowControl > bd) { + int fc = FlowControl[bd]; + e1000_validate_option(&fc, &opt, adapter); + adapter->hw.fc = adapter->hw.original_fc = fc; + } else { + adapter->hw.fc = opt.def; + } + } + { /* Transmit Interrupt Delay */ + struct e1000_option opt = { + .type = range_option, + .name = "Transmit Interrupt Delay", + .err = "using default of " __MODULE_STRING(DEFAULT_TIDV), + .def = DEFAULT_TIDV, + .arg = { .r = { .min = MIN_TXDELAY, + .max = MAX_TXDELAY }} + }; + + if (num_TxIntDelay > bd) { + adapter->tx_int_delay = TxIntDelay[bd]; + e1000_validate_option(&adapter->tx_int_delay, &opt, + adapter); + } else { + adapter->tx_int_delay = opt.def; + } + } + { /* Transmit Absolute Interrupt Delay */ + struct e1000_option opt = { + .type = range_option, + .name = "Transmit Absolute Interrupt Delay", + .err = "using default of " __MODULE_STRING(DEFAULT_TADV), + .def = DEFAULT_TADV, + .arg = { .r = { .min = MIN_TXABSDELAY, + .max = MAX_TXABSDELAY }} + }; + + if (num_TxAbsIntDelay > bd) { + adapter->tx_abs_int_delay = TxAbsIntDelay[bd]; + e1000_validate_option(&adapter->tx_abs_int_delay, &opt, + adapter); + } else { + adapter->tx_abs_int_delay = opt.def; + } + } + { /* Receive Interrupt Delay */ + struct e1000_option opt = { + .type = range_option, + .name = "Receive Interrupt Delay", + .err = "using default of " __MODULE_STRING(DEFAULT_RDTR), + .def = DEFAULT_RDTR, + .arg = { .r = { .min = MIN_RXDELAY, + .max = MAX_RXDELAY }} + }; + + if (num_RxIntDelay > bd) { + adapter->rx_int_delay = RxIntDelay[bd]; + e1000_validate_option(&adapter->rx_int_delay, &opt, + adapter); + } else { + adapter->rx_int_delay = opt.def; + } + } + { /* Receive Absolute Interrupt Delay */ + struct e1000_option opt = { + .type = range_option, + .name = "Receive Absolute Interrupt Delay", + .err = "using default of " __MODULE_STRING(DEFAULT_RADV), + .def = DEFAULT_RADV, + .arg = { .r = { .min = MIN_RXABSDELAY, + .max = MAX_RXABSDELAY }} + }; + + if (num_RxAbsIntDelay > bd) { + adapter->rx_abs_int_delay = RxAbsIntDelay[bd]; + e1000_validate_option(&adapter->rx_abs_int_delay, &opt, + adapter); + } else { + adapter->rx_abs_int_delay = opt.def; + } + } + { /* Interrupt Throttling Rate */ + struct e1000_option opt = { + .type = range_option, + .name = "Interrupt Throttling Rate (ints/sec)", + .err = "using default of " __MODULE_STRING(DEFAULT_ITR), + .def = DEFAULT_ITR, + .arg = { .r = { .min = MIN_ITR, + .max = MAX_ITR }} + }; + + if (num_InterruptThrottleRate > bd) { + adapter->itr = InterruptThrottleRate[bd]; + switch(adapter->itr) { + case 0: + DPRINTK(PROBE, INFO, "%s turned off\n", + opt.name); + break; + case 1: + DPRINTK(PROBE, INFO, "%s set to dynamic mode\n", + opt.name); + break; + case -1: + default: + e1000_validate_option(&adapter->itr, &opt, + adapter); + break; + } + } else { + adapter->itr = opt.def; + } + } + + switch(adapter->hw.media_type) { + case e1000_media_type_fiber: + case e1000_media_type_internal_serdes: + e1000_check_fiber_options(adapter); + break; + case e1000_media_type_copper: + e1000_check_copper_options(adapter); + break; + default: + BUG(); + } +} + +/** + * e1000_check_fiber_options - Range Checking for Link Options, Fiber Version + * @adapter: board private structure + * + * Handles speed and duplex options on fiber adapters + **/ + +static void __devinit +e1000_check_fiber_options(struct e1000_adapter *adapter) +{ + int bd = adapter->bd_number; + if(num_Speed > bd) { + DPRINTK(PROBE, INFO, "Speed