aboutsummaryrefslogtreecommitdiff
path: root/drivers/net/e1000
diff options
context:
space:
mode:
authorJames Morris <jmorris@macbook.(none)>2009-12-03 12:03:40 +0530
committerJames Morris <jmorris@macbook.(none)>2009-12-03 12:03:40 +0530
commitc84d6efd363a3948eb32ec40d46bab6338580454 (patch)
tree3ba7ac46e6626fe8ac843834588609eb6ccee5c6 /drivers/net/e1000
parent7539cf4b92be4aecc573ea962135f246a7a33401 (diff)
parent22763c5cf3690a681551162c15d34d935308c8d7 (diff)
Merge branch 'master' into next
Diffstat (limited to 'drivers/net/e1000')
-rw-r--r--drivers/net/e1000/e1000.h3
-rw-r--r--drivers/net/e1000/e1000_ethtool.c202
-rw-r--r--drivers/net/e1000/e1000_hw.c12914
-rw-r--r--drivers/net/e1000/e1000_hw.h3231
-rw-r--r--drivers/net/e1000/e1000_main.c825
-rw-r--r--drivers/net/e1000/e1000_param.c22
6 files changed, 6482 insertions, 10715 deletions
diff --git a/drivers/net/e1000/e1000.h b/drivers/net/e1000/e1000.h
index 1a4f89c66a2..42e2b7e21c2 100644
--- a/drivers/net/e1000/e1000.h
+++ b/drivers/net/e1000/e1000.h
@@ -149,7 +149,6 @@ do { \
#define AUTO_ALL_MODES 0
#define E1000_EEPROM_82544_APM 0x0004
-#define E1000_EEPROM_ICH8_APME 0x0004
#define E1000_EEPROM_APME 0x0400
#ifndef E1000_MASTER_SLAVE
@@ -293,7 +292,6 @@ struct e1000_adapter {
u64 hw_csum_err;
u64 hw_csum_good;
- u64 rx_hdr_split;
u32 alloc_rx_buff_failed;
u32 rx_int_delay;
u32 rx_abs_int_delay;
@@ -317,7 +315,6 @@ struct e1000_adapter {
struct e1000_rx_ring test_rx_ring;
int msg_enable;
- bool have_msi;
/* to not mess up cache alignment, always add to the bottom */
bool tso_force;
diff --git a/drivers/net/e1000/e1000_ethtool.c b/drivers/net/e1000/e1000_ethtool.c
index 27f996a2010..490b2b7cd3a 100644
--- a/drivers/net/e1000/e1000_ethtool.c
+++ b/drivers/net/e1000/e1000_ethtool.c
@@ -82,7 +82,6 @@ static const struct e1000_stats e1000_gstrings_stats[] = {
{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
- { "rx_header_split", E1000_STAT(rx_hdr_split) },
{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
{ "tx_smbus", E1000_STAT(stats.mgptc) },
{ "rx_smbus", E1000_STAT(stats.mgprc) },
@@ -114,8 +113,6 @@ static int e1000_get_settings(struct net_device *netdev,
SUPPORTED_1000baseT_Full|
SUPPORTED_Autoneg |
SUPPORTED_TP);
- if (hw->phy_type == e1000_phy_ife)
- ecmd->supported &= ~SUPPORTED_1000baseT_Full;
ecmd->advertising = ADVERTISED_TP;
if (hw->autoneg == 1) {
@@ -178,14 +175,6 @@ static int e1000_set_settings(struct net_device *netdev,
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
- /* When SoL/IDER sessions are active, autoneg/speed/duplex
- * cannot be changed */
- if (e1000_check_phy_reset_block(hw)) {
- DPRINTK(DRV, ERR, "Cannot change link characteristics "
- "when SoL/IDER is active.\n");
- return -EINVAL;
- }
-
while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
msleep(1);
@@ -330,10 +319,7 @@ static int e1000_set_tso(struct net_device *netdev, u32 data)
else
netdev->features &= ~NETIF_F_TSO;
- if (data && (adapter->hw.mac_type > e1000_82547_rev_2))
- netdev->features |= NETIF_F_TSO6;
- else
- netdev->features &= ~NETIF_F_TSO6;
+ netdev->features &= ~NETIF_F_TSO6;
DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
adapter->tso_force = true;
@@ -441,7 +427,6 @@ static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
regs_buff[24] = (u32)phy_data; /* phy local receiver status */
regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
if (hw->mac_type >= e1000_82540 &&
- hw->mac_type < e1000_82571 &&
hw->media_type == e1000_media_type_copper) {
regs_buff[26] = er32(MANC);
}
@@ -554,10 +539,8 @@ static int e1000_set_eeprom(struct net_device *netdev,
ret_val = e1000_write_eeprom(hw, first_word,
last_word - first_word + 1, eeprom_buff);
- /* Update the checksum over the first part of the EEPROM if needed
- * and flush shadow RAM for 82573 conrollers */
- if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
- (hw->mac_type == e1000_82573)))
+ /* Update the checksum over the first part of the EEPROM if needed */
+ if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
e1000_update_eeprom_checksum(hw);
kfree(eeprom_buff);
@@ -568,31 +551,12 @@ static void e1000_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *drvinfo)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
char firmware_version[32];
- u16 eeprom_data;
strncpy(drvinfo->driver, e1000_driver_name, 32);
strncpy(drvinfo->version, e1000_driver_version, 32);
- /* EEPROM image version # is reported as firmware version # for
- * 8257{1|2|3} controllers */
- e1000_read_eeprom(hw, 5, 1, &eeprom_data);
- switch (hw->mac_type) {
- case e1000_82571:
- case e1000_82572:
- case e1000_82573:
- case e1000_80003es2lan:
- case e1000_ich8lan:
- sprintf(firmware_version, "%d.%d-%d",
- (eeprom_data & 0xF000) >> 12,
- (eeprom_data & 0x0FF0) >> 4,
- eeprom_data & 0x000F);
- break;
- default:
- sprintf(firmware_version, "N/A");
- }
-
+ sprintf(firmware_version, "N/A");
strncpy(drvinfo->fw_version, firmware_version, 32);
strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
drvinfo->regdump_len = e1000_get_regs_len(netdev);
@@ -781,21 +745,9 @@ static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
/* The status register is Read Only, so a write should fail.
* Some bits that get toggled are ignored.
*/
- switch (hw->mac_type) {
+
/* there are several bits on newer hardware that are r/w */
- case e1000_82571:
- case e1000_82572:
- case e1000_80003es2lan:
- toggle = 0x7FFFF3FF;
- break;
- case e1000_82573:
- case e1000_ich8lan:
- toggle = 0x7FFFF033;
- break;
- default:
- toggle = 0xFFFFF833;
- break;
- }
+ toggle = 0xFFFFF833;
before = er32(STATUS);
value = (er32(STATUS) & toggle);
@@ -810,12 +762,10 @@ static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
/* restore previous status */
ew32(STATUS, before);
- if (hw->mac_type != e1000_ich8lan) {
- REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
- REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
- REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
- REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
- }
+ REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
+ REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
+ REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
+ REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
@@ -830,8 +780,7 @@ static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
- before = (hw->mac_type == e1000_ich8lan ?
- 0x06C3B33E : 0x06DFB3FE);
+ before = 0x06DFB3FE;
REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
@@ -839,12 +788,10 @@ static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
- if (hw->mac_type != e1000_ich8lan)
- REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
+ REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
- value = (hw->mac_type == e1000_ich8lan ?
- E1000_RAR_ENTRIES_ICH8LAN : E1000_RAR_ENTRIES);
+ value = E1000_RAR_ENTRIES;
for (i = 0; i < value; i++) {
REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
0xFFFFFFFF);
@@ -859,8 +806,7 @@ static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
}
- value = (hw->mac_type == e1000_ich8lan ?
- E1000_MC_TBL_SIZE_ICH8LAN : E1000_MC_TBL_SIZE);
+ value = E1000_MC_TBL_SIZE;
for (i = 0; i < value; i++)
REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
@@ -933,9 +879,6 @@ static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
/* Test each interrupt */
for (; i < 10; i++) {
- if (hw->mac_type == e1000_ich8lan && i == 8)
- continue;
-
/* Interrupt to test */
mask = 1 << i;
@@ -1289,35 +1232,20 @@ static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
/* autoneg off */
e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
- } else if (hw->phy_type == e1000_phy_gg82563)
- e1000_write_phy_reg(hw,
- GG82563_PHY_KMRN_MODE_CTRL,
- 0x1CC);
+ }
ctrl_reg = er32(CTRL);
- if (hw->phy_type == e1000_phy_ife) {
- /* force 100, set loopback */
- e1000_write_phy_reg(hw, PHY_CTRL, 0x6100);
+ /* force 1000, set loopback */
+ e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
- /* Now set up the MAC to the same speed/duplex as the PHY. */
- ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
- ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
- E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
- E1000_CTRL_SPD_100 |/* Force Speed to 100 */
- E1000_CTRL_FD); /* Force Duplex to FULL */
- } else {
- /* force 1000, set loopback */
- e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
-
- /* Now set up the MAC to the same speed/duplex as the PHY. */
- ctrl_reg = er32(CTRL);
- ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
- ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
- E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
- E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
- E1000_CTRL_FD); /* Force Duplex to FULL */
- }
+ /* Now set up the MAC to the same speed/duplex as the PHY. */
+ ctrl_reg = er32(CTRL);
+ ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
+ ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
+ E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
+ E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
+ E1000_CTRL_FD); /* Force Duplex to FULL */
if (hw->media_type == e1000_media_type_copper &&
hw->phy_type == e1000_phy_m88)
@@ -1373,14 +1301,8 @@ static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
case e1000_82541_rev_2:
case e1000_82547:
case e1000_82547_rev_2:
- case e1000_82571:
- case e1000_82572:
- case e1000_82573:
- case e1000_80003es2lan:
- case e1000_ich8lan:
return e1000_integrated_phy_loopback(adapter);
break;
-
default:
/* Default PHY loopback work is to read the MII
* control register and assert bit 14 (loopback mode).
@@ -1409,14 +1331,6 @@ static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
case e1000_82546_rev_3:
return e1000_set_phy_loopback(adapter);
break;
- case e1000_82571:
- case e1000_82572:
-#define E1000_SERDES_LB_ON 0x410
- e1000_set_phy_loopback(adapter);
- ew32(SCTL, E1000_SERDES_LB_ON);
- msleep(10);
- return 0;
- break;
default:
rctl = er32(RCTL);
rctl |= E1000_RCTL_LBM_TCVR;
@@ -1440,26 +1354,12 @@ static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
ew32(RCTL, rctl);
switch (hw->mac_type) {
- case e1000_82571:
- case e1000_82572:
- if (hw->media_type == e1000_media_type_fiber ||
- hw->media_type == e1000_media_type_internal_serdes) {
-#define E1000_SERDES_LB_OFF 0x400
- ew32(SCTL, E1000_SERDES_LB_OFF);
- msleep(10);
- break;
- }
- /* Fall Through */
case e1000_82545:
case e1000_82546:
case e1000_82545_rev_3:
case e1000_82546_rev_3:
default:
hw->autoneg = true;
- if (hw->phy_type == e1000_phy_gg82563)
- e1000_write_phy_reg(hw,
- GG82563_PHY_KMRN_MODE_CTRL,
- 0x180);
e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
if (phy_reg & MII_CR_LOOPBACK) {
phy_reg &= ~MII_CR_LOOPBACK;
@@ -1560,17 +1460,6 @@ static int e1000_run_loopback_test(struct e1000_adapter *adapter)
static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
{
- struct e1000_hw *hw = &adapter->hw;
-
- /* PHY loopback cannot be performed if SoL/IDER
- * sessions are active */
- if (e1000_check_phy_reset_block(hw)) {
- DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
- "when SoL/IDER is active.\n");
- *data = 0;
- goto out;
- }
-
*data = e1000_setup_desc_rings(adapter);
if (*data)
goto out;
@@ -1592,13 +1481,13 @@ static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
*data = 0;
if (hw->media_type == e1000_media_type_internal_serdes) {
int i = 0;
- hw->serdes_link_down = true;
+ hw->serdes_has_link = false;
/* On some blade server designs, link establishment
* could take as long as 2-3 minutes */
do {
e1000_check_for_link(hw);
- if (!hw->serdes_link_down)
+ if (hw->serdes_has_link)
return *data;
msleep(20);
} while (i++ < 3750);
@@ -1716,15 +1605,11 @@ static int e1000_wol_exclusion(struct e1000_adapter *adapter,
case E1000_DEV_ID_82545EM_COPPER:
case E1000_DEV_ID_82546GB_QUAD_COPPER:
case E1000_DEV_ID_82546GB_PCIE:
- case E1000_DEV_ID_82571EB_SERDES_QUAD:
/* these don't support WoL at all */
wol->supported = 0;
break;
case E1000_DEV_ID_82546EB_FIBER:
case E1000_DEV_ID_82546GB_FIBER:
- case E1000_DEV_ID_82571EB_FIBER:
- case E1000_DEV_ID_82571EB_SERDES:
- case E1000_DEV_ID_82571EB_COPPER:
/* Wake events not supported on port B */
if (er32(STATUS) & E1000_STATUS_FUNC_1) {
wol->supported = 0;
@@ -1733,10 +1618,6 @@ static int e1000_wol_exclusion(struct e1000_adapter *adapter,
/* return success for non excluded adapter ports */
retval = 0;
break;
- case E1000_DEV_ID_82571EB_QUAD_COPPER:
- case E1000_DEV_ID_82571EB_QUAD_FIBER:
- case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
- case E1000_DEV_ID_82571PT_QUAD_COPPER:
case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
/* quad port adapters only support WoL on port A */
if (!adapter->quad_port_a) {
@@ -1872,30 +1753,15 @@ static int e1000_phys_id(struct net_device *netdev, u32 data)
if (!data)
data = INT_MAX;
- if (hw->mac_type < e1000_82571) {
- if (!adapter->blink_timer.function) {
- init_timer(&adapter->blink_timer);
- adapter->blink_timer.function = e1000_led_blink_callback;
- adapter->blink_timer.data = (unsigned long)adapter;
- }
- e1000_setup_led(hw);
- mod_timer(&adapter->blink_timer, jiffies);
- msleep_interruptible(data * 1000);
- del_timer_sync(&adapter->blink_timer);
- } else if (hw->phy_type == e1000_phy_ife) {
- if (!adapter->blink_timer.function) {
- init_timer(&adapter->blink_timer);
- adapter->blink_timer.function = e1000_led_blink_callback;
- adapter->blink_timer.data = (unsigned long)adapter;
- }
- mod_timer(&adapter->blink_timer, jiffies);
- msleep_interruptible(data * 1000);
- del_timer_sync(&adapter->blink_timer);
- e1000_write_phy_reg(&(adapter->hw), IFE_PHY_SPECIAL_CONTROL_LED, 0);
- } else {
- e1000_blink_led_start(hw);
- msleep_interruptible(data * 1000);
+ if (!adapter->blink_timer.function) {
+ init_timer(&adapter->blink_timer);
+ adapter->blink_timer.function = e1000_led_blink_callback;
+ adapter->blink_timer.data = (unsigned long)adapter;
}
+ e1000_setup_led(hw);
+ mod_timer(&adapter->blink_timer, jiffies);
+ msleep_interruptible(data * 1000);
+ del_timer_sync(&adapter->blink_timer);
e1000_led_off(hw);
clear_bit(E1000_LED_ON, &adapter->led_status);
diff --git a/drivers/net/e1000/e1000_hw.c b/drivers/net/e1000/e1000_hw.c
index 45ac225a7aa..8d7d87f1282 100644
--- a/drivers/net/e1000/e1000_hw.c
+++ b/drivers/net/e1000/e1000_hw.c
@@ -24,88 +24,34 @@
e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-*******************************************************************************/
+ */
/* e1000_hw.c
* Shared functions for accessing and configuring the MAC
*/
-
#include "e1000_hw.h"
-static s32 e1000_swfw_sync_acquire(struct e1000_hw *hw, u16 mask);
-static void e1000_swfw_sync_release(struct e1000_hw *hw, u16 mask);
-static s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 *data);
-static s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 data);
-static s32 e1000_get_software_semaphore(struct e1000_hw *hw);
-static void e1000_release_software_semaphore(struct e1000_hw *hw);
-
-static u8 e1000_arc_subsystem_valid(struct e1000_hw *hw);
static s32 e1000_check_downshift(struct e1000_hw *hw);
static s32 e1000_check_polarity(struct e1000_hw *hw,
e1000_rev_polarity *polarity);
static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
static void e1000_clear_vfta(struct e1000_hw *hw);
-static s32 e1000_commit_shadow_ram(struct e1000_hw *hw);
static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
bool link_up);
static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
-static s32 e1000_erase_ich8_4k_segment(struct e1000_hw *hw, u32 bank);
static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
u16 *max_length);
-static s32 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
-static s32 e1000_get_software_flag(struct e1000_hw *hw);
-static s32 e1000_ich8_cycle_init(struct e1000_hw *hw);
-static s32 e1000_ich8_flash_cycle(struct e1000_hw *hw, u32 timeout);
static s32 e1000_id_led_init(struct e1000_hw *hw);
-static s32 e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
- u32 cnf_base_addr,
- u32 cnf_size);
-static s32 e1000_init_lcd_from_nvm(struct e1000_hw *hw);
static void e1000_init_rx_addrs(struct e1000_hw *hw);
-static void e1000_initialize_hardware_bits(struct e1000_hw *hw);
-static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw);
-static s32 e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw);
-static s32 e1000_mng_enable_host_if(struct e1000_hw *hw);
-static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
- u16 offset, u8 *sum);
-static s32 e1000_mng_write_cmd_header(struct e1000_hw* hw,
- struct e1000_host_mng_command_header
- *hdr);
-static s32 e1000_mng_write_commit(struct e1000_hw *hw);
-static s32 e1000_phy_ife_get_info(struct e1000_hw *hw,
- struct e1000_phy_info *phy_info);
static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
struct e1000_phy_info *phy_info);
-static s32 e1000_read_eeprom_eerd(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data);
-static s32 e1000_write_eeprom_eewr(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data);
-static s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd);
static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
struct e1000_phy_info *phy_info);
-static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
-static s32 e1000_read_ich8_byte(struct e1000_hw *hw, u32 index, u8 *data);
-static s32 e1000_verify_write_ich8_byte(struct e1000_hw *hw, u32 index,
- u8 byte);
-static s32 e1000_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 byte);
-static s32 e1000_read_ich8_word(struct e1000_hw *hw, u32 index, u16 *data);
-static s32 e1000_read_ich8_data(struct e1000_hw *hw, u32 index, u32 size,
- u16 *data);
-static s32 e1000_write_ich8_data(struct e1000_hw *hw, u32 index, u32 size,
- u16 data);
-static s32 e1000_read_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data);
-static s32 e1000_write_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data);
-static void e1000_release_software_flag(struct e1000_hw *hw);
static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
-static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
-static s32 e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, u32 no_snoop);
-static void e1000_set_pci_express_master_disable(struct e1000_hw *hw);
static s32 e1000_wait_autoneg(struct e1000_hw *hw);
static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
static s32 e1000_set_phy_type(struct e1000_hw *hw);
@@ -117,12 +63,11 @@ static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
-static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data,
- u16 count);
+static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data);
+ u16 words, u16 *data);
static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
u16 words, u16 *data);
static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
@@ -131,7 +76,7 @@ static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
u16 phy_data);
-static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw,u32 reg_addr,
+static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
u16 *phy_data);
static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
@@ -140,188 +85,164 @@ static void e1000_standby_eeprom(struct e1000_hw *hw);
static s32 e1000_set_vco_speed(struct e1000_hw *hw);
static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
static s32 e1000_set_phy_mode(struct e1000_hw *hw);
-static s32 e1000_host_if_read_cookie(struct e1000_hw *hw, u8 *buffer);
-static u8 e1000_calculate_mng_checksum(char *buffer, u32 length);
-static s32 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, u16 duplex);
-static s32 e1000_configure_kmrn_for_1000(struct e1000_hw *hw);
-static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
-static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data);
+static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data);
/* IGP cable length table */
static const
-u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
- { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
- 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
- 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
- 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
- 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
- 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
- 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
- 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
-
-static const
-u16 e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
- { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
- 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
- 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
- 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
- 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
- 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
- 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
- 104, 109, 114, 118, 121, 124};
+u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
+ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+ 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
+ 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
+ 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
+ 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
+ 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
+ 100,
+ 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
+ 110, 110,
+ 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
+ 120, 120
+};
static DEFINE_SPINLOCK(e1000_eeprom_lock);
-/******************************************************************************
- * Set the phy type member in the hw struct.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
+/**
+ * e1000_set_phy_type - Set the phy type member in the hw struct.
+ * @hw: Struct containing variables accessed by shared code
+ */
static s32 e1000_set_phy_type(struct e1000_hw *hw)
{
- DEBUGFUNC("e1000_set_phy_type");
-
- if (hw->mac_type == e1000_undefined)
- return -E1000_ERR_PHY_TYPE;
-
- switch (hw->phy_id) {
- case M88E1000_E_PHY_ID:
- case M88E1000_I_PHY_ID:
- case M88E1011_I_PHY_ID:
- case M88E1111_I_PHY_ID:
- hw->phy_type = e1000_phy_m88;
- break;
- case IGP01E1000_I_PHY_ID:
- if (hw->mac_type == e1000_82541 ||
- hw->mac_type == e1000_82541_rev_2 ||
- hw->mac_type == e1000_82547 ||
- hw->mac_type == e1000_82547_rev_2) {
- hw->phy_type = e1000_phy_igp;
- break;
- }
- case IGP03E1000_E_PHY_ID:
- hw->phy_type = e1000_phy_igp_3;
- break;
- case IFE_E_PHY_ID:
- case IFE_PLUS_E_PHY_ID:
- case IFE_C_E_PHY_ID:
- hw->phy_type = e1000_phy_ife;
- break;
- case GG82563_E_PHY_ID:
- if (hw->mac_type == e1000_80003es2lan) {
- hw->phy_type = e1000_phy_gg82563;
- break;
- }
- /* Fall Through */
- default:
- /* Should never have loaded on this device */
- hw->phy_type = e1000_phy_undefined;
- return -E1000_ERR_PHY_TYPE;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * IGP phy init script - initializes the GbE PHY
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static void e1000_phy_init_script(struct e1000_hw *hw)
-{
- u32 ret_val;
- u16 phy_saved_data;
-
- DEBUGFUNC("e1000_phy_init_script");
-
- if (hw->phy_init_script) {
- msleep(20);
-
- /* Save off the current value of register 0x2F5B to be restored at
- * the end of this routine. */
- ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
-
- /* Disabled the PHY transmitter */
- e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+ DEBUGFUNC("e1000_set_phy_type");
- msleep(20);
+ if (hw->mac_type == e1000_undefined)
+ return -E1000_ERR_PHY_TYPE;
- e1000_write_phy_reg(hw,0x0000,0x0140);
-
- msleep(5);
-
- switch (hw->mac_type) {
- case e1000_82541:
- case e1000_82547:
- e1000_write_phy_reg(hw, 0x1F95, 0x0001);
-
- e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
-
- e1000_write_phy_reg(hw, 0x1F79, 0x0018);
-
- e1000_write_phy_reg(hw, 0x1F30, 0x1600);
-
- e1000_write_phy_reg(hw, 0x1F31, 0x0014);
-
- e1000_write_phy_reg(hw, 0x1F32, 0x161C);
-
- e1000_write_phy_reg(hw, 0x1F94, 0x0003);
-
- e1000_write_phy_reg(hw, 0x1F96, 0x003F);
-
- e1000_write_phy_reg(hw, 0x2010, 0x0008);
- break;
-
- case e1000_82541_rev_2:
- case e1000_82547_rev_2:
- e1000_write_phy_reg(hw, 0x1F73, 0x0099);
- break;
- default:
- break;
- }
-
- e1000_write_phy_reg(hw, 0x0000, 0x3300);
-
- msleep(20);
-
- /* Now enable the transmitter */
- e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
-
- if (hw->mac_type == e1000_82547) {
- u16 fused, fine, coarse;
-
- /* Move to analog registers page */
- e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
-
- if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
- e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
+ switch (hw->phy_id) {
+ case M88E1000_E_PHY_ID:
+ case M88E1000_I_PHY_ID:
+ case M88E1011_I_PHY_ID:
+ case M88E1111_I_PHY_ID:
+ hw->phy_type = e1000_phy_m88;
+ break;
+ case IGP01E1000_I_PHY_ID:
+ if (hw->mac_type == e1000_82541 ||
+ hw->mac_type == e1000_82541_rev_2 ||
+ hw->mac_type == e1000_82547 ||
+ hw->mac_type == e1000_82547_rev_2) {
+ hw->phy_type = e1000_phy_igp;
+ break;
+ }
+ default:
+ /* Should never have loaded on this device */
+ hw->phy_type = e1000_phy_undefined;
+ return -E1000_ERR_PHY_TYPE;
+ }
- fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
- coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
+ return E1000_SUCCESS;
+}
- if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
- coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
- fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
- } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
- fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
+/**
+ * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
+ * @hw: Struct containing variables accessed by shared code
+ */
+static void e1000_phy_init_script(struct e1000_hw *hw)
+{
+ u32 ret_val;
+ u16 phy_saved_data;
+
+ DEBUGFUNC("e1000_phy_init_script");
+
+ if (hw->phy_init_script) {
+ msleep(20);
+
+ /* Save off the current value of register 0x2F5B to be restored at
+ * the end of this routine. */
+ ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+ /* Disabled the PHY transmitter */
+ e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+ msleep(20);
+
+ e1000_write_phy_reg(hw, 0x0000, 0x0140);
+ msleep(5);
+
+ switch (hw->mac_type) {
+ case e1000_82541:
+ case e1000_82547:
+ e1000_write_phy_reg(hw, 0x1F95, 0x0001);
+ e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
+ e1000_write_phy_reg(hw, 0x1F79, 0x0018);
+ e1000_write_phy_reg(hw, 0x1F30, 0x1600);
+ e1000_write_phy_reg(hw, 0x1F31, 0x0014);
+ e1000_write_phy_reg(hw, 0x1F32, 0x161C);
+ e1000_write_phy_reg(hw, 0x1F94, 0x0003);
+ e1000_write_phy_reg(hw, 0x1F96, 0x003F);
+ e1000_write_phy_reg(hw, 0x2010, 0x0008);
+ break;
- fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
- (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
- (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
+ case e1000_82541_rev_2:
+ case e1000_82547_rev_2:
+ e1000_write_phy_reg(hw, 0x1F73, 0x0099);
+ break;
+ default:
+ break;
+ }
- e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
- e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
- IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
- }
- }
- }
+ e1000_write_phy_reg(hw, 0x0000, 0x3300);
+ msleep(20);
+
+ /* Now enable the transmitter */
+ e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+ if (hw->mac_type == e1000_82547) {
+ u16 fused, fine, coarse;
+
+ /* Move to analog registers page */
+ e1000_read_phy_reg(hw,
+ IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
+ &fused);
+
+ if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
+ e1000_read_phy_reg(hw,
+ IGP01E1000_ANALOG_FUSE_STATUS,
+ &fused);
+
+ fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
+ coarse =
+ fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
+
+ if (coarse >
+ IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
+ coarse -=
+ IGP01E1000_ANALOG_FUSE_COARSE_10;
+ fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
+ } else if (coarse ==
+ IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
+ fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
+
+ fused =
+ (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
+ (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
+ (coarse &
+ IGP01E1000_ANALOG_FUSE_COARSE_MASK);
+
+ e1000_write_phy_reg(hw,
+ IGP01E1000_ANALOG_FUSE_CONTROL,
+ fused);
+ e1000_write_phy_reg(hw,
+ IGP01E1000_ANALOG_FUSE_BYPASS,
+ IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
+ }
+ }
+ }
}
-/******************************************************************************
- * Set the mac type member in the hw struct.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
+/**
+ * e1000_set_mac_type - Set the mac type member in the hw struct.
+ * @hw: Struct containing variables accessed by shared code
+ */
s32 e1000_set_mac_type(struct e1000_hw *hw)
{
DEBUGFUNC("e1000_set_mac_type");
@@ -397,61 +318,12 @@ s32 e1000_set_mac_type(struct e1000_hw *hw)
case E1000_DEV_ID_82547GI:
hw->mac_type = e1000_82547_rev_2;
break;
- case E1000_DEV_ID_82571EB_COPPER:
- case E1000_DEV_ID_82571EB_FIBER:
- case E1000_DEV_ID_82571EB_SERDES:
- case E1000_DEV_ID_82571EB_SERDES_DUAL:
- case E1000_DEV_ID_82571EB_SERDES_QUAD:
- case E1000_DEV_ID_82571EB_QUAD_COPPER:
- case E1000_DEV_ID_82571PT_QUAD_COPPER:
- case E1000_DEV_ID_82571EB_QUAD_FIBER:
- case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
- hw->mac_type = e1000_82571;
- break;
- case E1000_DEV_ID_82572EI_COPPER:
- case E1000_DEV_ID_82572EI_FIBER:
- case E1000_DEV_ID_82572EI_SERDES:
- case E1000_DEV_ID_82572EI:
- hw->mac_type = e1000_82572;
- break;
- case E1000_DEV_ID_82573E:
- case E1000_DEV_ID_82573E_IAMT:
- case E1000_DEV_ID_82573L:
- hw->mac_type = e1000_82573;
- break;
- case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
- case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
- case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
- case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
- hw->mac_type = e1000_80003es2lan;
- break;
- case E1000_DEV_ID_ICH8_IGP_M_AMT:
- case E1000_DEV_ID_ICH8_IGP_AMT:
- case E1000_DEV_ID_ICH8_IGP_C:
- case E1000_DEV_ID_ICH8_IFE:
- case E1000_DEV_ID_ICH8_IFE_GT:
- case E1000_DEV_ID_ICH8_IFE_G:
- case E1000_DEV_ID_ICH8_IGP_M:
- hw->mac_type = e1000_ich8lan;
- break;
default:
/* Should never have loaded on this device */
return -E1000_ERR_MAC_TYPE;
}
switch (hw->mac_type) {
- case e1000_ich8lan:
- hw->swfwhw_semaphore_present = true;
- hw->asf_firmware_present = true;
- break;
- case e1000_80003es2lan:
- hw->swfw_sync_present = true;
- /* fall through */
- case e1000_82571:
- case e1000_82572:
- case e1000_82573:
- hw->eeprom_semaphore_present = true;
- /* fall through */
case e1000_82541:
case e1000_82547:
case e1000_82541_rev_2:
@@ -468,6058 +340,4500 @@ s32 e1000_set_mac_type(struct e1000_hw *hw)
if (hw->mac_type == e1000_82543)
hw->bad_tx_carr_stats_fd = true;
- /* capable of receiving management packets to the host */
- if (hw->mac_type >= e1000_82571)
- hw->has_manc2h = true;
-
- /* In rare occasions, ESB2 systems would end up started without
- * the RX unit being turned on.
- */
- if (hw->mac_type == e1000_80003es2lan)
- hw->rx_needs_kicking = true;
-
if (hw->mac_type > e1000_82544)
hw->has_smbus = true;
return E1000_SUCCESS;
}
-/*****************************************************************************
- * Set media type and TBI compatibility.
- *
- * hw - Struct containing variables accessed by shared code
- * **************************************************************************/
+/**
+ * e1000_set_media_type - Set media type and TBI compatibility.
+ * @hw: Struct containing variables accessed by shared code
+ */
void e1000_set_media_type(struct e1000_hw *hw)
{
- u32 status;
-
- DEBUGFUNC("e1000_set_media_type");
-
- if (hw->mac_type != e1000_82543) {
- /* tbi_compatibility is only valid on 82543 */
- hw->tbi_compatibility_en = false;
- }
-
- switch (hw->device_id) {
- case E1000_DEV_ID_82545GM_SERDES:
- case E1000_DEV_ID_82546GB_SERDES:
- case E1000_DEV_ID_82571EB_SERDES:
- case E1000_DEV_ID_82571EB_SERDES_DUAL:
- case E1000_DEV_ID_82571EB_SERDES_QUAD:
- case E1000_DEV_ID_82572EI_SERDES:
- case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
- hw->media_type = e1000_media_type_internal_serdes;
- break;
- default:
- switch (hw->mac_type) {
- case e1000_82542_rev2_0:
- case e1000_82542_rev2_1:
- hw->media_type = e1000_media_type_fiber;
- break;
- case e1000_ich8lan:
- case e1000_82573:
- /* The STATUS_TBIMODE bit is reserved or reused for the this
- * device.
- */
- hw->media_type = e1000_media_type_copper;
- break;
- default:
- status = er32(STATUS);
- if (status & E1000_STATUS_TBIMODE) {
- hw->media_type = e1000_media_type_fiber;
- /* tbi_compatibility not valid on fiber */
- hw->tbi_compatibility_en = false;
- } else {
- hw->media_type = e1000_media_type_copper;
- }
- break;
- }
- }
+ u32 status;
+
+ DEBUGFUNC("e1000_set_media_type");
+
+ if (hw->mac_type != e1000_82543) {
+ /* tbi_compatibility is only valid on 82543 */
+ hw->tbi_compatibility_en = false;
+ }
+
+ switch (hw->device_id) {
+ case E1000_DEV_ID_82545GM_SERDES:
+ case E1000_DEV_ID_82546GB_SERDES:
+ hw->media_type = e1000_media_type_internal_serdes;
+ break;
+ default:
+ switch (hw->mac_type) {
+ case e1000_82542_rev2_0:
+ case e1000_82542_rev2_1:
+ hw->media_type = e1000_media_type_fiber;
+ break;
+ default:
+ status = er32(STATUS);
+ if (status & E1000_STATUS_TBIMODE) {
+ hw->media_type = e1000_media_type_fiber;
+ /* tbi_compatibility not valid on fiber */
+ hw->tbi_compatibility_en = false;
+ } else {
+ hw->media_type = e1000_media_type_copper;
+ }
+ break;
+ }
+ }
}
-/******************************************************************************
- * Reset the transmit and receive units; mask and clear all interrupts.
+/**
+ * e1000_reset_hw: reset the hardware completely
+ * @hw: Struct containing variables accessed by shared code
*
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
+ * Reset the transmit and receive units; mask and clear all interrupts.
+ */
s32 e1000_reset_hw(struct e1000_hw *hw)
{
- u32 ctrl;
- u32 ctrl_ext;
- u32 icr;
- u32 manc;
- u32 led_ctrl;
- u32 timeout;
- u32 extcnf_ctrl;
- s32 ret_val;
-
- DEBUGFUNC("e1000_reset_hw");
-
- /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
- if (hw->mac_type == e1000_82542_rev2_0) {
- DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
- e1000_pci_clear_mwi(hw);
- }
-
- if (hw->bus_type == e1000_bus_type_pci_express) {
- /* Prevent the PCI-E bus from sticking if there is no TLP connection
- * on the last TLP read/write transaction when MAC is reset.
- */
- if (e1000_disable_pciex_master(hw) != E1000_SUCCESS) {
- DEBUGOUT("PCI-E Master disable polling has failed.\n");
- }
- }
-
- /* Clear interrupt mask to stop board from generating interrupts */
- DEBUGOUT("Masking off all interrupts\n");
- ew32(IMC, 0xffffffff);
-
- /* Disable the Transmit and Receive units. Then delay to allow
- * any pending transactions to complete before we hit the MAC with
- * the global reset.
- */
- ew32(RCTL, 0);
- ew32(TCTL, E1000_TCTL_PSP);
- E1000_WRITE_FLUSH();
-
- /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
- hw->tbi_compatibility_on = false;
-
- /* Delay to allow any outstanding PCI transactions to complete before
- * resetting the device
- */
- msleep(10);
-
- ctrl = er32(CTRL);
-
- /* Must reset the PHY before resetting the MAC */
- if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
- ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
- msleep(5);
- }
-
- /* Must acquire the MDIO ownership before MAC reset.
- * Ownership defaults to firmware after a reset. */
- if (hw->mac_type == e1000_82573) {
- timeout = 10;
-
- extcnf_ctrl = er32(EXTCNF_CTRL);
- extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
-
- do {
- ew32(EXTCNF_CTRL, extcnf_ctrl);
- extcnf_ctrl = er32(EXTCNF_CTRL);
-
- if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
- break;
- else
- extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
-
- msleep(2);
- timeout--;
- } while (timeout);
- }
-
- /* Workaround for ICH8 bit corruption issue in FIFO memory */
- if (hw->mac_type == e1000_ich8lan) {
- /* Set Tx and Rx buffer allocation to 8k apiece. */
- ew32(PBA, E1000_PBA_8K);
- /* Set Packet Buffer Size to 16k. */
- ew32(PBS, E1000_PBS_16K);
- }
-
- /* Issue a global reset to the MAC. This will reset the chip's
- * transmit, receive, DMA, and link units. It will not effect
- * the current PCI configuration. The global reset bit is self-
- * clearing, and should clear within a microsecond.
- */
- DEBUGOUT("Issuing a global reset to MAC\n");
-
- switch (hw->mac_type) {
- case e1000_82544:
- case e1000_82540:
- case e1000_82545:
- case e1000_82546:
- case e1000_82541:
- case e1000_82541_rev_2:
- /* These controllers can't ack the 64-bit write when issuing the
- * reset, so use IO-mapping as a workaround to issue the reset */
- E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
- break;
- case e1000_82545_rev_3:
- case e1000_82546_rev_3:
- /* Reset is performed on a shadow of the control register */
- ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
- break;
- case e1000_ich8lan:
- if (!hw->phy_reset_disable &&
- e1000_check_phy_reset_block(hw) == E1000_SUCCESS) {
- /* e1000_ich8lan PHY HW reset requires MAC CORE reset
- * at the same time to make sure the interface between
- * MAC and the external PHY is reset.
- */
- ctrl |= E1000_CTRL_PHY_RST;
- }
-
- e1000_get_software_flag(hw);
- ew32(CTRL, (ctrl | E1000_CTRL_RST));
- msleep(5);
- break;
- default:
- ew32(CTRL, (ctrl | E1000_CTRL_RST));
- break;
- }
-
- /* After MAC reset, force reload of EEPROM to restore power-on settings to
- * device. Later controllers reload the EEPROM automatically, so just wait
- * for reload to complete.