not valid for fiber adapters, " + "parameter ignored\n"); + } + + if(num_Duplex > bd) { + DPRINTK(PROBE, INFO, "Duplex not valid for fiber adapters, " + "parameter ignored\n"); + } + + if((num_AutoNeg > bd) && (AutoNeg[bd] != 0x20)) { + DPRINTK(PROBE, INFO, "AutoNeg other than 1000/Full is " + "not valid for fiber adapters, " + "parameter ignored\n"); + } +} + +/** + * e1000_check_copper_options - Range Checking for Link Options, Copper Version + * @adapter: board private structure + * + * Handles speed and duplex options on copper adapters + **/ + +static void __devinit +e1000_check_copper_options(struct e1000_adapter *adapter) +{ + int speed, dplx; + int bd = adapter->bd_number; + + { /* Speed */ + struct e1000_opt_list speed_list[] = {{ 0, "" }, + { SPEED_10, "" }, + { SPEED_100, "" }, + { SPEED_1000, "" }}; + + struct e1000_option opt = { + .type = list_option, + .name = "Speed", + .err = "parameter ignored", + .def = 0, + .arg = { .l = { .nr = ARRAY_SIZE(speed_list), + .p = speed_list }} + }; + + if (num_Speed > bd) { + speed = Speed[bd]; + e1000_validate_option(&speed, &opt, adapter); + } else { + speed = opt.def; + } + } + { /* Duplex */ + struct e1000_opt_list dplx_list[] = {{ 0, "" }, + { HALF_DUPLEX, "" }, + { FULL_DUPLEX, "" }}; + + struct e1000_option opt = { + .type = list_option, + .name = "Duplex", + .err = "parameter ignored", + .def = 0, + .arg = { .l = { .nr = ARRAY_SIZE(dplx_list), + .p = dplx_list }} + }; + + if (num_Duplex > bd) { + dplx = Duplex[bd]; + e1000_validate_option(&dplx, &opt, adapter); + } else { + dplx = opt.def; + } + } + + if((num_AutoNeg > bd) && (speed != 0 || dplx != 0)) { + DPRINTK(PROBE, INFO, + "AutoNeg specified along with Speed or Duplex, " + "parameter ignored\n"); + adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT; + } else { /* Autoneg */ + struct e1000_opt_list an_list[] = + #define AA "AutoNeg advertising " + {{ 0x01, AA "10/HD" }, + { 0x02, AA "10/FD" }, + { 0x03, AA "10/FD, 10/HD" }, + { 0x04, AA "100/HD" }, + { 0x05, AA "100/HD, 10/HD" }, + { 0x06, AA "100/HD, 10/FD" }, + { 0x07, AA "100/HD, 10/FD, 10/HD" }, + { 0x08, AA "100/FD" }, + { 0x09, AA "100/FD, 10/HD" }, + { 0x0a, AA "100/FD, 10/FD" }, + { 0x0b, AA "100/FD, 10/FD, 10/HD" }, + { 0x0c, AA "100/FD, 100/HD" }, + { 0x0d, AA "100/FD, 100/HD, 10/HD" }, + { 0x0e, AA "100/FD, 100/HD, 10/FD" }, + { 0x0f, AA "100/FD, 100/HD, 10/FD, 10/HD" }, + { 0x20, AA "1000/FD" }, + { 0x21, AA "1000/FD, 10/HD" }, + { 0x22, AA "1000/FD, 10/FD" }, + { 0x23, AA "1000/FD, 10/FD, 10/HD" }, + { 0x24, AA "1000/FD, 100/HD" }, + { 0x25, AA "1000/FD, 100/HD, 10/HD" }, + { 0x26, AA "1000/FD, 100/HD, 10/FD" }, + { 0x27, AA "1000/FD, 100/HD, 10/FD, 10/HD" }, + { 0x28, AA "1000/FD, 100/FD" }, + { 0x29, AA "1000/FD, 100/FD, 10/HD" }, + { 0x2a, AA "1000/FD, 100/FD, 10/FD" }, + { 0x2b, AA "1000/FD, 100/FD, 10/FD, 10/HD" }, + { 0x2c, AA "1000/FD, 100/FD, 100/HD" }, + { 0x2d, AA "1000/FD, 100/FD, 100/HD, 10/HD" }, + { 0x2e, AA "1000/FD, 100/FD, 100/HD, 10/FD" }, + { 0x2f, AA "1000/FD, 100/FD, 100/HD, 10/FD, 10/HD" }}; + + struct e1000_option opt = { + .type = list_option, + .name = "AutoNeg", + .err = "parameter ignored", + .def = AUTONEG_ADV_DEFAULT, + .arg = { .l = { .nr = ARRAY_SIZE(an_list), + .p = an_list }} + }; + + int an = AutoNeg[bd]; + e1000_validate_option(&an, &opt, adapter); + adapter->hw.autoneg_advertised = an; + } + + switch (speed + dplx) { + case 0: + adapter->hw.autoneg = adapter->fc_autoneg = 1; + if((num_Speed > bd) && (speed != 0 || dplx != 0)) + DPRINTK(PROBE, INFO, + "Speed and duplex autonegotiation enabled\n"); + break; + case HALF_DUPLEX: + DPRINTK(PROBE, INFO, "Half Duplex specified without Speed\n"); + DPRINTK(PROBE, INFO, "Using Autonegotiation at " + "Half Duplex only\n"); + adapter->hw.autoneg = adapter->fc_autoneg = 1; + adapter->hw.autoneg_advertised = ADVERTISE_10_HALF | + ADVERTISE_100_HALF; + break; + case FULL_DUPLEX: + DPRINTK(PROBE, INFO, "Full Duplex specified without Speed\n"); + DPRINTK(PROBE, INFO, "Using Autonegotiation at " + "Full Duplex only\n"); + adapter->hw.autoneg = adapter->fc_autoneg = 1; + adapter->hw.autoneg_advertised = ADVERTISE_10_FULL | + ADVERTISE_100_FULL | + ADVERTISE_1000_FULL; + break; + case SPEED_10: + DPRINTK(PROBE, INFO, "10 Mbps Speed specified " + "without Duplex\n"); + DPRINTK(PROBE, INFO, "Using Autonegotiation at 10 Mbps only\n"); + adapter->hw.autoneg = adapter->fc_autoneg = 1; + adapter->hw.autoneg_advertised = ADVERTISE_10_HALF | + ADVERTISE_10_FULL; + break; + case SPEED_10 + HALF_DUPLEX: + DPRINTK(PROBE, INFO, "Forcing to 10 Mbps Half Duplex\n"); + adapter->hw.autoneg = adapter->fc_autoneg = 0; + adapter->hw.forced_speed_duplex = e1000_10_half; + adapter->hw.autoneg_advertised = 0; + break; + case SPEED_10 + FULL_DUPLEX: + DPRINTK(PROBE, INFO, "Forcing to 10 Mbps Full Duplex\n"); + adapter->hw.autoneg = adapter->fc_autoneg = 0; + adapter->hw.forced_speed_duplex = e1000_10_full; + adapter->hw.autoneg_advertised = 0; + break; + case SPEED_100: + DPRINTK(PROBE, INFO, "100 Mbps Speed specified " + "without Duplex\n"); + DPRINTK(PROBE, INFO, "Using Autonegotiation at " + "100 Mbps only\n"); + adapter->hw.autoneg = adapter->fc_autoneg = 1; + adapter->hw.autoneg_advertised = ADVERTISE_100_HALF | + ADVERTISE_100_FULL; + break; + case SPEED_100 + HALF_DUPLEX: + DPRINTK(PROBE, INFO, "Forcing to 100 Mbps Half Duplex\n"); + adapter->hw.autoneg = adapter->fc_autoneg = 0; + adapter->hw.forced_speed_duplex = e1000_100_half; + adapter->hw.autoneg_advertised = 0; + break; + case SPEED_100 + FULL_DUPLEX: + DPRINTK(PROBE, INFO, "Forcing to 100 Mbps Full Duplex\n"); + adapter->hw.autoneg = adapter->fc_autoneg = 0; + adapter->hw.forced_speed_duplex = e1000_100_full; + adapter->hw.autoneg_advertised = 0; + break; + case SPEED_1000: + DPRINTK(PROBE, INFO, "1000 Mbps Speed specified without " + "Duplex\n"); + DPRINTK(PROBE, INFO, + "Using Autonegotiation at 1000 Mbps " + "Full Duplex only\n"); + adapter->hw.autoneg = adapter->fc_autoneg = 1; + adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL; + break; + case SPEED_1000 + HALF_DUPLEX: + DPRINTK(PROBE, INFO, + "Half Duplex is not supported at 1000 Mbps\n"); + DPRINTK(PROBE, INFO, + "Using Autonegotiation at 1000 Mbps " + "Full Duplex only\n"); + adapter->hw.autoneg = adapter->fc_autoneg = 1; + adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL; + break; + case SPEED_1000 + FULL_DUPLEX: + DPRINTK(PROBE, INFO, + "Using Autonegotiation at 1000 Mbps Full Duplex only\n"); + adapter->hw.autoneg = adapter->fc_autoneg = 1; + adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL; + break; + default: + BUG(); + } + + /* Speed, AutoNeg and MDI/MDI-X must all play nice */ + if (e1000_validate_mdi_setting(&(adapter->hw)) < 0) { + DPRINTK(PROBE, INFO, + "Speed, AutoNeg and MDI-X specifications are " + "incompatible. Setting MDI-X to a compatible value.\n"); + } +} + |