- */
- switch (hw->mac_type) {
- case e1000_82542_rev2_0:
- case e1000_82542_rev2_1:
- case e1000_82543:
- case e1000_82544:
- /* Wait for reset to complete */
- udelay(10);
- ctrl_ext = er32(CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_EE_RST;
- ew32(CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH();
- /* Wait for EEPROM reload */
- msleep(2);
- break;
- case e1000_82541:
- case e1000_82541_rev_2:
- case e1000_82547:
- case e1000_82547_rev_2:
- /* Wait for EEPROM reload */
- msleep(20);
- break;
- case e1000_82573:
- if (!e1000_is_onboard_nvm_eeprom(hw)) {
- udelay(10);
- ctrl_ext = er32(CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_EE_RST;
- ew32(CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH();
- }
- /* fall through */
- default:
- /* Auto read done will delay 5ms or poll based on mac type */
- ret_val = e1000_get_auto_rd_done(hw);
- if (ret_val)
- return ret_val;
- break;
- }
-
- /* Disable HW ARPs on ASF enabled adapters */
- if (hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) {
- manc = er32(MANC);
- manc &= ~(E1000_MANC_ARP_EN);
- ew32(MANC, manc);
- }
-
- if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
- e1000_phy_init_script(hw);
-
- /* Configure activity LED after PHY reset */
- led_ctrl = er32(LEDCTL);
- led_ctrl &= IGP_ACTIVITY_LED_MASK;
- led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
- ew32(LEDCTL, led_ctrl);
- }
-
- /* Clear interrupt mask to stop board from generating interrupts */
- DEBUGOUT("Masking off all interrupts\n");
- ew32(IMC, 0xffffffff);
-
- /* Clear any pending interrupt events. */
- icr = er32(ICR);
-
- /* If MWI was previously enabled, reenable it. */
- if (hw->mac_type == e1000_82542_rev2_0) {
- if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
- e1000_pci_set_mwi(hw);
- }
-
- if (hw->mac_type == e1000_ich8lan) {
- u32 kab = er32(KABGTXD);
- kab |= E1000_KABGTXD_BGSQLBIAS;
- ew32(KABGTXD, kab);
- }
-
- return E1000_SUCCESS;
-}
+ u32 ctrl;
+ u32 ctrl_ext;
+ u32 icr;
+ u32 manc;
+ u32 led_ctrl;
+ s32 ret_val;
-/******************************************************************************
- *
- * Initialize a number of hardware-dependent bits
- *
- * hw: Struct containing variables accessed by shared code
- *
- * This function contains hardware limitation workarounds for PCI-E adapters
- *
- *****************************************************************************/
-static void e1000_initialize_hardware_bits(struct e1000_hw *hw)
-{
- if ((hw->mac_type >= e1000_82571) && (!hw->initialize_hw_bits_disable)) {
- /* Settings common to all PCI-express silicon */
- u32 reg_ctrl, reg_ctrl_ext;
- u32 reg_tarc0, reg_tarc1;
- u32 reg_tctl;
- u32 reg_txdctl, reg_txdctl1;
-
- /* link autonegotiation/sync workarounds */
- reg_tarc0 = er32(TARC0);
- reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
-
- /* Enable not-done TX descriptor counting */
- reg_txdctl = er32(TXDCTL);
- reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
- ew32(TXDCTL, reg_txdctl);
- reg_txdctl1 = er32(TXDCTL1);
- reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
- ew32(TXDCTL1, reg_txdctl1);
-
- switch (hw->mac_type) {
- case e1000_82571:
- case e1000_82572:
- /* Clear PHY TX compatible mode bits */
- reg_tarc1 = er32(TARC1);
- reg_tarc1 &= ~((1 << 30)|(1 << 29));
-
- /* link autonegotiation/sync workarounds */
- reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
-
- /* TX ring control fixes */
- reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
-
- /* Multiple read bit is reversed polarity */
- reg_tctl = er32(TCTL);
- if (reg_tctl & E1000_TCTL_MULR)
- reg_tarc1 &= ~(1 << 28);
- else
- reg_tarc1 |= (1 << 28);
-
- ew32(TARC1, reg_tarc1);
- break;
- case e1000_82573:
- reg_ctrl_ext = er32(CTRL_EXT);
- reg_ctrl_ext &= ~(1 << 23);
- reg_ctrl_ext |= (1 << 22);
-
- /* TX byte count fix */
- reg_ctrl = er32(CTRL);
- reg_ctrl &= ~(1 << 29);
-
- ew32(CTRL_EXT, reg_ctrl_ext);
- ew32(CTRL, reg_ctrl);
- break;
- case e1000_80003es2lan:
- /* improve small packet performace for fiber/serdes */
- if ((hw->media_type == e1000_media_type_fiber) ||
- (hw->media_type == e1000_media_type_internal_serdes)) {
- reg_tarc0 &= ~(1 << 20);
- }
-
- /* Multiple read bit is reversed polarity */
- reg_tctl = er32(TCTL);
- reg_tarc1 = er32(TARC1);
- if (reg_tctl & E1000_TCTL_MULR)
- reg_tarc1 &= ~(1 << 28);
- else
- reg_tarc1 |= (1 << 28);
-
- ew32(TARC1, reg_tarc1);
- break;
- case e1000_ich8lan:
- /* Reduce concurrent DMA requests to 3 from 4 */
- if ((hw->revision_id < 3) ||
- ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
- (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
- reg_tarc0 |= ((1 << 29)|(1 << 28));
-
- reg_ctrl_ext = er32(CTRL_EXT);
- reg_ctrl_ext |= (1 << 22);
- ew32(CTRL_EXT, reg_ctrl_ext);
-
- /* workaround TX hang with TSO=on */
- reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
-
- /* Multiple read bit is reversed polarity */
- reg_tctl = er32(TCTL);
- reg_tarc1 = er32(TARC1);
- if (reg_tctl & E1000_TCTL_MULR)
- reg_tarc1 &= ~(1 << 28);
- else
- reg_tarc1 |= (1 << 28);
-
- /* workaround TX hang with TSO=on */
- reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
-
- ew32(TARC1, reg_tarc1);
- break;
- default:
- break;
- }
-
- ew32(TARC0, reg_tarc0);
- }
+ DEBUGFUNC("e1000_reset_hw");
+
+ /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
+ if (hw->mac_type == e1000_82542_rev2_0) {
+ DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
+ e1000_pci_clear_mwi(hw);
+ }
+
+ /* Clear interrupt mask to stop board from generating interrupts */
+ DEBUGOUT("Masking off all interrupts\n");
+ ew32(IMC, 0xffffffff);
+
+ /* Disable the Transmit and Receive units. Then delay to allow
+ * any pending transactions to complete before we hit the MAC with
+ * the global reset.
+ */
+ ew32(RCTL, 0);
+ ew32(TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH();
+
+ /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
+ hw->tbi_compatibility_on = false;
+
+ /* Delay to allow any outstanding PCI transactions to complete before
+ * resetting the device
+ */
+ msleep(10);
+
+ ctrl = er32(CTRL);
+
+ /* Must reset the PHY before resetting the MAC */
+ if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+ ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
+ msleep(5);
+ }
+
+ /* Issue a global reset to the MAC. This will reset the chip's
+ * transmit, receive, DMA, and link units. It will not effect
+ * the current PCI configuration. The global reset bit is self-
+ * clearing, and should clear within a microsecond.
+ */
+ DEBUGOUT("Issuing a global reset to MAC\n");
+
+ switch (hw->mac_type) {
+ case e1000_82544:
+ case e1000_82540:
+ case e1000_82545:
+ case e1000_82546:
+ case e1000_82541:
+ case e1000_82541_rev_2:
+ /* These controllers can't ack the 64-bit write when issuing the
+ * reset, so use IO-mapping as a workaround to issue the reset */
+ E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
+ break;
+ case e1000_82545_rev_3:
+ case e1000_82546_rev_3:
+ /* Reset is performed on a shadow of the control register */
+ ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
+ break;
+ default:
+ ew32(CTRL, (ctrl | E1000_CTRL_RST));
+ break;
+ }
+
+ /* After MAC reset, force reload of EEPROM to restore power-on settings to
+ * device. Later controllers reload the EEPROM automatically, so just wait
+ * for reload to complete.
+ */
+ switch (hw->mac_type) {
+ case e1000_82542_rev2_0:
+ case e1000_82542_rev2_1:
+ case e1000_82543:
+ case e1000_82544:
+ /* Wait for reset to complete */
+ udelay(10);
+ ctrl_ext = er32(CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+ ew32(CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH();
+ /* Wait for EEPROM reload */
+ msleep(2);
+ break;
+ case e1000_82541:
+ case e1000_82541_rev_2:
+ case e1000_82547:
+ case e1000_82547_rev_2:
+ /* Wait for EEPROM reload */
+ msleep(20);
+ break;
+ default:
+ /* Auto read done will delay 5ms or poll based on mac type */
+ ret_val = e1000_get_auto_rd_done(hw);
+ if (ret_val)
+ return ret_val;
+ break;
+ }
+
+ /* Disable HW ARPs on ASF enabled adapters */
+ if (hw->mac_type >= e1000_82540) {
+ manc = er32(MANC);
+ manc &= ~(E1000_MANC_ARP_EN);
+ ew32(MANC, manc);
+ }
+
+ if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+ e1000_phy_init_script(hw);
+
+ /* Configure activity LED after PHY reset */
+ led_ctrl = er32(LEDCTL);
+ led_ctrl &= IGP_ACTIVITY_LED_MASK;
+ led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+ ew32(LEDCTL, led_ctrl);
+ }
+
+ /* Clear interrupt mask to stop board from generating interrupts */
+ DEBUGOUT("Masking off all interrupts\n");
+ ew32(IMC, 0xffffffff);
+
+ /* Clear any pending interrupt events. */
+ icr = er32(ICR);
+
+ /* If MWI was previously enabled, reenable it. */
+ if (hw->mac_type == e1000_82542_rev2_0) {
+ if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
+ e1000_pci_set_mwi(hw);
+ }
+
+ return E1000_SUCCESS;
}
-/******************************************************************************
- * Performs basic configuration of the adapter.
- *
- * hw - Struct containing variables accessed by shared code
+/**
+ * e1000_init_hw: Performs basic configuration of the adapter.
+ * @hw: Struct containing variables accessed by shared code
*
* Assumes that the controller has previously been reset and is in a
* post-reset uninitialized state. Initializes the receive address registers,
* multicast table, and VLAN filter table. Calls routines to setup link
* configuration and flow control settings. Clears all on-chip counters. Leaves
* the transmit and receive units disabled and uninitialized.
- *****************************************************************************/
+ */
s32 e1000_init_hw(struct e1000_hw *hw)
{
- u32 ctrl;
- u32 i;
- s32 ret_val;
- u32 mta_size;
- u32 reg_data;
- u32 ctrl_ext;
-
- DEBUGFUNC("e1000_init_hw");
-
- /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
- if ((hw->mac_type == e1000_ich8lan) &&
- ((hw->revision_id < 3) ||
- ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
- (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
- reg_data = er32(STATUS);
- reg_data &= ~0x80000000;
- ew32(STATUS, reg_data);
- }
-
- /* Initialize Identification LED */
- ret_val = e1000_id_led_init(hw);
- if (ret_val) {
- DEBUGOUT("Error Initializing Identification LED\n");
- return ret_val;
- }
-
- /* Set the media type and TBI compatibility */
- e1000_set_media_type(hw);
-
- /* Must be called after e1000_set_media_type because media_type is used */
- e1000_initialize_hardware_bits(hw);
-
- /* Disabling VLAN filtering. */
- DEBUGOUT("Initializing the IEEE VLAN\n");
- /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
- if (hw->mac_type != e1000_ich8lan) {
- if (hw->mac_type < e1000_82545_rev_3)
- ew32(VET, 0);
- e1000_clear_vfta(hw);
- }
-
- /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
- if (hw->mac_type == e1000_82542_rev2_0) {
- DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
- e1000_pci_clear_mwi(hw);
- ew32(RCTL, E1000_RCTL_RST);
- E1000_WRITE_FLUSH();
- msleep(5);
- }
-
- /* Setup the receive address. This involves initializing all of the Receive
- * Address Registers (RARs 0 - 15).
- */
- e1000_init_rx_addrs(hw);
-
- /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
- if (hw->mac_type == e1000_82542_rev2_0) {
- ew32(RCTL, 0);
- E1000_WRITE_FLUSH();
- msleep(1);
- if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
- e1000_pci_set_mwi(hw);
- }
-
- /* Zero out the Multicast HASH table */
- DEBUGOUT("Zeroing the MTA\n");
- mta_size = E1000_MC_TBL_SIZE;
- if (hw->mac_type == e1000_ich8lan)
- mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
- for (i = 0; i < mta_size; i++) {
- E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
- /* use write flush to prevent Memory Write Block (MWB) from
- * occuring when accessing our register space */
- E1000_WRITE_FLUSH();
- }
-
- /* Set the PCI priority bit correctly in the CTRL register. This
- * determines if the adapter gives priority to receives, or if it
- * gives equal priority to transmits and receives. Valid only on
- * 82542 and 82543 silicon.
- */
- if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
- ctrl = er32(CTRL);
- ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
- }
-
- switch (hw->mac_type) {
- case e1000_82545_rev_3:
- case e1000_82546_rev_3:
- break;
- default:
- /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
- if (hw->bus_type == e1000_bus_type_pcix && e1000_pcix_get_mmrbc(hw) > 2048)
- e1000_pcix_set_mmrbc(hw, 2048);
- break;
- }
-
- /* More time needed for PHY to initialize */
- if (hw->mac_type == e1000_ich8lan)
- msleep(15);
-
- /* Call a subroutine to configure the link and setup flow control. */
- ret_val = e1000_setup_link(hw);
-
- /* Set the transmit descriptor write-back policy */
- if (hw->mac_type > e1000_82544) {
- ctrl = er32(TXDCTL);
- ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
- ew32(TXDCTL, ctrl);
- }
-
- if (hw->mac_type == e1000_82573) {
- e1000_enable_tx_pkt_filtering(hw);
- }
-
- switch (hw->mac_type) {
- default:
- break;
- case e1000_80003es2lan:
- /* Enable retransmit on late collisions */
- reg_data = er32(TCTL);
- reg_data |= E1000_TCTL_RTLC;
- ew32(TCTL, reg_data);
-
- /* Configure Gigabit Carry Extend Padding */
- reg_data = er32(TCTL_EXT);
- reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
- reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
- ew32(TCTL_EXT, reg_data);
-
- /* Configure Transmit Inter-Packet Gap */
- reg_data = er32(TIPG);
- reg_data &= ~E1000_TIPG_IPGT_MASK;
- reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
- ew32(TIPG, reg_data);
-
- reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
- reg_data &= ~0x00100000;
- E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
- /* Fall through */
- case e1000_82571:
- case e1000_82572:
- case e1000_ich8lan:
- ctrl = er32(TXDCTL1);
- ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
- ew32(TXDCTL1, ctrl);
- break;
- }
-
-
- if (hw->mac_type == e1000_82573) {
- u32 gcr = er32(GCR);
- gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
- ew32(GCR, gcr);
- }
-
- /* Clear all of the statistics registers (clear on read). It is
- * important that we do this after we have tried to establish link
- * because the symbol error count will increment wildly if there
- * is no link.
- */
- e1000_clear_hw_cntrs(hw);
-
- /* ICH8 No-snoop bits are opposite polarity.
- * Set to snoop by default after reset. */
- if (hw->mac_type == e1000_ich8lan)
- e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
-
- if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
- hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
- ctrl_ext = er32(CTRL_EXT);
- /* Relaxed ordering must be disabled to avoid a parity
- * error crash in a PCI slot. */
- ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
- ew32(CTRL_EXT, ctrl_ext);
- }
-
- return ret_val;
+ u32 ctrl;
+ u32 i;
+ s32 ret_val;
+ u32 mta_size;
+ u32 ctrl_ext;
+
+ DEBUGFUNC("e1000_init_hw");
+
+ /* Initialize Identification LED */
+ ret_val = e1000_id_led_init(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Initializing Identification LED\n");
+ return ret_val;
+ }
+
+ /* Set the media type and TBI compatibility */
+ e1000_set_media_type(hw);
+
+ /* Disabling VLAN filtering. */
+ DEBUGOUT("Initializing the IEEE VLAN\n");
+ if (hw->mac_type < e1000_82545_rev_3)
+ ew32(VET, 0);
+ e1000_clear_vfta(hw);
+
+ /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
+ if (hw->mac_type == e1000_82542_rev2_0) {
+ DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
+ e1000_pci_clear_mwi(hw);
+ ew32(RCTL, E1000_RCTL_RST);
+ E1000_WRITE_FLUSH();
+ msleep(5);
+ }
+
+ /* Setup the receive address. This involves initializing all of the Receive
+ * Address Registers (RARs 0 - 15).
+ */
+ e1000_init_rx_addrs(hw);
+
+ /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
+ if (hw->mac_type == e1000_82542_rev2_0) {
+ ew32(RCTL, 0);
+ E1000_WRITE_FLUSH();
+ msleep(1);
+ if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
+ e1000_pci_set_mwi(hw);
+ }
+
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ mta_size = E1000_MC_TBL_SIZE;
+ for (i = 0; i < mta_size; i++) {
+ E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
+ /* use write flush to prevent Memory Write Block (MWB) from
+ * occurring when accessing our register space */
+ E1000_WRITE_FLUSH();
+ }
+
+ /* Set the PCI priority bit correctly in the CTRL register. This
+ * determines if the adapter gives priority to receives, or if it
+ * gives equal priority to transmits and receives. Valid only on
+ * 82542 and 82543 silicon.
+ */
+ if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
+ ctrl = er32(CTRL);
+ ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
+ }
+
+ switch (hw->mac_type) {
+ case e1000_82545_rev_3:
+ case e1000_82546_rev_3:
+ break;
+ default:
+ /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
+ if (hw->bus_type == e1000_bus_type_pcix
+ && e1000_pcix_get_mmrbc(hw) > 2048)
+ e1000_pcix_set_mmrbc(hw, 2048);
+ break;
+ }
+
+ /* Call a subroutine to configure the link and setup flow control. */
+ ret_val = e1000_setup_link(hw);
+
+ /* Set the transmit descriptor write-back policy */
+ if (hw->mac_type > e1000_82544) {
+ ctrl = er32(TXDCTL);
+ ctrl =
+ (ctrl & ~E1000_TXDCTL_WTHRESH) |
+ E1000_TXDCTL_FULL_TX_DESC_WB;
+ ew32(TXDCTL, ctrl);
+ }
+
+ /* Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ e1000_clear_hw_cntrs(hw);
+
+ if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
+ hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
+ ctrl_ext = er32(CTRL_EXT);
+ /* Relaxed ordering must be disabled to avoid a parity
+ * error crash in a PCI slot. */
+ ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+ ew32(CTRL_EXT, ctrl_ext);
+ }
+
+ return ret_val;
}
-/******************************************************************************
- * Adjust SERDES output amplitude based on EEPROM setting.
- *
- * hw - Struct containing variables accessed by shared code.
- *****************************************************************************/
+/**
+ * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
+ * @hw: Struct containing variables accessed by shared code.
+ */
static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
{
- u16 eeprom_data;
- s32 ret_val;
-
- DEBUGFUNC("e1000_adjust_serdes_amplitude");
-
- if (hw->media_type != e1000_media_type_internal_serdes)
- return E1000_SUCCESS;
-
- switch (hw->mac_type) {
- case e1000_82545_rev_3:
- case e1000_82546_rev_3:
- break;
- default:
- return E1000_SUCCESS;
- }
-
- ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
- if (ret_val) {
- return ret_val;
- }
-
- if (eeprom_data != EEPROM_RESERVED_WORD) {
- /* Adjust SERDES output amplitude only. */
- eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
- if (ret_val)
- return ret_val;
- }
-
- return E1000_SUCCESS;
+ u16 eeprom_data;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_adjust_serdes_amplitude");
+
+ if (hw->media_type != e1000_media_type_internal_serdes)
+ return E1000_SUCCESS;
+
+ switch (hw->mac_type) {
+ case e1000_82545_rev_3:
+ case e1000_82546_rev_3:
+ break;
+ default:
+ return E1000_SUCCESS;
+ }
+
+ ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
+ &eeprom_data);
+ if (ret_val) {
+ return ret_val;
+ }
+
+ if (eeprom_data != EEPROM_RESERVED_WORD) {
+ /* Adjust SERDES output amplitude only. */
+ eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
+ ret_val =
+ e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
+ if (ret_val)
+ return ret_val;
+ }
+
+ return E1000_SUCCESS;
}
-/******************************************************************************
- * Configures flow control and link settings.
- *
- * hw - Struct containing variables accessed by shared code
+/**
+ * e1000_setup_link - Configures flow control and link settings.
+ * @hw: Struct containing variables accessed by shared code
*
- * Determines which flow control settings to use. Calls the apropriate media-
+ * Determines which flow control settings to use. Calls the appropriate media-
* specific link configuration function. Configures the flow control settings.
* Assuming the adapter has a valid link partner, a valid link should be
* established. Assumes the hardware has previously been reset and the
* transmitter and receiver are not enabled.
- *****************************************************************************/
+ */
s32 e1000_setup_link(struct e1000_hw *hw)
{
- u32 ctrl_ext;
- s32 ret_val;
- u16 eeprom_data;
-
- DEBUGFUNC("e1000_setup_link");
-
- /* In the case of the phy reset being blocked, we already have a link.
- * We do not have to set it up again. */
- if (e1000_check_phy_reset_block(hw))
- return E1000_SUCCESS;
-
- /* Read and store word 0x0F of the EEPROM. This word contains bits
- * that determine the hardware's default PAUSE (flow control) mode,
- * a bit that determines whether the HW defaults to enabling or
- * disabling auto-negotiation, and the direction of the
- * SW defined pins. If there is no SW over-ride of the flow
- * control setting, then the variable hw->fc will
- * be initialized based on a value in the EEPROM.
- */
- if (hw->fc == E1000_FC_DEFAULT) {
- switch (hw->mac_type) {
- case e1000_ich8lan:
- case e1000_82573:
- hw->fc = E1000_FC_FULL;
- break;
- default:
- ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
- 1, &eeprom_data);
- if (ret_val) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
- hw->fc = E1000_FC_NONE;
- else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
- EEPROM_WORD0F_ASM_DIR)
- hw->fc = E1000_FC_TX_PAUSE;
- else
- hw->fc = E1000_FC_FULL;
- break;
- }
- }
-
- /* We want to save off the original Flow Control configuration just
- * in case we get disconnected and then reconnected into a different
- * hub or switch with different Flow Control capabilities.
- */
- if (hw->mac_type == e1000_82542_rev2_0)
- hw->fc &= (~E1000_FC_TX_PAUSE);
-
- if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
- hw->fc &= (~E1000_FC_RX_PAUSE);
-
- hw->original_fc = hw->fc;
-
- DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
-
- /* Take the 4 bits from EEPROM word 0x0F that determine the initial
- * polarity value for the SW controlled pins, and setup the
- * Extended Device Control reg with that info.
- * This is needed because one of the SW controlled pins is used for
- * signal detection. So this should be done before e1000_setup_pcs_link()
- * or e1000_phy_setup() is called.
- */
- if (hw->mac_type == e1000_82543) {
- ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
- 1, &eeprom_data);
- if (ret_val) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
- SWDPIO__EXT_SHIFT);
- ew32(CTRL_EXT, ctrl_ext);
- }
-
- /* Call the necessary subroutine to configure the link. */
- ret_val = (hw->media_type == e1000_media_type_copper) ?
- e1000_setup_copper_link(hw) :
- e1000_setup_fiber_serdes_link(hw);
-
- /* Initialize the flow control address, type, and PAUSE timer
- * registers to their default values. This is done even if flow
- * control is disabled, because it does not hurt anything to
- * initialize these registers.
- */
- DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
-
- /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
- if (hw->mac_type != e1000_ich8lan) {
- ew32(FCT, FLOW_CONTROL_TYPE);
- ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
- ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
- }
-
- ew32(FCTTV, hw->fc_pause_time);
-
- /* Set the flow control receive threshold registers. Normally,
- * these registers will be set to a default threshold that may be
- * adjusted later by the driver's runtime code. However, if the
- * ability to transmit pause frames in not enabled, then these
- * registers will be set to 0.
- */
- if (!(hw->fc & E1000_FC_TX_PAUSE)) {
- ew32(FCRTL, 0);
- ew32(FCRTH, 0);
- } else {
- /* We need to set up the Receive Threshold high and low water marks
- * as well as (optionally) enabling the transmission of XON frames.
- */
- if (hw->fc_send_xon) {
- ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
- ew32(FCRTH, hw->fc_high_water);
- } else {
- ew32(FCRTL, hw->fc_low_water);
- ew32(FCRTH, hw->fc_high_water);
- }
- }
- return ret_val;
+ u32 ctrl_ext;
+ s32 ret_val;
+ u16 eeprom_data;
+
+ DEBUGFUNC("e1000_setup_link");
+
+ /* Read and store word 0x0F of the EEPROM. This word contains bits
+ * that determine the hardware's default PAUSE (flow control) mode,
+ * a bit that determines whether the HW defaults to enabling or
+ * disabling auto-negotiation, and the direction of the
+ * SW defined pins. If there is no SW over-ride of the flow
+ * control setting, then the variable hw->fc will
+ * be initialized based on a value in the EEPROM.
+ */
+ if (hw->fc == E1000_FC_DEFAULT) {
+ ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
+ 1, &eeprom_data);
+ if (ret_val) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
+ hw->fc = E1000_FC_NONE;
+ else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
+ EEPROM_WORD0F_ASM_DIR)
+ hw->fc = E1000_FC_TX_PAUSE;
+ else
+ hw->fc = E1000_FC_FULL;
+ }
+
+ /* We want to save off the original Flow Control configuration just
+ * in case we get disconnected and then reconnected into a different
+ * hub or switch with different Flow Control capabilities.
+ */
+ if (hw->mac_type == e1000_82542_rev2_0)
+ hw->fc &= (~E1000_FC_TX_PAUSE);
+
+ if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
+ hw->fc &= (~E1000_FC_RX_PAUSE);
+
+ hw->original_fc = hw->fc;
+
+ DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
+
+ /* Take the 4 bits from EEPROM word 0x0F that determine the initial
+ * polarity value for the SW controlled pins, and setup the
+ * Extended Device Control reg with that info.
+ * This is needed because one of the SW controlled pins is used for
+ * signal detection. So this should be done before e1000_setup_pcs_link()
+ * or e1000_phy_setup() is called.
+ */
+ if (hw->mac_type == e1000_82543) {
+ ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
+ 1, &eeprom_data);
+ if (ret_val) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
+ SWDPIO__EXT_SHIFT);
+ ew32(CTRL_EXT, ctrl_ext);
+ }
+
+ /* Call the necessary subroutine to configure the link. */
+ ret_val = (hw->media_type == e1000_media_type_copper) ?
+ e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
+
+ /* Initialize the flow control address, type, and PAUSE timer
+ * registers to their default values. This is done even if flow
+ * control is disabled, because it does not hurt anything to
+ * initialize these registers.
+ */
+ DEBUGOUT
+ ("Initializing the Flow Control address, type and timer regs\n");
+
+ ew32(FCT, FLOW_CONTROL_TYPE);
+ ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+ ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
+
+ ew32(FCTTV, hw->fc_pause_time);
+
+ /* Set the flow control receive threshold registers. Normally,
+ * these registers will be set to a default threshold that may be
+ * adjusted later by the driver's runtime code. However, if the
+ * ability to transmit pause frames in not enabled, then these
+ * registers will be set to 0.
+ */
+ if (!(hw->fc & E1000_FC_TX_PAUSE)) {
+ ew32(FCRTL, 0);
+ ew32(FCRTH, 0);
+ } else {
+ /* We need to set up the Receive Threshold high and low water marks
+ * as well as (optionally) enabling the transmission of XON frames.
+ */
+ if (hw->fc_send_xon) {
+ ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
+ ew32(FCRTH, hw->fc_high_water);
+ } else {
+ ew32(FCRTL, hw->fc_low_water);
+ ew32(FCRTH, hw->fc_high_water);
+ }
+ }
+ return ret_val;
}
-/******************************************************************************
- * Sets up link for a fiber based or serdes based adapter
- *
- * hw - Struct containing variables accessed by shared code
+/**
+ * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
+ * @hw: Struct containing variables accessed by shared code
*
* Manipulates Physical Coding Sublayer functions in order to configure
* link. Assumes the hardware has been previously reset and the transmitter
* and receiver are not enabled.
- *****************************************************************************/
+ */
static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
{
- u32 ctrl;
- u32 status;
- u32 txcw = 0;
- u32 i;
- u32 signal = 0;
- s32 ret_val;
-
- DEBUGFUNC("e1000_setup_fiber_serdes_link");
-
- /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists
- * until explicitly turned off or a power cycle is performed. A read to
- * the register does not indicate its status. Therefore, we ensure
- * loopback mode is disabled during initialization.
- */
- if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572)
- ew32(SCTL, E1000_DISABLE_SERDES_LOOPBACK);
-
- /* On adapters with a MAC newer than 82544, SWDP 1 will be
- * set when the optics detect a signal. On older adapters, it will be
- * cleared when there is a signal. This applies to fiber media only.
- * If we're on serdes media, adjust the output amplitude to value
- * set in the EEPROM.
- */
- ctrl = er32(CTRL);
- if (hw->media_type == e1000_media_type_fiber)
- signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
-
- ret_val = e1000_adjust_serdes_amplitude(hw);
- if (ret_val)
- return ret_val;
-
- /* Take the link out of reset */
- ctrl &= ~(E1000_CTRL_LRST);
-
- /* Adjust VCO speed to improve BER performance */
- ret_val = e1000_set_vco_speed(hw);
- if (ret_val)
- return ret_val;
-
- e1000_config_collision_dist(hw);
-
- /* Check for a software override of the flow control settings, and setup
- * the device accordingly. If auto-negotiation is enabled, then software
- * will have to set the "PAUSE" bits to the correct value in the Tranmsit
- * Config Word Register (TXCW) and re-start auto-negotiation. However, if
- * auto-negotiation is disabled, then software will have to manually
- * configure the two flow control enable bits in the CTRL register.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause frames, but
- * not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames but we do
- * not support receiving pause frames).
- * 3: Both Rx and TX flow control (symmetric) are enabled.
- */
- switch (hw->fc) {
- case E1000_FC_NONE:
- /* Flow control is completely disabled by a software over-ride. */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
- break;
- case E1000_FC_RX_PAUSE:
- /* RX Flow control is enabled and TX Flow control is disabled by a
- * software over-ride. Since there really isn't a way to advertise
- * that we are capable of RX Pause ONLY, we will advertise that we
- * support both symmetric and asymmetric RX PAUSE. Later, we will
- * disable the adapter's ability to send PAUSE frames.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
- break;
- case E1000_FC_TX_PAUSE:
- /* TX Flow control is enabled, and RX Flow control is disabled, by a
- * software over-ride.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
- break;
- case E1000_FC_FULL:
- /* Flow control (both RX and TX) is enabled by a software over-ride. */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
- break;
- default:
- DEBUGOUT("Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- break;
- }
-
- /* Since auto-negotiation is enabled, take the link out of reset (the link
- * will be in reset, because we previously reset the chip). This will
- * restart auto-negotiation. If auto-neogtiation is successful then the
- * link-up status bit will be set and the flow control enable bits (RFCE
- * and TFCE) will be set according to their negotiated value.
- */
- DEBUGOUT("Auto-negotiation enabled\n");
-
- ew32(TXCW, txcw);
- ew32(CTRL, ctrl);
- E1000_WRITE_FLUSH();
-
- hw->txcw = txcw;
- msleep(1);
-
- /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
- * indication in the Device Status Register. Time-out if a link isn't
- * seen in 500 milliseconds seconds (Auto-negotiation should complete in
- * less than 500 milliseconds even if the other end is doing it in SW).
- * For internal serdes, we just assume a signal is present, then poll.
- */
- if (hw->media_type == e1000_media_type_internal_serdes ||
- (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
- DEBUGOUT("Looking for Link\n");
- for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
- msleep(10);
- status = er32(STATUS);
- if (status & E1000_STATUS_LU) break;
- }
- if (i == (LINK_UP_TIMEOUT / 10)) {
- DEBUGOUT("Never got a valid link from auto-neg!!!\n");
- hw->autoneg_failed = 1;
- /* AutoNeg failed to achieve a link, so we'll call
- * e1000_check_for_link. This routine will force the link up if
- * we detect a signal. This will allow us to communicate with
- * non-autonegotiating link partners.
- */
- ret_val = e1000_check_for_link(hw);
- if (ret_val) {
- DEBUGOUT("Error while checking for link\n");
- return ret_val;
- }
- hw->autoneg_failed = 0;
- } else {
- hw->autoneg_failed = 0;
- DEBUGOUT("Valid Link Found\n");
- }
- } else {
- DEBUGOUT("No Signal Detected\n");
- }
- return E1000_SUCCESS;
+ u32 ctrl;
+ u32 status;
+ u32 txcw = 0;
+ u32 i;
+ u32 signal = 0;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_setup_fiber_serdes_link");
+
+ /* On adapters with a MAC newer than 82544, SWDP 1 will be
+ * set when the optics detect a signal. On older adapters, it will be
+ * cleared when there is a signal. This applies to fiber media only.
+ * If we're on serdes media, adjust the output amplitude to value
+ * set in the EEPROM.
+ */
+ ctrl = er32(CTRL);
+ if (hw->media_type == e1000_media_type_fiber)
+ signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
+
+ ret_val = e1000_adjust_serdes_amplitude(hw);
+ if (ret_val)
+ return ret_val;
+
+ /* Take the link out of reset */
+ ctrl &= ~(E1000_CTRL_LRST);
+
+ /* Adjust VCO speed to improve BER performance */
+ ret_val = e1000_set_vco_speed(hw);
+ if (ret_val)
+ return ret_val;
+
+ e1000_config_collision_dist(hw);
+
+ /* Check for a software override of the flow control settings, and setup
+ * the device accordingly. If auto-negotiation is enabled, then software
+ * will have to set the "PAUSE" bits to the correct value in the Tranmsit
+ * Config Word Register (TXCW) and re-start auto-negotiation. However, if
+ * auto-negotiation is disabled, then software will have to manually
+ * configure the two flow control enable bits in the CTRL register.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause frames, but
+ * not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames but we do
+ * not support receiving pause frames).
+ * 3: Both Rx and TX flow control (symmetric) are enabled.
+ */
+ switch (hw->fc) {
+ case E1000_FC_NONE:
+ /* Flow control is completely disabled by a software over-ride. */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
+ break;
+ case E1000_FC_RX_PAUSE:
+ /* RX Flow control is enabled and TX Flow control is disabled by a
+ * software over-ride. Since there really isn't a way to advertise
+ * that we are capable of RX Pause ONLY, we will advertise that we
+ * support both symmetric and asymmetric RX PAUSE. Later, we will
+ * disable the adapter's ability to send PAUSE frames.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+ break;
+ case E1000_FC_TX_PAUSE:
+ /* TX Flow control is enabled, and RX Flow control is disabled, by a
+ * software over-ride.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
+ break;
+ case E1000_FC_FULL:
+ /* Flow control (both RX and TX) is enabled by a software over-ride. */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ return -E1000_ERR_CONFIG;
+ break;
+ }
+
+ /* Since auto-negotiation is enabled, take the link out of reset (the link
+ * will be in reset, because we previously reset the chip). This will
+ * restart auto-negotiation. If auto-negotiation is successful then the
+ * link-up status bit will be set and the flow control enable bits (RFCE
+ * and TFCE) will be set according to their negotiated value.
+ */
+ DEBUGOUT("Auto-negotiation enabled\n");
+
+ ew32(TXCW, txcw);
+ ew32(CTRL, ctrl);
+ E1000_WRITE_FLUSH();
+
+ hw->txcw = txcw;
+ msleep(1);
+
+ /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
+ * indication in the Device Status Register. Time-out if a link isn't
+ * seen in 500 milliseconds seconds (Auto-negotiation should complete in
+ * less than 500 milliseconds even if the other end is doing it in SW).
+ * For internal serdes, we just assume a signal is present, then poll.
+ */
+ if (hw->media_type == e1000_media_type_internal_serdes ||
+ (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
+ DEBUGOUT("Looking for Link\n");
+ for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
+ msleep(10);
+ status = er32(STATUS);
+ if (status & E1000_STATUS_LU)
+ break;
+ }
+ if (i == (LINK_UP_TIMEOUT / 10)) {
+ DEBUGOUT("Never got a valid link from auto-neg!!!\n");
+ hw->autoneg_failed = 1;
+ /* AutoNeg failed to achieve a link, so we'll call
+ * e1000_check_for_link. This routine will force the link up if
+ * we detect a signal. This will allow us to communicate with
+ * non-autonegotiating link partners.
+ */
+ ret_val = e1000_check_for_link(hw);
+ if (ret_val) {
+ DEBUGOUT("Error while checking for link\n");
+ return ret_val;
+ }
+ hw->autoneg_failed = 0;
+ } else {
+ hw->autoneg_failed = 0;
+ DEBUGOUT("Valid Link Found\n");
+ }
+ } else {
+ DEBUGOUT("No Signal Detected\n");
+ }
+ return E1000_SUCCESS;
}
-/******************************************************************************
-* Make sure we have a valid PHY and change PHY mode before link setup.
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
+/**
+ * e1000_copper_link_preconfig - early configuration for copper
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Make sure we have a valid PHY and change PHY mode before link setup.
+ */
static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
{
- u32 ctrl;
- s32 ret_val;
- u16 phy_data;
-
- DEBUGFUNC("e1000_copper_link_preconfig");
-
- ctrl = er32(CTRL);
- /* With 82543, we need to force speed and duplex on the MAC equal to what
- * the PHY speed and duplex configuration is. In addition, we need to
- * perform a hardware reset on the PHY to take it out of reset.
- */
- if (hw->mac_type > e1000_82543) {
- ctrl |= E1000_CTRL_SLU;
- ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- ew32(CTRL, ctrl);
- } else {
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
- ew32(CTRL, ctrl);
- ret_val = e1000_phy_hw_reset(hw);
- if (ret_val)
- return ret_val;
- }
-
- /* Make sure we have a valid PHY */
- ret_val = e1000_detect_gig_phy(hw);
- if (ret_val) {
- DEBUGOUT("Error, did not detect valid phy.\n");
- return ret_val;
- }
- DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
-
- /* Set PHY to class A mode (if necessary) */
- ret_val = e1000_set_phy_mode(hw);
- if (ret_val)
- return ret_val;
-
- if ((hw->mac_type == e1000_82545_rev_3) ||
- (hw->mac_type == e1000_82546_rev_3)) {
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- phy_data |= 0x00000008;
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- }
-
- if (hw->mac_type <= e1000_82543 ||
- hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
- hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
- hw->phy_reset_disable = false;
-
- return E1000_SUCCESS;
-}
+ u32 ctrl;
+ s32 ret_val;
+ u16 phy_data;
+ DEBUGFUNC("e1000_copper_link_preconfig");
-/********************************************************************
-* Copper link setup for e1000_phy_igp series.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
-static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
-{
- u32 led_ctrl;
- s32 ret_val;
- u16 phy_data;
-
- DEBUGFUNC("e1000_copper_link_igp_setup");
-
- if (hw->phy_reset_disable)
- return E1000_SUCCESS;
-
- ret_val = e1000_phy_reset(hw);
- if (ret_val) {
- DEBUGOUT("Error Resetting the PHY\n");
- return ret_val;
- }
-
- /* Wait 15ms for MAC to configure PHY from eeprom settings */
- msleep(15);
- if (hw->mac_type != e1000_ich8lan) {
- /* Configure activity LED after PHY reset */
- led_ctrl = er32(LEDCTL);
- led_ctrl &= IGP_ACTIVITY_LED_MASK;
- led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
- ew32(LEDCTL, led_ctrl);
- }
-
- /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
- if (hw->phy_type == e1000_phy_igp) {
- /* disable lplu d3 during driver init */
- ret_val = e1000_set_d3_lplu_state(hw, false);
- if (ret_val) {
- DEBUGOUT("Error Disabling LPLU D3\n");
- return ret_val;
- }
- }
-
- /* disable lplu d0 during driver init */
- ret_val = e1000_set_d0_lplu_state(hw, false);
- if (ret_val) {
- DEBUGOUT("Error Disabling LPLU D0\n");
- return ret_val;
- }
- /* Configure mdi-mdix settings */
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
- hw->dsp_config_state = e1000_dsp_config_disabled;
- /* Force MDI for earlier revs of the IGP PHY */
- phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
- hw->mdix = 1;
-
- } else {
- hw->dsp_config_state = e1000_dsp_config_enabled;
- phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
-
- switch (hw->mdix) {
- case 1:
- phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
- break;
- case 2:
- phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
- break;
- case 0:
- default:
- phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
- break;
- }
- }
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- /* set auto-master slave resolution settings */
- if (hw->autoneg) {
- e1000_ms_type phy_ms_setting = hw->master_slave;
-
- if (hw->ffe_config_state == e1000_ffe_config_active)
- hw->ffe_config_state = e1000_ffe_config_enabled;
-
- if (hw->dsp_config_state == e1000_dsp_config_activated)
- hw->dsp_config_state = e1000_dsp_config_enabled;
-
- /* when autonegotiation advertisment is only 1000Mbps then we
- * should disable SmartSpeed and enable Auto MasterSlave
- * resolution as hardware default. */
- if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
- /* Disable SmartSpeed */
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if (ret_val)
- return ret_val;
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if (ret_val)
- return ret_val;
- /* Set auto Master/Slave resolution process */
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
- phy_data &= ~CR_1000T_MS_ENABLE;
- ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- }
-
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- /* load defaults for future use */
- hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
- ((phy_data & CR_1000T_MS_VALUE) ?
- e1000_ms_force_master :
- e1000_ms_force_slave) :
- e1000_ms_auto;
-
- switch (phy_ms_setting) {
- case e1000_ms_force_master:
- phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
- break;
- case e1000_ms_force_slave:
- phy_data |= CR_1000T_MS_ENABLE;
- phy_data &= ~(CR_1000T_MS_VALUE);
- break;
- case e1000_ms_auto:
- phy_data &= ~CR_1000T_MS_ENABLE;
- default:
- break;
- }
- ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- }
-
- return E1000_SUCCESS;
+ ctrl = er32(CTRL);
+ /* With 82543, we need to force speed and duplex on the MAC equal to what
+ * the PHY speed and duplex configuration is. In addition, we need to
+ * perform a hardware reset on the PHY to take it out of reset.
+ */
+ if (hw->mac_type > e1000_82543) {
+ ctrl |= E1000_CTRL_SLU;
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ ew32(CTRL, ctrl);
+ } else {
+ ctrl |=
+ (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
+ ew32(CTRL, ctrl);
+ ret_val = e1000_phy_hw_reset(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* Make sure we have a valid PHY */
+ ret_val = e1000_detect_gig_phy(hw);
+ if (ret_val) {
+ DEBUGOUT("Error, did not detect valid phy.\n");
+ return ret_val;
+ }
+ DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
+
+ /* Set PHY to class A mode (if necessary) */
+ ret_val = e1000_set_phy_mode(hw);
+ if (ret_val)
+ return ret_val;
+
+ if ((hw->mac_type == e1000_82545_rev_3) ||
+ (hw->mac_type == e1000_82546_rev_3)) {
+ ret_val =
+ e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ phy_data |= 0x00000008;
+ ret_val =
+ e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ }
+
+ if (hw->mac_type <= e1000_82543 ||
+ hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
+ hw->mac_type == e1000_82541_rev_2
+ || hw->mac_type == e1000_82547_rev_2)
+ hw->phy_reset_disable = false;
+
+ return E1000_SUCCESS;
}
-/********************************************************************
-* Copper link setup for e1000_phy_gg82563 series.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
-static s32 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
+/**
+ * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
+ * @hw: Struct containing variables accessed by shared code
+ */
+static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
{
- s32 ret_val;
- u16 phy_data;
- u32 reg_data;
-
- DEBUGFUNC("e1000_copper_link_ggp_setup");
-
- if (!hw->phy_reset_disable) {
-
- /* Enable CRS on TX for half-duplex operation. */
- ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
- /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
- phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
-
- ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
- phy_data);
- if (ret_val)
- return ret_val;
-
- /* Options:
- * MDI/MDI-X = 0 (default)
- * 0 - Auto for all speeds
- * 1 - MDI mode
- * 2 - MDI-X mode
- * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
- */
- ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
-
- switch (hw->mdix) {
- case 1:
- phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
- break;
- case 2:
- phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
- break;
- case 0:
- default:
- phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
- break;
- }
-
- /* Options:
- * disable_polarity_correction = 0 (default)
- * Automatic Correction for Reversed Cable Polarity
- * 0 - Disabled
- * 1 - Enabled
- */
- phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
- if (hw->disable_polarity_correction == 1)
- phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
- ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
-
- if (ret_val)
- return ret_val;
-
- /* SW Reset the PHY so all changes take effect */
- ret_val = e1000_phy_reset(hw);
- if (ret_val) {
- DEBUGOUT("Error Resetting the PHY\n");
- return ret_val;
- }
- } /* phy_reset_disable */
-
- if (hw->mac_type == e1000_80003es2lan) {
- /* Bypass RX and TX FIFO's */
- ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
- E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
- E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
- ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data);
-
- if (ret_val)
- return ret_val;
-
- reg_data = er32(CTRL_EXT);
- reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
- ew32(CTRL_EXT, reg_data);
-
- ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- /* Do not init these registers when the HW is in IAMT mode, since the
- * firmware will have already initialized them. We only initialize
- * them if the HW is not in IAMT mode.
- */
- if (!e1000_check_mng_mode(hw)) {
- /* Enable Electrical Idle on the PHY */
- phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
- ret_val = e1000_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
- phy_data);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
- ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
- phy_data);
-
- if (ret_val)
- return ret_val;
- }
-
- /* Workaround: Disable padding in Kumeran interface in the MAC
- * and in the PHY to avoid CRC errors.
- */
- ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
- &phy_data);
- if (ret_val)
- return ret_val;
- phy_data |= GG82563_ICR_DIS_PADDING;
- ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
- phy_data);
- if (ret_val)
- return ret_val;
- }
-
- return E1000_SUCCESS;
+ u32 led_ctrl;
+ s32 ret_val;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_copper_link_igp_setup");
+
+ if (hw->phy_reset_disable)
+ return E1000_SUCCESS;
+
+ ret_val = e1000_phy_reset(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Resetting the PHY\n");
+ return ret_val;
+ }
+
+ /* Wait 15ms for MAC to configure PHY from eeprom settings */
+ msleep(15);
+ /* Configure activity LED after PHY reset */
+ led_ctrl = er32(LEDCTL);
+ led_ctrl &= IGP_ACTIVITY_LED_MASK;
+ led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+ ew32(LEDCTL, led_ctrl);
+
+ /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
+ if (hw->phy_type == e1000_phy_igp) {
+ /* disable lplu d3 during driver init */
+ ret_val = e1000_set_d3_lplu_state(hw, false);
+ if (ret_val) {
+ DEBUGOUT("Error Disabling LPLU D3\n");
+ return ret_val;
+ }
+ }
+
+ /* Configure mdi-mdix settings */
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+ hw->dsp_config_state = e1000_dsp_config_disabled;
+ /* Force MDI for earlier revs of the IGP PHY */
+ phy_data &=
+ ~(IGP01E1000_PSCR_AUTO_MDIX |
+ IGP01E1000_PSCR_FORCE_MDI_MDIX);
+ hw->mdix = 1;
+
+ } else {
+ hw->dsp_config_state = e1000_dsp_config_enabled;
+ phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+
+ switch (hw->mdix) {
+ case 1:
+ phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+ break;
+ case 2:
+ phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
+ break;
+ case 0:
+ default:
+ phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
+ break;
+ }
+ }
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* set auto-master slave resolution settings */
+ if (hw->autoneg) {
+ e1000_ms_type phy_ms_setting = hw->master_slave;
+
+ if (hw->ffe_config_state == e1000_ffe_config_active)
+ hw->ffe_config_state = e1000_ffe_config_enabled;
+
+ if (hw->dsp_config_state == e1000_dsp_config_activated)
+ hw->dsp_config_state = e1000_dsp_config_enabled;
+
+ /* when autonegotiation advertisement is only 1000Mbps then we
+ * should disable SmartSpeed and enable Auto MasterSlave
+ * resolution as hardware default. */
+ if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
+ /* Disable SmartSpeed */
+ ret_val =
+ e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+ phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val =
+ e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+ /* Set auto Master/Slave resolution process */
+ ret_val =
+ e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+ phy_data &= ~CR_1000T_MS_ENABLE;
+ ret_val =
+ e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+
+ ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* load defaults for future use */
+ hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
+ ((phy_data & CR_1000T_MS_VALUE) ?
+ e1000_ms_force_master :
+ e1000_ms_force_slave) : e1000_ms_auto;
+
+ switch (phy_ms_setting) {
+ case e1000_ms_force_master:
+ phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
+ break;
+ case e1000_ms_force_slave:
+ phy_data |= CR_1000T_MS_ENABLE;
+ phy_data &= ~(CR_1000T_MS_VALUE);
+ break;
+ case e1000_ms_auto:
+ phy_data &= ~CR_1000T_MS_ENABLE;
+ default:
+ break;
+ }
+ ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+
+ return E1000_SUCCESS;
}
-/********************************************************************
-* Copper link setup for e1000_phy_m88 series.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
+/**
+ * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
+ * @hw: Struct containing variables accessed by shared code
+ */
static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
{
- s32 ret_val;
- u16 phy_data;
-
- DEBUGFUNC("e1000_copper_link_mgp_setup");
-
- if (hw->phy_reset_disable)
- return E1000_SUCCESS;
-
- /* Enable CRS on TX. This must be set for half-duplex operation. */
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
-
- /* Options:
- * MDI/MDI-X = 0 (default)
- * 0 - Auto for all speeds
- * 1 - MDI mode
- * 2 - MDI-X mode
- * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
- */
- phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
-
- switch (hw->mdix) {
- case 1:
- phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
- break;
- case 2:
- phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
- break;
- case 3:
- phy_data |= M88E1000_PSCR_AUTO_X_1000T;
- break;
- case 0:
- default:
- phy_data |= M88E1000_PSCR_AUTO_X_MODE;
- break;
- }
-
- /* Options:
- * disable_polarity_correction = 0 (default)
- * Automatic Correction for Reversed Cable Polarity
- * 0 - Disabled
- * 1 - Enabled
- */
- phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
- if (hw->disable_polarity_correction == 1)
- phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- if (hw->phy_revision < M88E1011_I_REV_4) {
- /* Force TX_CLK in the Extended PHY Specific Control Register
- * to 25MHz clock.
- */
- ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
-
- if ((hw->phy_revision == E1000_REVISION_2) &&
- (hw->phy_id == M88E1111_I_PHY_ID)) {
- /* Vidalia Phy, set the downshift counter to 5x */
- phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
- phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
- ret_val = e1000_write_phy_reg(hw,
- M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- } else {
- /* Configure Master and Slave downshift values */
- phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
- M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
- phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
- M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
- ret_val = e1000_write_phy_reg(hw,
- M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- }
- }
-
- /* SW Reset the PHY so all changes take effect */
- ret_val = e1000_phy_reset(hw);
- if (ret_val) {
- DEBUGOUT("Error Resetting the PHY\n");
- return ret_val;
- }
-
- return E1000_SUCCESS;
+ s32 ret_val;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_copper_link_mgp_setup");
+
+ if (hw->phy_reset_disable)
+ return E1000_SUCCESS;
+
+ /* Enable CRS on TX. This must be set for half-duplex operation. */
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+
+ /* Options:
+ * MDI/MDI-X = 0 (default)
+ * 0 - Auto for all speeds
+ * 1 - MDI mode
+ * 2 - MDI-X mode
+ * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+ */
+ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
+ switch (hw->mdix) {
+ case 1:
+ phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+ break;
+ case 2:
+ phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+ break;
+ case 3:
+ phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+ break;
+ case 0:
+ default:
+ phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+ break;
+ }
+
+ /* Options:
+ * disable_polarity_correction = 0 (default)
+ * Automatic Correction for Reversed Cable Polarity
+ * 0 - Disabled
+ * 1 - Enabled
+ */
+ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+ if (hw->disable_polarity_correction == 1)
+ phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ if (hw->phy_revision < M88E1011_I_REV_4) {
+ /* Force TX_CLK in the Extended PHY Specific Control Register
+ * to 25MHz clock.
+ */
+ ret_val =
+ e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data |= M88E1000_EPSCR_TX_CLK_25;
+
+ if ((hw->phy_revision == E1000_REVISION_2) &&
+ (hw->phy_id == M88E1111_I_PHY_ID)) {
+ /* Vidalia Phy, set the downshift counter to 5x */
+ phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
+ phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
+ ret_val = e1000_write_phy_reg(hw,
+ M88E1000_EXT_PHY_SPEC_CTRL,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+ } else {
+ /* Configure Master and Slave downshift values */
+ phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
+ M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
+ phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
+ M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
+ ret_val = e1000_write_phy_reg(hw,
+ M88E1000_EXT_PHY_SPEC_CTRL,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+ }
+
+ /* SW Reset the PHY so all changes take effect */
+ ret_val = e1000_phy_reset(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Resetting the PHY\n");
+ return ret_val;
+ }
+
+ return E1000_SUCCESS;
}
-/********************************************************************
-* Setup auto-negotiation and flow control advertisements,
-* and then perform auto-negotiation.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
+/**
+ * e1000_copper_link_autoneg - setup auto-neg
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Setup auto-negotiation and flow control advertisements,
+ * and then perform auto-negotiation.
+ */
static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
{
- s32 ret_val;
- u16 phy_data;
-
- DEBUGFUNC("e1000_copper_link_autoneg");
-
- /* Perform some bounds checking on the hw->autoneg_advertised
- * parameter. If this variable is zero, then set it to the default.
- */
- hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
-
- /* If autoneg_advertised is zero, we assume it was not defaulted
- * by the calling code so we set to advertise full capability.
- */
- if (hw->autoneg_advertised == 0)
- hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
-
- /* IFE phy only supports 10/100 */
- if (hw->phy_type == e1000_phy_ife)
- hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
-
- DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
- ret_val = e1000_phy_setup_autoneg(hw);
- if (ret_val) {
- DEBUGOUT("Error Setting up Auto-Negotiation\n");
- return ret_val;
- }
- DEBUGOUT("Restarting Auto-Neg\n");
-
- /* Restart auto-negotiation by setting the Auto Neg Enable bit and
- * the Auto Neg Restart bit in the PHY control register.
- */
- ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
- ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- /* Does the user want to wait for Auto-Neg to complete here, or
- * check at a later time (for example, callback routine).
- */
- if (hw->wait_autoneg_complete) {
- ret_val = e1000_wait_autoneg(hw);
- if (ret_val) {
- DEBUGOUT("Error while waiting for autoneg to complete\n");
- return ret_val;
- }
- }
-
- hw->get_link_status = true;
-
- return E1000_SUCCESS;
+ s32 ret_val;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_copper_link_autoneg");
+
+ /* Perform some bounds checking on the hw->autoneg_advertised
+ * parameter. If this variable is zero, then set it to the default.
+ */
+ hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+ /* If autoneg_advertised is zero, we assume it was not defaulted
+ * by the calling code so we set to advertise full capability.
+ */
+ if (hw->autoneg_advertised == 0)
+ hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+ DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
+ ret_val = e1000_phy_setup_autoneg(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Setting up Auto-Negotiation\n");
+ return ret_val;
+ }
+ DEBUGOUT("Restarting Auto-Neg\n");
+
+ /* Restart auto-negotiation by setting the Auto Neg Enable bit and
+ * the Auto Neg Restart bit in the PHY control register.
+ */
+ ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
+ ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* Does the user want to wait for Auto-Neg to complete here, or
+ * check at a later time (for example, callback routine).
+ */
+ if (hw->wait_autoneg_complete) {
+ ret_val = e1000_wait_autoneg(hw);
+ if (ret_val) {
+ DEBUGOUT
+ ("Error while waiting for autoneg to complete\n");
+ return ret_val;
+ }
+ }
+
+ hw->get_link_status = true;
+
+ return E1000_SUCCESS;
}
-/******************************************************************************
-* Config the MAC and the PHY after link is up.
-* 1) Set up the MAC to the current PHY speed/duplex
-* if we are on 82543. If we
-* are on newer silicon, we only need to configure
-* collision distance in the Transmit Control Register.
-* 2) Set up flow control on the MAC to that established with
-* the link partner.
-* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
+/**
+ * e1000_copper_link_postconfig - post link setup
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Config the MAC and the PHY after link is up.
+ * 1) Set up the MAC to the current PHY speed/duplex
+ * if we are on 82543. If we
+ * are on newer silicon, we only need to configure
+ * collision distance in the Transmit Control Register.
+ * 2) Set up flow control on the MAC to that established with
+ * the link partner.
+ * 3) Config DSP to improve Gigabit link quality for some PHY revisions.
+ */
static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
{
- s32 ret_val;
- DEBUGFUNC("e1000_copper_link_postconfig");
-
- if (hw->mac_type >= e1000_82544) {
- e1000_config_collision_dist(hw);
- } else {
- ret_val = e1000_config_mac_to_phy(hw);
- if (ret_val) {
- DEBUGOUT("Error configuring MAC to PHY settings\n");
- return ret_val;
- }
- }
- ret_val = e1000_config_fc_after_link_up(hw);
- if (ret_val) {
- DEBUGOUT("Error Configuring Flow Control\n");
- return ret_val;
- }
-
- /* Config DSP to improve Giga link quality */
- if (hw->phy_type == e1000_phy_igp) {
- ret_val = e1000_config_dsp_after_link_change(hw, true);
- if (ret_val) {
- DEBUGOUT("Error Configuring DSP after link up\n");
- return ret_val;
- }
- }
-
- return E1000_SUCCESS;
+ s32 ret_val;
+ DEBUGFUNC("e1000_copper_link_postconfig");
+
+ if (hw->mac_type >= e1000_82544) {
+ e1000_config_collision_dist(hw);
+ } else {
+ ret_val = e1000_config_mac_to_phy(hw);
+ if (ret_val) {
+ DEBUGOUT("Error configuring MAC to PHY settings\n");
+ return ret_val;
+ }
+ }
+ ret_val = e1000_config_fc_after_link_up(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Configuring Flow Control\n");
+ return ret_val;
+ }
+
+ /* Config DSP to improve Giga link quality */
+ if (hw->phy_type == e1000_phy_igp) {
+ ret_val = e1000_config_dsp_after_link_change(hw, true);
+ if (ret_val) {
+ DEBUGOUT("Error Configuring DSP after link up\n");
+ return ret_val;
+ }
+ }
+
+ return E1000_SUCCESS;
}
-/******************************************************************************
-* Detects which PHY is present and setup the speed and duplex
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
+/**
+ * e1000_setup_copper_link - phy/speed/duplex setting
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Detects which PHY is present and sets up the speed and duplex
+ */
static s32 e1000_setup_copper_link(struct e1000_hw *hw)
{
- s32 ret_val;
- u16 i;
- u16 phy_data;
- u16 reg_data = 0;
-
- DEBUGFUNC("e1000_setup_copper_link");
-
- switch (hw->mac_type) {
- case e1000_80003es2lan:
- case e1000_ich8lan:
- /* Set the mac to wait the maximum time between each
- * iteration and increase the max iterations when
- * polling the phy; this fixes erroneous timeouts at 10Mbps. */
- ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
- if (ret_val)
- return ret_val;
- ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
- if (ret_val)
- return ret_val;
- reg_data |= 0x3F;
- ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
- if (ret_val)
- return ret_val;
- default:
- break;
- }
-
- /* Check if it is a valid PHY and set PHY mode if necessary. */
- ret_val = e1000_copper_link_preconfig(hw);
- if (ret_val)
- return ret_val;
-
- switch (hw->mac_type) {
- case e1000_80003es2lan:
- /* Kumeran registers are written-only */
- reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
- reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
- ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
- reg_data);
- if (ret_val)
- return ret_val;
- break;
- default:
- break;
- }
-
- if (hw->phy_type == e1000_phy_igp ||
- hw->phy_type == e1000_phy_igp_3 ||
- hw->phy_type == e1000_phy_igp_2) {
- ret_val = e1000_copper_link_igp_setup(hw);
- if (ret_val)
- return ret_val;
- } else if (hw->phy_type == e1000_phy_m88) {
- ret_val = e1000_copper_link_mgp_setup(hw);
- if (ret_val)
- return ret_val;
- } else if (hw->phy_type == e1000_phy_gg82563) {
- ret_val = e1000_copper_link_ggp_setup(hw);
- if (ret_val)
- return ret_val;
- }
-
- if (hw->autoneg) {
- /* Setup autoneg and flow control advertisement
- * and perform autonegotiation */
- ret_val = e1000_copper_link_autoneg(hw);
- if (ret_val)
- return ret_val;
- } else {
- /* PHY will be set to 10H, 10F, 100H,or 100F
- * depending on value from forced_speed_duplex. */
- DEBUGOUT("Forcing speed and duplex\n");
- ret_val = e1000_phy_force_speed_duplex(hw);
- if (ret_val) {
- DEBUGOUT("Error Forcing Speed and Duplex\n");
- return ret_val;
- }
- }
-
- /* Check link status. Wait up to 100 microseconds for link to become
- * valid.
- */
- for (i = 0; i < 10; i++) {
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- if (phy_data & MII_SR_LINK_STATUS) {
- /* Config the MAC and PHY after link is up */
- ret_val = e1000_copper_link_postconfig(hw);
- if (ret_val)
- return ret_val;
-
- DEBUGOUT("Valid link established!!!\n");
- return E1000_SUCCESS;
- }
- udelay(10);
- }
-
- DEBUGOUT("Unable to establish link!!!\n");
- return E1000_SUCCESS;
+ s32 ret_val;
+ u16 i;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_setup_copper_link");
+
+ /* Check if it is a valid PHY and set PHY mode if necessary. */
+ ret_val = e1000_copper_link_preconfig(hw);
+ if (ret_val)
+ return ret_val;
+
+ if (hw->phy_type == e1000_phy_igp) {
+ ret_val = e1000_copper_link_igp_setup(hw);
+ if (ret_val)
+ return ret_val;
+ } else if (hw->phy_type == e1000_phy_m88) {
+ ret_val = e1000_copper_link_mgp_setup(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ if (hw->autoneg) {
+ /* Setup autoneg and flow control advertisement
+ * and perform autonegotiation */
+ ret_val = e1000_copper_link_autoneg(hw);
+ if (ret_val)
+ return ret_val;
+ } else {
+ /* PHY will be set to 10H, 10F, 100H,or 100F
+ * depending on value from forced_speed_duplex. */
+ DEBUGOUT("Forcing speed and duplex\n");
+ ret_val = e1000_phy_force_speed_duplex(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Forcing Speed and Duplex\n");
+ return ret_val;
+ }
+ }
+
+ /* Check link status. Wait up to 100 microseconds for link to become
+ * valid.
+ */
+ for (i = 0; i < 10; i++) {
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+ if (ret_val)
+ return ret_val;
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ if (phy_data & MII_SR_LINK_STATUS) {
+ /* Config the MAC and PHY after link is up */
+ ret_val = e1000_copper_link_postconfig(hw);
+ if (ret_val)
+ return ret_val;
+
+ DEBUGOUT("Valid link established!!!\n");
+ return E1000_SUCCESS;
+ }
+ udelay(10);
+ }
+
+ DEBUGOUT("Unable to establish link!!!\n");
+ return E1000_SUCCESS;
}
-/******************************************************************************
-* Configure the MAC-to-PHY interface for 10/100Mbps
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static s32 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, u16 duplex)
+/**
+ * e1000_phy_setup_autoneg - phy settings
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Configures PHY autoneg and flow control advertisement settings
+ */
+s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
{
- s32 ret_val = E1000_SUCCESS;
- u32 tipg;
- u16 reg_data;
+ s32 ret_val;
+ u16 mii_autoneg_adv_reg;
+ u16 mii_1000t_ctrl_reg;
- DEBUGFUNC("e1000_configure_kmrn_for_10_100");
+ DEBUGFUNC("e1000_phy_setup_autoneg");
- reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
- ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
- reg_data);
- if (ret_val)
- return ret_val;
+ /* Read the MII Auto-Neg Advertisement Register (Address 4). */
+ ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
+ if (ret_val)
+ return ret_val;
- /* Configure Transmit Inter-Packet Gap */
- tipg = er32(TIPG);
- tipg &= ~E1000_TIPG_IPGT_MASK;
- tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
- ew32(TIPG, tipg);
+ /* Read the MII 1000Base-T Control Register (Address 9). */
+ ret_val =
+ e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
+ if (ret_val)
+ return ret_val;
- ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
+ /* Need to parse both autoneg_advertised and fc and set up
+ * the appropriate PHY registers. First we will parse for
+ * autoneg_advertised software override. Since we can advertise
+ * a plethora of combinations, we need to check each bit
+ * individually.
+ */
- if (ret_val)
- return ret_val;
+ /* First we clear all the 10/100 mb speed bits in the Auto-Neg
+ * Advertisement Register (Address 4) and the 1000 mb speed bits in
+ * the 1000Base-T Control Register (Address 9).
+ */
+ mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
+ mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
- if (duplex == HALF_DUPLEX)
- reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
- else
- reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+ DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
- ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+ /* Do we want to advertise 10 Mb Half Duplex? */
+ if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
+ DEBUGOUT("Advertise 10mb Half duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
+ }
- return ret_val;
-}
+ /* Do we want to advertise 10 Mb Full Duplex? */
+ if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
+ DEBUGOUT("Advertise 10mb Full duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
+ }
-static s32 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
- u16 reg_data;
- u32 tipg;
+ /* Do we want to advertise 100 Mb Half Duplex? */
+ if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
+ DEBUGOUT("Advertise 100mb Half duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
+ }
- DEBUGFUNC("e1000_configure_kmrn_for_1000");
+ /* Do we want to advertise 100 Mb Full Duplex? */
+ if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
+ DEBUGOUT("Advertise 100mb Full duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
+ }
- reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
- ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
- reg_data);
- if (ret_val)
- return ret_val;
+ /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
+ if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
+ DEBUGOUT
+ ("Advertise 1000mb Half duplex requested, request denied!\n");
+ }
- /* Configure Transmit Inter-Packet Gap */
- tipg = er32(TIPG);
- tipg &= ~E1000_TIPG_IPGT_MASK;
- tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
- ew32(TIPG, tipg);
+ /* Do we want to advertise 1000 Mb Full Duplex? */
+ if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
+ DEBUGOUT("Advertise 1000mb Full duplex\n");
+ mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
+ }
- ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
+ /* Check for a software override of the flow control settings, and
+ * setup the PHY advertisement registers accordingly. If
+ * auto-negotiation is enabled, then software will have to set the
+ * "PAUSE" bits to the correct value in the Auto-Negotiation
+ * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause frames
+ * but not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames
+ * but we do not support receiving pause frames).
+ * 3: Both Rx and TX flow control (symmetric) are enabled.
+ * other: No software override. The flow control configuration
+ * in the EEPROM is used.
+ */
+ switch (hw->fc) {
+ case E1000_FC_NONE: /* 0 */
+ /* Flow control (RX & TX) is completely disabled by a
+ * software over-ride.
+ */
+ mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ case E1000_FC_RX_PAUSE: /* 1 */
+ /* RX Flow control is enabled, and TX Flow control is
+ * disabled, by a software over-ride.
+ */
+ /* Since there really isn't a way to advertise that we are
+ * capable of RX Pause ONLY, we will advertise that we
+ * support both symmetric and asymmetric RX PAUSE. Later
+ * (in e1000_config_fc_after_link_up) we will disable the
+ *hw's ability to send PAUSE frames.
+ */
+ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ case E1000_FC_TX_PAUSE: /* 2 */
+ /* TX Flow control is enabled, and RX Flow control is
+ * disabled, by a software over-ride.
+ */
+ mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
+ mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
+ break;
+ case E1000_FC_FULL: /* 3 */
+ /* Flow control (both RX and TX) is enabled by a software
+ * over-ride.
+ */
+ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ return -E1000_ERR_CONFIG;
+ }
- if (ret_val)
- return ret_val;
+ ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
+ if (ret_val)
+ return ret_val;
- reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
- ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+ DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
- return ret_val;
-}
+ ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
+ if (ret_val)
+ return ret_val;
-/******************************************************************************
-* Configures PHY autoneg and flow control advertisement settings
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 mii_autoneg_adv_reg;
- u16 mii_1000t_ctrl_reg;
-
- DEBUGFUNC("e1000_phy_setup_autoneg");
-
- /* Read the MII Auto-Neg Advertisement Register (Address 4). */
- ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
- if (ret_val)
- return ret_val;
-
- if (hw->phy_type != e1000_phy_ife) {
- /* Read the MII 1000Base-T Control Register (Address 9). */
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
- if (ret_val)
- return ret_val;
- } else
- mii_1000t_ctrl_reg=0;
-
- /* Need to parse both autoneg_advertised and fc and set up
- * the appropriate PHY registers. First we will parse for
- * autoneg_advertised software override. Since we can advertise
- * a plethora of combinations, we need to check each bit
- * individually.
- */
-
- /* First we clear all the 10/100 mb speed bits in the Auto-Neg
- * Advertisement Register (Address 4) and the 1000 mb speed bits in
- * the 1000Base-T Control Register (Address 9).
- */
- mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
- mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
-
- DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
-
- /* Do we want to advertise 10 Mb Half Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
- DEBUGOUT("Advertise 10mb Half duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
- }
-
- /* Do we want to advertise 10 Mb Full Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
- DEBUGOUT("Advertise 10mb Full duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
- }
-
- /* Do we want to advertise 100 Mb Half Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
- DEBUGOUT("Advertise 100mb Half duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
- }
-
- /* Do we want to advertise 100 Mb Full Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
- DEBUGOUT("Advertise 100mb Full duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
- }
-
- /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
- if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
- DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
- }
-
- /* Do we want to advertise 1000 Mb Full Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
- DEBUGOUT("Advertise 1000mb Full duplex\n");
- mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
- if (hw->phy_type == e1000_phy_ife) {
- DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
- }
- }
-
- /* Check for a software override of the flow control settings, and
- * setup the PHY advertisement registers accordingly. If
- * auto-negotiation is enabled, then software will have to set the
- * "PAUSE" bits to the correct value in the Auto-Negotiation
- * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause frames
- * but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames
- * but we do not support receiving pause frames).
- * 3: Both Rx and TX flow control (symmetric) are enabled.
- * other: No software override. The flow control configuration
- * in the EEPROM is used.
- */
- switch (hw->fc) {
- case E1000_FC_NONE: /* 0 */
- /* Flow control (RX & TX) is completely disabled by a
- * software over-ride.
- */
- mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- case E1000_FC_RX_PAUSE: /* 1 */
- /* RX Flow control is enabled, and TX Flow control is
- * disabled, by a software over-ride.
- */
- /* Since there really isn't a way to advertise that we are
- * capable of RX Pause ONLY, we will advertise that we
- * support both symmetric and asymmetric RX PAUSE. Later
- * (in e1000_config_fc_after_link_up) we will disable the
- *hw's ability to send PAUSE frames.
- */
- mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- case E1000_FC_TX_PAUSE: /* 2 */
- /* TX Flow control is enabled, and RX Flow control is
- * disabled, by a software over-ride.
- */
- mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
- mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
- break;
- case E1000_FC_FULL: /* 3 */
- /* Flow control (both RX and TX) is enabled by a software
- * over-ride.
- */
- mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- default:
- DEBUGOUT("Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- }
-
- ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
- if (ret_val)
- return ret_val;
-
- DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
-
- if (hw->phy_type != e1000_phy_ife) {
- ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
- if (ret_val)
- return ret_val;
- }
-
- return E1000_SUCCESS;
+ return E1000_SUCCESS;
}
-/******************************************************************************
-* Force PHY speed and duplex settings to hw->forced_speed_duplex
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
+/**
+ * e1000_phy_force_speed_duplex - force link settings
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Force PHY speed and duplex settings to hw->forced_speed_duplex
+ */
static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
{
- u32 ctrl;
- s32 ret_val;
- u16 mii_ctrl_reg;
- u16 mii_status_reg;
- u16 phy_data;
- u16 i;
-
- DEBUGFUNC("e1000_phy_force_speed_duplex");
-
- /* Turn off Flow control if we are forcing speed and duplex. */
- hw->fc = E1000_FC_NONE;
-
- DEBUGOUT1("hw->fc = %d\n", hw->fc);
-
- /* Read the Device Control Register. */
- ctrl = er32(CTRL);
-
- /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- ctrl &= ~(DEVICE_SPEED_MASK);
-
- /* Clear the Auto Speed Detect Enable bit. */
- ctrl &= ~E1000_CTRL_ASDE;
-
- /* Read the MII Control Register. */
- ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
- if (ret_val)
- return ret_val;
-
- /* We need to disable autoneg in order to force link and duplex. */
-
- mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
-
- /* Are we forcing Full or Half Duplex? */
- if (hw->forced_speed_duplex == e1000_100_full ||
- hw->forced_speed_duplex == e1000_10_full) {
- /* We want to force full duplex so we SET the full duplex bits in the
- * Device and MII Control Registers.
- */
- ctrl |= E1000_CTRL_FD;
- mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
- DEBUGOUT("Full Duplex\n");
- } else {
- /* We want to force half duplex so we CLEAR the full duplex bits in
- * the Device and MII Control Registers.
- */
- ctrl &= ~E1000_CTRL_FD;
- mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
- DEBUGOUT("Half Duplex\n");
- }
-
- /* Are we forcing 100Mbps??? */
- if (hw->forced_speed_duplex == e1000_100_full ||
- hw->forced_speed_duplex == e1000_100_half) {
- /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
- ctrl |= E1000_CTRL_SPD_100;
- mii_ctrl_reg |= MII_CR_SPEED_100;
- mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
- DEBUGOUT("Forcing 100mb ");
- } else {
- /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
- ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
- mii_ctrl_reg |= MII_CR_SPEED_10;
- mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
- DEBUGOUT("Forcing 10mb ");
- }
-
- e1000_config_collision_dist(hw);
-
- /* Write the configured values back to the Device Control Reg. */
- ew32(CTRL, ctrl);
-
- if ((hw->phy_type == e1000_phy_m88) ||
- (hw->phy_type == e1000_phy_gg82563)) {
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
- * forced whenever speed are duplex are forced.
- */
- phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
-
- /* Need to reset the PHY or these changes will be ignored */
- mii_ctrl_reg |= MII_CR_RESET;
-
- /* Disable MDI-X support for 10/100 */
- } else if (hw->phy_type == e1000_phy_ife) {
- ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IFE_PMC_AUTO_MDIX;
- phy_data &= ~IFE_PMC_FORCE_MDIX;
-
- ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
- if (ret_val)
- return ret_val;
-
- } else {
- /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
- * forced whenever speed or duplex are forced.
- */
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
- phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
-
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- }
-
- /* Write back the modified PHY MII control register. */
- ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
- if (ret_val)
- return ret_val;
-
- udelay(1);
-
- /* The wait_autoneg_complete flag may be a little misleading here.
- * Since we are forcing speed and duplex, Auto-Neg is not enabled.
- * But we do want to delay for a period while forcing only so we
- * don't generate false No Link messages. So we will wait here
- * only if the user has set wait_autoneg_complete to 1, which is
- * the default.
- */
- if (hw->wait_autoneg_complete) {
- /* We will wait for autoneg to complete. */
- DEBUGOUT("Waiting for forced speed/duplex link.\n");
- mii_status_reg = 0;
-
- /* We will wait for autoneg to complete or 4.5 seconds to expire. */
- for (i = PHY_FORCE_TIME; i > 0; i--) {
- /* Read the MII Status Register and wait for Auto-Neg Complete bit
- * to be set.
- */
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- if (mii_status_reg & MII_SR_LINK_STATUS) break;
- msleep(100);
- }
- if ((i == 0) &&
- ((hw->phy_type == e1000_phy_m88) ||
- (hw->phy_type == e1000_phy_gg82563))) {
- /* We didn't get link. Reset the DSP and wait again for link. */
- ret_val = e1000_phy_reset_dsp(hw);
- if (ret_val) {
- DEBUGOUT("Error Resetting PHY DSP\n");
- return ret_val;
- }
- }
- /* This loop will early-out if the link condition has been met. */
- for (i = PHY_FORCE_TIME; i > 0; i--) {
- if (mii_status_reg & MII_SR_LINK_STATUS) break;
- msleep(100);
- /* Read the MII Status Register and wait for Auto-Neg Complete bit
- * to be set.
- */
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
- }
- }
-
- if (hw->phy_type == e1000_phy_m88) {
- /* Because we reset the PHY above, we need to re-force TX_CLK in the
- * Extended PHY Specific Control Register to 25MHz clock. This value
- * defaults back to a 2.5MHz clock when the PHY is reset.
- */
- ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
- ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- /* In addition, because of the s/w reset above, we need to enable CRS on
- * TX. This must be set for both full and half duplex operation.
- */
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
- (!hw->autoneg) && (hw->forced_speed_duplex == e1000_10_full ||
- hw->forced_speed_duplex == e1000_10_half)) {
- ret_val = e1000_polarity_reversal_workaround(hw);
- if (ret_val)
- return ret_val;
- }
- } else if (hw->phy_type == e1000_phy_gg82563) {
- /* The TX_CLK of the Extended PHY Specific Control Register defaults
- * to 2.5MHz on a reset. We need to re-force it back to 25MHz, if
- * we're not in a forced 10/duplex configuration. */
- ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
- if ((hw->forced_speed_duplex == e1000_10_full) ||
- (hw->forced_speed_duplex == e1000_10_half))
- phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ;
- else
- phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ;
-
- /* Also due to the reset, we need to enable CRS on Tx. */
- phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
-
- ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- }
- return E1000_SUCCESS;
+ u32 ctrl;
+ s32 ret_val;
+ u16 mii_ctrl_reg;
+ u16 mii_status_reg;
+ u16 phy_data;
+ u16 i;
+
+ DEBUGFUNC("e1000_phy_force_speed_duplex");
+
+ /* Turn off Flow control if we are forcing speed and duplex. */
+ hw->fc = E1000_FC_NONE;
+
+ DEBUGOUT1("hw->fc = %d\n", hw->fc);
+
+ /* Read the Device Control Register. */
+ ctrl = er32(CTRL);
+
+ /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ ctrl &= ~(DEVICE_SPEED_MASK);
+
+ /* Clear the Auto Speed Detect Enable bit. */
+ ctrl &= ~E1000_CTRL_ASDE;
+
+ /* Read the MII Control Register. */
+ ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
+ if (ret_val)
+ return ret_val;
+
+ /* We need to disable autoneg in order to force link and duplex. */
+
+ mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
+
+ /* Are we forcing Full or Half Duplex? */
+ if (hw->forced_speed_duplex == e1000_100_full ||
+ hw->forced_speed_duplex == e1000_10_full) {
+ /* We want to force full duplex so we SET the full duplex bits in the
+ * Device and MII Control Registers.
+ */
+ ctrl |= E1000_CTRL_FD;
+ mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
+ DEBUGOUT("Full Duplex\n");
+ } else {
+ /* We want to force half duplex so we CLEAR the full duplex bits in
+ * the Device and MII Control Registers.
+ */
+ ctrl &= ~E1000_CTRL_FD;
+ mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
+ DEBUGOUT("Half Duplex\n");
+ }
+
+ /* Are we forcing 100Mbps??? */
+ if (hw->forced_speed_duplex == e1000_100_full ||
+ hw->forced_speed_duplex == e1000_100_half) {
+ /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
+ ctrl |= E1000_CTRL_SPD_100;
+ mii_ctrl_reg |= MII_CR_SPEED_100;
+ mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
+ DEBUGOUT("Forcing 100mb ");
+ } else {
+ /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
+ ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+ mii_ctrl_reg |= MII_CR_SPEED_10;
+ mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
+ DEBUGOUT("Forcing 10mb ");
+ }
+
+ e1000_config_collision_dist(hw);
+
+ /* Write the configured values back to the Device Control Reg. */
+ ew32(CTRL, ctrl);
+
+ if (hw->phy_type == e1000_phy_m88) {
+ ret_val =
+ e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
+ * forced whenever speed are duplex are forced.
+ */
+ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+ ret_val =
+ e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
+
+ /* Need to reset the PHY or these changes will be ignored */
+ mii_ctrl_reg |= MII_CR_RESET;
+
+ /* Disable MDI-X support for 10/100 */
+ } else {
+ /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
+ * forced whenever speed or duplex are forced.
+ */
+ ret_val =
+ e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+ phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+
+ ret_val =
+ e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* Write back the modified PHY MII control register. */
+ ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
+ if (ret_val)
+ return ret_val;
+
+ udelay(1);
+
+ /* The wait_autoneg_complete flag may be a little misleading here.
+ * Since we are forcing speed and duplex, Auto-Neg is not enabled.
+ * But we do want to delay for a period while forcing only so we
+ * don't generate false No Link messages. So we will wait here
+ * only if the user has set wait_autoneg_complete to 1, which is
+ * the default.
+ */
+ if (hw->wait_autoneg_complete) {
+ /* We will wait for autoneg to complete. */
+ DEBUGOUT("Waiting for forced speed/duplex link.\n");
+ mii_status_reg = 0;
+
+ /* We will wait for autoneg to complete or 4.5 seconds to expire. */
+ for (i = PHY_FORCE_TIME; i > 0; i--) {
+ /* Read the MII Status Register and wait for Auto-Neg Complete bit
+ * to be set.
+ */
+ ret_val =
+ e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ return ret_val;
+
+ ret_val =
+ e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ return ret_val;
+
+ if (mii_status_reg & MII_SR_LINK_STATUS)
+ break;
+ msleep(100);
+ }
+ if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
+ /* We didn't get link. Reset the DSP and wait again for link. */
+ ret_val = e1000_phy_reset_dsp(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Resetting PHY DSP\n");
+ return ret_val;
+ }
+ }
+ /* This loop will early-out if the link condition has been met. */
+ for (i = PHY_FORCE_TIME; i > 0; i--) {
+ if (mii_status_reg & MII_SR_LINK_STATUS)
+ break;
+ msleep(100);
+ /* Read the MII Status Register and wait for Auto-Neg Complete bit
+ * to be set.
+ */
+ ret_val =
+ e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ return ret_val;
+
+ ret_val =
+ e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ return ret_val;
+ }
+ }
+
+ if (hw->phy_type == e1000_phy_m88) {
+ /* Because we reset the PHY above, we need to re-force TX_CLK in the
+ * Extended PHY Specific Control Register to 25MHz clock. This value
+ * defaults back to a 2.5MHz clock when the PHY is reset.
+ */
+ ret_val =
+ e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data |= M88E1000_EPSCR_TX_CLK_25;
+ ret_val =
+ e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* In addition, because of the s/w reset above, we need to enable CRS on
+ * TX. This must be set for both full and half duplex operation.
+ */
+ ret_val =
+ e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+ ret_val =
+ e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543)
+ && (!hw->autoneg)
+ && (hw->forced_speed_duplex == e1000_10_full
+ || hw->forced_speed_duplex == e1000_10_half)) {
+ ret_val = e1000_polarity_reversal_workaround(hw);
+ if (ret_val)
+ return ret_val;
+ }
+ }
+ return E1000_SUCCESS;
}
-/******************************************************************************
-* Sets the collision distance in the Transmit Control register
-*
-* hw - Struct containing variables accessed by shared code
-*
-* Link should have been established previously. Reads the speed and duplex
-* information from the Device Status register.
-******************************************************************************/
+/**
+ * e1000_config_collision_dist - set collision distance register
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Sets the collision distance in the Transmit Control register.
+ * Link should have been established previously. Reads the speed and duplex
+ * information from the Device Status register.
+ */
void e1000_config_collision_dist(struct e1000_hw *hw)
{
- u32 tctl, coll_dist;
+ u32 tctl, coll_dist;
- DEBUGFUNC("e1000_config_collision_dist");
+ DEBUGFUNC("e1000_config_collision_dist");
- if (hw->mac_type < e1000_82543)
- coll_dist = E1000_COLLISION_DISTANCE_82542;
- else
- coll_dist = E1000_COLLISION_DISTANCE;
+ if (hw->mac_type < e1000_82543)
+ coll_dist = E1000_COLLISION_DISTANCE_82542;
+ else
+ coll_dist = E1000_COLLISION_DISTANCE;
- tctl = er32(TCTL);
+ tctl = er32(TCTL);
- tctl &= ~E1000_TCTL_COLD;
- tctl |= coll_dist << E1000_COLD_SHIFT;
+ tctl &= ~E1000_TCTL_COLD;
+ tctl |= coll_dist << E1000_COLD_SHIFT;
- ew32(TCTL, tctl);
- E1000_WRITE_FLUSH();
+ ew32(TCTL, tctl);
+ E1000_WRITE_FLUSH();
}
-/******************************************************************************
-* Sets MAC speed and duplex settings to reflect the those in the PHY
-*
-* hw - Struct containing variables accessed by shared code
-* mii_reg - data to write to the MII control register
-*
-* The contents of the PHY register containing the needed information need to
-* be passed in.
-******************************************************************************/
+/**
+ * e1000_config_mac_to_phy - sync phy and mac settings
+ * @hw: Struct containing variables accessed by shared code
+ * @mii_reg: data to write to the MII control register
+ *
+ * Sets MAC speed and duplex settings to reflect the those in the PHY
+ * The contents of the PHY register containing the needed information need to
+ * be passed in.
+ */
static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
{
- u32 ctrl;
- s32 ret_val;
- u16 phy_data;
-
- DEBUGFUNC("e1000_config_mac_to_phy");
-
- /* 82544 or newer MAC, Auto Speed Detection takes care of
- * MAC speed/duplex configuration.*/
- if (hw->mac_type >= e1000_82544)
- return E1000_SUCCESS;
-
- /* Read the Device Control Register and set the bits to Force Speed
- * and Duplex.
- */
- ctrl = er32(CTRL);
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
-
- /* Set up duplex in the Device Control and Transmit Control
- * registers depending on negotiated values.
- */
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- if (phy_data & M88E1000_PSSR_DPLX)
- ctrl |= E1000_CTRL_FD;
- else
- ctrl &= ~E1000_CTRL_FD;
-
- e1000_config_collision_dist(hw);
-
- /* Set up speed in the Device Control register depending on
- * negotiated values.
- */
- if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
- ctrl |= E1000_CTRL_SPD_1000;
- else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
- ctrl |= E1000_CTRL_SPD_100;
-
- /* Write the configured values back to the Device Control Reg. */
- ew32(CTRL, ctrl);
- return E1000_SUCCESS;
+ u32 ctrl;
+ s32 ret_val;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_config_mac_to_phy");
+
+ /* 82544 or newer MAC, Auto Speed Detection takes care of
+ * MAC speed/duplex configuration.*/
+ if (hw->mac_type >= e1000_82544)
+ return E1000_SUCCESS;
+
+ /* Read the Device Control Register and set the bits to Force Speed
+ * and Duplex.
+ */
+ ctrl = er32(CTRL);
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
+
+ /* Set up duplex in the Device Control and Transmit Control
+ * registers depending on negotiated values.
+ */
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ if (phy_data & M88E1000_PSSR_DPLX)
+ ctrl |= E1000_CTRL_FD;
+ else
+ ctrl &= ~E1000_CTRL_FD;
+
+ e1000_config_collision_dist(hw);
+
+ /* Set up speed in the Device Control register depending on
+ * negotiated values.
+ */
+ if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
+ ctrl |= E1000_CTRL_SPD_1000;
+ else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
+ ctrl |= E1000_CTRL_SPD_100;
+
+ /* Write the configured values back to the Device Control Reg. */
+ ew32(CTRL, ctrl);
+ return E1000_SUCCESS;
}
-/******************************************************************************
- * Forces the MAC's flow control settings.
- *
- * hw - Struct containing variables accessed by shared code
+/**
+ * e1000_force_mac_fc - force flow control settings
+ * @hw: Struct containing variables accessed by shared code
*
+ * Forces the MAC's flow control settings.
* Sets the TFCE and RFCE bits in the device control register to reflect
* the adapter settings. TFCE and RFCE need to be explicitly set by
* software when a Copper PHY is used because autonegotiation is managed
* by the PHY rather than the MAC. Software must also configure these
* bits when link is forced on a fiber connection.
- *****************************************************************************/
+ */
s32 e1000_force_mac_fc(struct e1000_hw *hw)
{
- u32 ctrl;
-
- DEBUGFUNC("e1000_force_mac_fc");
-
- /* Get the current configuration of the Device Control Register */
- ctrl = er32(CTRL);
-
- /* Because we didn't get link via the internal auto-negotiation
- * mechanism (we either forced link or we got link via PHY
- * auto-neg), we have to manually enable/disable transmit an
- * receive flow control.
- *
- * The "Case" statement below enables/disable flow control
- * according to the "hw->fc" parameter.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause
- * frames but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames
- * frames but we do not receive pause frames).
- * 3: Both Rx and TX flow control (symmetric) is enabled.
- * other: No other values should be possible at this point.
- */
-
- switch (hw->fc) {
- case E1000_FC_NONE:
- ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
- break;
- case E1000_FC_RX_PAUSE:
- ctrl &= (~E1000_CTRL_TFCE);
- ctrl |= E1000_CTRL_RFCE;
- break;
- case E1000_FC_TX_PAUSE:
- ctrl &= (~E1000_CTRL_RFCE);
- ctrl |= E1000_CTRL_TFCE;
- break;
- case E1000_FC_FULL:
- ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
- break;
- default:
- DEBUGOUT("Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- }
-
- /* Disable TX Flow Control for 82542 (rev 2.0) */
- if (hw->mac_type == e1000_82542_rev2_0)
- ctrl &= (~E1000_CTRL_TFCE);
-
- ew32(CTRL, ctrl);
- return E1000_SUCCESS;
+ u32 ctrl;
+
+ DEBUGFUNC("e1000_force_mac_fc");
+
+ /* Get the current configuration of the Device Control Register */
+ ctrl = er32(CTRL);
+
+ /* Because we didn't get link via the internal auto-negotiation
+ * mechanism (we either forced link or we got link via PHY
+ * auto-neg), we have to manually enable/disable transmit an
+ * receive flow control.
+ *
+ * The "Case" statement below enables/disable flow control
+ * according to the "hw->fc" parameter.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause
+ * frames but not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames
+ * frames but we do not receive pause frames).
+ * 3: Both Rx and TX flow control (symmetric) is enabled.
+ * other: No other values should be possible at this point.
+ */
+
+ switch (hw->fc) {
+ case E1000_FC_NONE:
+ ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
+ break;
+ case E1000_FC_RX_PAUSE:
+ ctrl &= (~E1000_CTRL_TFCE);
+ ctrl |= E1000_CTRL_RFCE;
+ break;
+ case E1000_FC_TX_PAUSE:
+ ctrl &= (~E1000_CTRL_RFCE);
+ ctrl |= E1000_CTRL_TFCE;
+ break;
+ case E1000_FC_FULL:
+ ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ /* Disable TX Flow Control for 82542 (rev 2.0) */
+ if (hw->mac_type == e1000_82542_rev2_0)
+ ctrl &= (~E1000_CTRL_TFCE);
+
+ ew32(CTRL, ctrl);
+ return E1000_SUCCESS;
}
-/******************************************************************************
- * Configures flow control settings after link is established
- *
- * hw - Struct containing variables accessed by shared code
+/**
+ * e1000_config_fc_after_link_up - configure flow control after autoneg
+ * @hw: Struct containing variables accessed by shared code
*
+ * Configures flow control settings after link is established
* Should be called immediately after a valid link has been established.
* Forces MAC flow control settings if link was forced. When in MII/GMII mode
* and autonegotiation is enabled, the MAC flow control settings will be set
* based on the flow control negotiated by the PHY. In TBI mode, the TFCE
- * and RFCE bits will be automaticaly set to the negotiated flow control mode.
- *****************************************************************************/
+ * and RFCE bits will be automatically set to the negotiated flow control mode.
+ */
static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
{
- s32 ret_val;
- u16 mii_status_reg;
- u16 mii_nway_adv_reg;
- u16 mii_nway_lp_ability_reg;
- u16 speed;
- u16 duplex;
-
- DEBUGFUNC("e1000_config_fc_after_link_up");
-
- /* Check for the case where we have fiber media and auto-neg failed
- * so we had to force link. In this case, we need to force the
- * configuration of the MAC to match the "fc" parameter.
- */
- if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
- ((hw->media_type == e1000_media_type_internal_serdes) &&
- (hw->autoneg_failed)) ||
- ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) {
- ret_val = e1000_force_mac_fc(hw);
- if (ret_val) {
- DEBUGOUT("Error forcing flow control settings\n");
- return ret_val;
- }
- }
-
- /* Check for the case where we have copper media and auto-neg is
- * enabled. In this case, we need to check and see if Auto-Neg
- * has completed, and if so, how the PHY and link partner has
- * flow control configured.
- */
- if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
- /* Read the MII Status Register and check to see if AutoNeg
- * has completed. We read this twice because this reg has
- * some "sticky" (latched) bits.
- */
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
- /* The AutoNeg process has completed, so we now need to
- * read both the Auto Negotiation Advertisement Register
- * (Address 4) and the Auto_Negotiation Base Page Ability
- * Register (Address 5) to determine how flow control was
- * negotiated.
- */
- ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
- &mii_nway_adv_reg);
- if (ret_val)
- return ret_val;
- ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
- &mii_nway_lp_ability_reg);
- if (ret_val)
- return ret_val;
-
- /* Two bits in the Auto Negotiation Advertisement Register
- * (Address 4) and two bits in the Auto Negotiation Base
- * Page Ability Register (Address 5) determine flow control
- * for both the PHY and the link partner. The following
- * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
- * 1999, describes these PAUSE resolution bits and how flow
- * control is determined based upon these settings.
- * NOTE: DC = Don't Care
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
- *-------|---------|-------|---------|--------------------
- * 0 | 0 | DC | DC | E1000_FC_NONE
- * 0 | 1 | 0 | DC | E1000_FC_NONE
- * 0 | 1 | 1 | 0 | E1000_FC_NONE
- * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
- * 1 | 0 | 0 | DC | E1000_FC_NONE
- * 1 | DC | 1 | DC | E1000_FC_FULL
- * 1 | 1 | 0 | 0 | E1000_FC_NONE
- * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
- *
- */
- /* Are both PAUSE bits set to 1? If so, this implies
- * Symmetric Flow Control is enabled at both ends. The
- * ASM_DIR bits are irrelevant per the spec.
- *
- * For Symmetric Flow Control:
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | DC | 1 | DC | E1000_FC_FULL
- *
- */
- if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
- /* Now we need to check if the user selected RX ONLY
- * of pause frames. In this case, we had to advertise
- * FULL flow control because we could not advertise RX
- * ONLY. Hence, we must now check to see if we need to
- * turn OFF the TRANSMISSION of PAUSE frames.
- */
- if (hw->original_fc == E1000_FC_FULL) {
- hw->fc = E1000_FC_FULL;
- DEBUGOUT("Flow Control = FULL.\n");
- } else {
- hw->fc = E1000_FC_RX_PAUSE;
- DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
- }
- }
- /* For receiving PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
- *
- */
- else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
- hw->fc = E1000_FC_TX_PAUSE;
- DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
- }
- /* For transmitting PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
- *
- */
- else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
- hw->fc = E1000_FC_RX_PAUSE;
- DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
- }
- /* Per the IEEE spec, at this point flow control should be
- * disabled. However, we want to consider that we could
- * be connected to a legacy switch that doesn't advertise
- * desired flow control, but can be forced on the link
- * partner. So if we advertised no flow control, that is
- * what we will resolve to. If we advertised some kind of
- * receive capability (Rx Pause Only or Full Flow Control)
- * and the link partner advertised none, we will configure
- * ourselves to enable Rx Flow Control only. We can do
- * this safely for two reasons: If the link partner really
- * didn't want flow control enabled, and we enable Rx, no
- * harm done since we won't be receiving any PAUSE frames
- * anyway. If the intent on the link partner was to have
- * flow control enabled, then by us enabling RX only, we
- * can at least receive pause frames and process them.
- * This is a good idea because in most cases, since we are
- * predominantly a server NIC, more times than not we will
- * be asked to delay transmission of packets than asking
- * our link partner to pause transmission of frames.
- */
- else if ((hw->original_fc == E1000_FC_NONE ||
- hw->original_fc == E1000_FC_TX_PAUSE) ||
- hw->fc_strict_ieee) {
- hw->fc = E1000_FC_NONE;
- DEBUGOUT("Flow Control = NONE.\n");
- } else {
- hw->fc = E1000_FC_RX_PAUSE;
- DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
- }
-
- /* Now we need to do one last check... If we auto-
- * negotiated to HALF DUPLEX, flow control should not be
- * enabled per IEEE 802.3 spec.
- */
- ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
- if (ret_val) {
- DEBUGOUT("Error getting link speed and duplex\n");
- return ret_val;
- }
-
- if (duplex == HALF_DUPLEX)
- hw->fc = E1000_FC_NONE;
-
- /* Now we call a subroutine to actually force the MAC
- * controller to use the correct flow control settings.
- */
- ret_val = e1000_force_mac_fc(hw);
- if (ret_val) {
- DEBUGOUT("Error forcing flow control settings\n");
- return ret_val;
- }
- } else {
- DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
- }
- }
- return E1000_SUCCESS;
+ s32 ret_val;
+ u16 mii_status_reg;
+ u16 mii_nway_adv_reg;
+ u16 mii_nway_lp_ability_reg;
+ u16 speed;
+ u16 duplex;
+
+ DEBUGFUNC("e1000_config_fc_after_link_up");
+
+ /* Check for the case where we have fiber media and auto-neg failed
+ * so we had to force link. In this case, we need to force the
+ * configuration of the MAC to match the "fc" parameter.
+ */
+ if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
+ || ((hw->media_type == e1000_media_type_internal_serdes)
+ && (hw->autoneg_failed))
+ || ((hw->media_type == e1000_media_type_copper)
+ && (!hw->autoneg))) {
+ ret_val = e1000_force_mac_fc(hw);
+ if (ret_val) {
+ DEBUGOUT("Error forcing flow control settings\n");
+ return ret_val;
+ }
+ }
+
+ /* Check for the case where we have copper media and auto-neg is
+ * enabled. In this case, we need to check and see if Auto-Neg
+ * has completed, and if so, how the PHY and link partner has
+ * flow control configured.
+ */
+ if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
+ /* Read the MII Status Register and check to see if AutoNeg
+ * has completed. We read this twice because this reg has
+ * some "sticky" (latched) bits.
+ */
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ return ret_val;
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ return ret_val;
+
+ if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
+ /* The AutoNeg process has completed, so we now need to
+ * read both the Auto Negotiation Advertisement Register
+ * (Address 4) and the Auto_Negotiation Base Page Ability
+ * Register (Address 5) to determine how flow control was
+ * negotiated.
+ */
+ ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
+ &mii_nway_adv_reg);
+ if (ret_val)
+ return ret_val;
+ ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
+ &mii_nway_lp_ability_reg);
+ if (ret_val)
+ return ret_val;
+
+ /* Two bits in the Auto Negotiation Advertisement Register
+ * (Address 4) and two bits in the Auto Negotiation Base
+ * Page Ability Register (Address 5) determine flow control
+ * for both the PHY and the link partner. The following
+ * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+ * 1999, describes these PAUSE resolution bits and how flow
+ * control is determined based upon these settings.
+ * NOTE: DC = Don't Care
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+ *-------|---------|-------|---------|--------------------
+ * 0 | 0 | DC | DC | E1000_FC_NONE
+ * 0 | 1 | 0 | DC | E1000_FC_NONE
+ * 0 | 1 | 1 | 0 | E1000_FC_NONE
+ * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
+ * 1 | 0 | 0 | DC | E1000_FC_NONE
+ * 1 | DC | 1 | DC | E1000_FC_FULL
+ * 1 | 1 | 0 | 0 | E1000_FC_NONE
+ * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
+ *
+ */
+ /* Are both PAUSE bits set to 1? If so, this implies
+ * Symmetric Flow Control is enabled at both ends. The
+ * ASM_DIR bits are irrelevant per the spec.
+ *
+ * For Symmetric Flow Control:
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 1 | DC | 1 | DC | E1000_FC_FULL
+ *
+ */
+ if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+ /* Now we need to check if the user selected RX ONLY
+ * of pause frames. In this case, we had to advertise
+ * FULL flow control because we could not advertise RX
+ * ONLY. Hence, we must now check to see if we need to
+ * turn OFF the TRANSMISSION of PAUSE frames.
+ */
+ if (hw->original_fc == E1000_FC_FULL) {
+ hw->fc = E1000_FC_FULL;
+ DEBUGOUT("Flow Control = FULL.\n");
+ } else {
+ hw->fc = E1000_FC_RX_PAUSE;
+ DEBUGOUT
+ ("Flow Control = RX PAUSE frames only.\n");
+ }
+ }
+ /* For receiving PAUSE frames ONLY.
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
+ *
+ */
+ else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
+ {
+ hw->fc = E1000_FC_TX_PAUSE;
+ DEBUGOUT
+ ("Flow Control = TX PAUSE frames only.\n");
+ }
+ /* For transmitting PAUSE frames ONLY.
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
+ *
+ */
+ else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
+ {
+ hw->fc = E1000_FC_RX_PAUSE;
+ DEBUGOUT
+ ("Flow Control = RX PAUSE frames only.\n");
+ }
+ /* Per the IEEE spec, at this point flow control should be
+ * disabled. However, we want to consider that we could
+ * be connected to a legacy switch that doesn't advertise
+ * desired flow control, but can be forced on the link
+ * partner. So if we advertised no flow control, that is
+ * what we will resolve to. If we advertised some kind of
+ * receive capability (Rx Pause Only or Full Flow Control)
+ * and the link partner advertised none, we will configure
+ * ourselves to enable Rx Flow Control only. We can do
+ * this safely for two reasons: If the link partner really
+ * didn't want flow control enabled, and we enable Rx, no
+ * harm done since we won't be receiving any PAUSE frames
+ * anyway. If the intent on the link partner was to have
+ * flow control enabled, then by us enabling RX only, we
+ * can at least receive pause frames and process them.
+ * This is a good idea because in most cases, since we are
+ * predominantly a server NIC, more times than not we will
+ * be asked to delay transmission of packets than asking
+ * our link partner to pause transmission of frames.
+ */
+ else if ((hw->original_fc == E1000_FC_NONE ||
+ hw->original_fc == E1000_FC_TX_PAUSE) ||
+ hw->fc_strict_ieee) {
+ hw->fc = E1000_FC_NONE;
+ DEBUGOUT("Flow Control = NONE.\n");
+ } else {
+ hw->fc = E1000_FC_RX_PAUSE;
+ DEBUGOUT
+ ("Flow Control = RX PAUSE frames only.\n");
+ }
+
+ /* Now we need to do one last check... If we auto-
+ * negotiated to HALF DUPLEX, flow control should not be
+ * enabled per IEEE 802.3 spec.
+ */
+ ret_val =
+ e1000_get_speed_and_duplex(hw, &speed, &duplex);
+ if (ret_val) {
+ DEBUGOUT
+ ("Error getting link speed and duplex\n");
+ return ret_val;
+ }
+
+ if (duplex == HALF_DUPLEX)
+ hw->fc = E1000_FC_NONE;
+
+ /* Now we call a subroutine to actually force the MAC
+ * controller to use the correct flow control settings.
+ */
+ ret_val = e1000_force_mac_fc(hw);
+ if (ret_val) {
+ DEBUGOUT
+ ("Error forcing flow control settings\n");
+ return ret_val;
+ }
+ } else {
+ DEBUGOUT
+ ("Copper PHY and Auto Neg has not completed.\n");
+ }
+ }
+ return E1000_SUCCESS;
}
-/******************************************************************************
- * Checks to see if the link status of the hardware has changed.
+/**
+ * e1000_check_for_serdes_link_generic - Check for link (Serdes)
+ * @hw: pointer to the HW structure
*
- * hw - Struct containing variables accessed by shared code
+ * Checks for link up on the hardware. If link is not up and we have
+ * a signal, then we need to force link up.
+ */
+static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
+{
+ u32 rxcw;
+ u32 ctrl;
+ u32 status;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_check_for_serdes_link_generic");
+
+ ctrl = er32(CTRL);
+ status = er32(STATUS);
+ rxcw = er32(RXCW);
+
+ /*
+ * If we don't have link (auto-negotiation failed or link partner
+ * cannot auto-negotiate), and our link partner is not trying to
+ * auto-negotiate with us (we are receiving idles or data),
+ * we need to force link up. We also need to give auto-negotiation
+ * time to complete.
+ */
+ /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+ if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
+ if (hw->autoneg_failed == 0) {
+ hw->autoneg_failed = 1;
+ goto out;
+ }
+ DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
+
+ /* Disable auto-negotiation in the TXCW register */
+ ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
+
+ /* Force link-up and also force full-duplex. */
+ ctrl = er32(CTRL);
+ ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+ ew32(CTRL, ctrl);
+
+ /* Configure Flow Control after forcing link up. */
+ ret_val = e1000_config_fc_after_link_up(hw);
+ if (ret_val) {
+ DEBUGOUT("Error configuring flow control\n");
+ goto out;
+ }
+ } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+ /*
+ * If we are forcing link and we are receiving /C/ ordered
+ * sets, re-enable auto-negotiation in the TXCW register
+ * and disable forced link in the Device Control register
+ * in an attempt to auto-negotiate with our link partner.
+ */
+ DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
+ ew32(TXCW, hw->txcw);
+ ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+ hw->serdes_has_link = true;
+ } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
+ /*
+ * If we force link for non-auto-negotiation switch, check
+ * link status based on MAC synchronization for internal
+ * serdes media type.
+ */
+ /* SYNCH bit and IV bit are sticky. */
+ udelay(10);
+ rxcw = er32(RXCW);
+ if (rxcw & E1000_RXCW_SYNCH) {
+ if (!(rxcw & E1000_RXCW_IV)) {
+ hw->serdes_has_link = true;
+ DEBUGOUT("SERDES: Link up - forced.\n");
+ }
+ } else {
+ hw->serdes_has_link = false;
+ DEBUGOUT("SERDES: Link down - force failed.\n");
+ }
+ }
+
+ if (E1000_TXCW_ANE & er32(TXCW)) {
+ status = er32(STATUS);
+ if (status & E1000_STATUS_LU) {
+ /* SYNCH bit and IV bit are sticky, so reread rxcw. */
+ udelay(10);
+ rxcw = er32(RXCW);
+ if (rxcw & E1000_RXCW_SYNCH) {
+ if (!(rxcw & E1000_RXCW_IV)) {
+ hw->serdes_has_link = true;
+ DEBUGOUT("SERDES: Link up - autoneg "
+ "completed successfully.\n");
+ } else {
+ hw->serdes_has_link = false;
+ DEBUGOUT("SERDES: Link down - invalid"
+ "codewords detected in autoneg.\n");
+ }
+ } else {
+ hw->serdes_has_link = false;
+ DEBUGOUT("SERDES: Link down - no sync.\n");
+ }
+ } else {
+ hw->serdes_has_link = false;
+ DEBUGOUT("SERDES: Link down - autoneg failed\n");
+ }
+ }
+
+ out:
+ return ret_val;
+}
+
+/**
+ * e1000_check_for_link
+ * @hw: Struct containing variables accessed by shared code
*
+ * Checks to see if the link status of the hardware has changed.
* Called by any function that needs to check the link status of the adapter.
- *****************************************************************************/
+ */
s32 e1000_check_for_link(struct e1000_hw *hw)
{
- u32 rxcw = 0;
- u32 ctrl;
- u32 status;
- u32 rctl;
- u32 icr;
- u32 signal = 0;
- s32 ret_val;
- u16 phy_data;
-
- DEBUGFUNC("e1000_check_for_link");
-
- ctrl = er32(CTRL);
- status = er32(STATUS);
-
- /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
- * set when the optics detect a signal. On older adapters, it will be
- * cleared when there is a signal. This applies to fiber media only.
- */
- if ((hw->media_type == e1000_media_type_fiber) ||
- (hw->media_type == e1000_media_type_internal_serdes)) {
- rxcw = er32(RXCW);
-
- if (hw->media_type == e1000_media_type_fiber) {
- signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
- if (status & E1000_STATUS_LU)
- hw->get_link_status = false;
- }
- }
-
- /* If we have a copper PHY then we only want to go out to the PHY
- * registers to see if Auto-Neg has completed and/or if our link
- * status has changed. The get_link_status flag will be set if we
- * receive a Link Status Change interrupt or we have Rx Sequence
- * Errors.
- */
- if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
- /* First we want to see if the MII Status Register reports
- * link. If so, then we want to get the current speed/duplex
- * of the PHY.
- * Read the register twice since the link bit is sticky.
- */
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- if (phy_data & MII_SR_LINK_STATUS) {
- hw->get_link_status = false;
- /* Check if there was DownShift, must be checked immediately after
- * link-up */
- e1000_check_downshift(hw);
-
- /* If we are on 82544 or 82543 silicon and speed/duplex
- * are forced to 10H or 10F, then we will implement the polarity
- * reversal workaround. We disable interrupts first, and upon
- * returning, place the devices interrupt state to its previous
- * value except for the link status change interrupt which will
- * happen due to the execution of this workaround.
- */
-
- if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
- (!hw->autoneg) &&
- (hw->forced_speed_duplex == e1000_10_full ||
- hw->forced_speed_duplex == e1000_10_half)) {
- ew32(IMC, 0xffffffff);
- ret_val = e1000_polarity_reversal_workaround(hw);
- icr = er32(ICR);
- ew32(ICS, (icr & ~E1000_ICS_LSC));
- ew32(IMS, IMS_ENABLE_MASK);
- }
-
- } else {
- /* No link detected */
- e1000_config_dsp_after_link_change(hw, false);
- return 0;
- }
-
- /* If we are forcing speed/duplex, then we simply return since
- * we have already determined whether we have link or not.
- */
- if (!hw->autoneg) return -E1000_ERR_CONFIG;
-
- /* optimize the dsp settings for the igp phy */
- e1000_config_dsp_after_link_change(hw, true);
-
- /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
- * have Si on board that is 82544 or newer, Auto
- * Speed Detection takes care of MAC speed/duplex
- * configuration. So we only need to configure Collision
- * Distance in the MAC. Otherwise, we need to force
- * speed/duplex on the MAC to the current PHY speed/duplex
- * settings.
- */
- if (hw->mac_type >= e1000_82544)
- e1000_config_collision_dist(hw);
- else {
- ret_val = e1000_config_mac_to_phy(hw);
- if (ret_val) {
- DEBUGOUT("Error configuring MAC to PHY settings\n");
- return ret_val;
- }
- }
-
- /* Configure Flow Control now that Auto-Neg has completed. First, we
- * need to restore the desired flow control settings because we may
- * have had to re-autoneg with a different link partner.
- */
- ret_val = e1000_config_fc_after_link_up(hw);
- if (ret_val) {
- DEBUGOUT("Error configuring flow control\n");
- return ret_val;
- }
-
- /* At this point we know that we are on copper and we have
- * auto-negotiated link. These are conditions for checking the link
- * partner capability register. We use the link speed to determine if
- * TBI compatibility needs to be turned on or off. If the link is not
- * at gigabit speed, then TBI compatibility is not needed. If we are
- * at gigabit speed, we turn on TBI compatibility.
- */
- if (hw->tbi_compatibility_en) {
- u16 speed, duplex;
- ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
- if (ret_val) {
- DEBUGOUT("Error getting link speed and duplex\n");
- return ret_val;
- }
- if (speed != SPEED_1000) {
- /* If link speed is not set to gigabit speed, we do not need
- * to enable TBI compatibility.
- */
- if (hw->tbi_compatibility_on) {
- /* If we previously were in the mode, turn it off. */
- rctl = er32(RCTL);
- rctl &= ~E1000_RCTL_SBP;
- ew32(RCTL, rctl);
- hw->tbi_compatibility_on = false;
- }
- } else {
- /* If TBI compatibility is was previously off, turn it on. For
- * compatibility with a TBI link partner, we will store bad
- * packets. Some frames have an additional byte on the end and
- * will look like CRC errors to the hardware.
- */
- if (!hw->tbi_compatibility_on) {
- hw->tbi_compatibility_on = true;
- rctl = er32(RCTL);
- rctl |= E1000_RCTL_SBP;
- ew32(RCTL, rctl);
- }
- }
- }
- }
- /* If we don't have link (auto-negotiation failed or link partner cannot
- * auto-negotiate), the cable is plugged in (we have signal), and our
- * link partner is not trying to auto-negotiate with us (we are receiving
- * idles or data), we need to force link up. We also need to give
- * auto-negotiation time to complete, in case the cable was just plugged
- * in. The autoneg_failed flag does this.
- */
- else if ((((hw->media_type == e1000_media_type_fiber) &&
- ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
- (hw->media_type == e1000_media_type_internal_serdes)) &&
- (!(status & E1000_STATUS_LU)) &&
- (!(rxcw & E1000_RXCW_C))) {
- if (hw->autoneg_failed == 0) {
- hw->autoneg_failed = 1;
- return 0;
- }
- DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
-
- /* Disable auto-negotiation in the TXCW register */
- ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
-
- /* Force link-up and also force full-duplex. */
- ctrl = er32(CTRL);
- ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
- ew32(CTRL, ctrl);
-
- /* Configure Flow Control after forcing link up. */
- ret_val = e1000_config_fc_after_link_up(hw);
- if (ret_val) {
- DEBUGOUT("Error configuring flow control\n");
- return ret_val;
- }
- }
- /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
- * auto-negotiation in the TXCW register and disable forced link in the
- * Device Control register in an attempt to auto-negotiate with our link
- * partner.
- */
- else if (((hw->media_type == e1000_media_type_fiber) ||
- (hw->media_type == e1000_media_type_internal_serdes)) &&
- (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
- DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
- ew32(TXCW, hw->txcw);
- ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
-
- hw->serdes_link_down = false;
- }
- /* If we force link for non-auto-negotiation switch, check link status
- * based on MAC synchronization for internal serdes media type.
- */
- else if ((hw->media_type == e1000_media_type_internal_serdes) &&
- !(E1000_TXCW_ANE & er32(TXCW))) {
- /* SYNCH bit and IV bit are sticky. */
- udelay(10);
- if (E1000_RXCW_SYNCH & er32(RXCW)) {
- if (!(rxcw & E1000_RXCW_IV)) {
- hw->serdes_link_down = false;
- DEBUGOUT("SERDES: Link is up.\n");
- }
- } else {
- hw->serdes_link_down = true;
- DEBUGOUT("SERDES: Link is down.\n");
- }
- }
- if ((hw->media_type == e1000_media_type_internal_serdes) &&
- (E1000_TXCW_ANE & er32(TXCW))) {
- hw->serdes_link_down = !(E1000_STATUS_LU & er32(STATUS));
- }
- return E1000_SUCCESS;
+ u32 rxcw = 0;
+ u32 ctrl;
+ u32 status;
+ u32 rctl;
+ u32 icr;
+ u32 signal = 0;
+ s32 ret_val;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_check_for_link");
+
+ ctrl = er32(CTRL);
+ status = er32(STATUS);
+
+ /* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
+ * set when the optics detect a signal. On older adapters, it will be
+ * cleared when there is a signal. This applies to fiber media only.
+ */
+ if ((hw->media_type == e1000_media_type_fiber) ||
+ (hw->media_type == e1000_media_type_internal_serdes)) {
+ rxcw = er32(RXCW);
+
+ if (hw->media_type == e1000_media_type_fiber) {
+ signal =
+ (hw->mac_type >
+ e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
+ if (status & E1000_STATUS_LU)
+ hw->get_link_status = false;
+ }
+ }
+
+ /* If we have a copper PHY then we only want to go out to the PHY
+ * registers to see if Auto-Neg has completed and/or if our link
+ * status has changed. The get_link_status flag will be set if we
+ * receive a Link Status Change interrupt or we have Rx Sequence
+ * Errors.
+ */
+ if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
+ /* First we want to see if the MII Status Register reports
+ * link. If so, then we want to get the current speed/duplex
+ * of the PHY.
+ * Read the register twice since the link bit is sticky.
+ */
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+ if (ret_val)
+ return ret_val;
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ if (phy_data & MII_SR_LINK_STATUS) {
+ hw->get_link_status = false;
+ /* Check if there was DownShift, must be checked immediately after
+ * link-up */
+ e1000_check_downshift(hw);
+
+ /* If we are on 82544 or 82543 silicon and speed/duplex
+ * are forced to 10H or 10F, then we will implement the polarity
+ * reversal workaround. We disable interrupts first, and upon
+ * returning, place the devices interrupt state to its previous
+ * value except for the link status change interrupt which will
+ * happen due to the execution of this workaround.
+ */
+
+ if ((hw->mac_type == e1000_82544
+ || hw->mac_type == e1000_82543) && (!hw->autoneg)
+ && (hw->forced_speed_duplex == e1000_10_full
+ || hw->forced_speed_duplex == e1000_10_half)) {
+ ew32(IMC, 0xffffffff);
+ ret_val =
+ e1000_polarity_reversal_workaround(hw);
+ icr = er32(ICR);
+ ew32(ICS, (icr & ~E1000_ICS_LSC));
+ ew32(IMS, IMS_ENABLE_MASK);
+ }
+
+ } else {
+ /* No link detected */
+ e1000_config_dsp_after_link_change(hw, false);
+ return 0;
+ }
+
+ /* If we are forcing speed/duplex, then we simply return since
+ * we have already determined whether we have link or not.
+ */
+ if (!hw->autoneg)
+ return -E1000_ERR_CONFIG;
+
+ /* optimize the dsp settings for the igp phy */
+ e1000_config_dsp_after_link_change(hw, true);
+
+ /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
+ * have Si on board that is 82544 or newer, Auto
+ * Speed Detection takes care of MAC speed/duplex
+ * configuration. So we only need to configure Collision
+ * Distance in the MAC. Otherwise, we need to force
+ * speed/duplex on the MAC to the current PHY speed/duplex
+ * settings.
+ */
+ if (hw->mac_type >= e1000_82544)
+ e1000_config_collision_dist(hw);
+ else {
+ ret_val = e1000_config_mac_to_phy(hw);
+ if (ret_val) {
+ DEBUGOUT
+ ("Error configuring MAC to PHY settings\n");
+ return ret_val;
+ }
+ }
+
+ /* Configure Flow Control now that Auto-Neg has completed. First, we
+ * need to restore the desired flow control settings because we may
+ * have had to re-autoneg with a different link partner.
+ */
+ ret_val = e1000_config_fc_after_link_up(hw);
+ if (ret_val) {
+ DEBUGOUT("Error configuring flow control\n");
+ return ret_val;
+ }
+
+ /* At this point we know that we are on copper and we have
+ * auto-negotiated link. These are conditions for checking the link
+ * partner capability register. We use the link speed to determine if
+ * TBI compatibility needs to be turned on or off. If the link is not
+ * at gigabit speed, then TBI compatibility is not needed. If we are
+ * at gigabit speed, we turn on TBI compatibility.
+ */
+ if (hw->tbi_compatibility_en) {
+ u16 speed, duplex;
+ ret_val =
+ e1000_get_speed_and_duplex(hw, &speed, &duplex);
+ if (ret_val) {
+ DEBUGOUT
+ ("Error getting link speed and duplex\n");
+ return ret_val;
+ }
+ if (speed != SPEED_1000) {
+ /* If link speed is not set to gigabit speed, we do not need
+ * to enable TBI compatibility.
+ */
+ if (hw->tbi_compatibility_on) {
+ /* If we previously were in the mode, turn it off. */
+ rctl = er32(RCTL);
+ rctl &= ~E1000_RCTL_SBP;
+ ew32(RCTL, rctl);
+ hw->tbi_compatibility_on = false;
+ }
+ } else {
+ /* If TBI compatibility is was previously off, turn it on. For
+ * compatibility with a TBI link partner, we will store bad
+ * packets. Some frames have an additional byte on the end and
+ * will look like CRC errors to to the hardware.
+ */
+ if (!hw->tbi_compatibility_on) {
+ hw->tbi_compatibility_on = true;
+ rctl = er32(RCTL);
+ rctl |= E1000_RCTL_SBP;
+ ew32(RCTL, rctl);
+ }
+ }
+ }
+ }
+
+ if ((hw->media_type == e1000_media_type_fiber) ||
+ (hw->media_type == e1000_media_type_internal_serdes))
+ e1000_check_for_serdes_link_generic(hw);
+
+ return E1000_SUCCESS;
}
-/******************************************************************************
+/**
+ * e1000_get_speed_and_duplex
+ * @hw: Struct containing variables accessed by shared code
+ * @speed: Speed of the connection
+ * @duplex: Duplex setting of the connection
+
* Detects the current speed and duplex settings of the hardware.
- *
- * hw - Struct containing variables accessed by shared code
- * speed - Speed of the connection
- * duplex - Duplex setting of the connection
- *****************************************************************************/
+ */
s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
{
- u32 status;
- s32 ret_val;
- u16 phy_data;
-
- DEBUGFUNC("e1000_get_speed_and_duplex");
-
- if (hw->mac_type >= e1000_82543) {
- status = er32(STATUS);
- if (status & E1000_STATUS_SPEED_1000) {
- *speed = SPEED_1000;
- DEBUGOUT("1000 Mbs, ");
- } else if (status & E1000_STATUS_SPEED_100) {
- *speed = SPEED_100;
- DEBUGOUT("100 Mbs, ");
- } else {
- *speed = SPEED_10;
- DEBUGOUT("10 Mbs, ");
- }
-
- if (status & E1000_STATUS_FD) {
- *duplex = FULL_DUPLEX;
- DEBUGOUT("Full Duplex\n");
- } else {
- *duplex = HALF_DUPLEX;
- DEBUGOUT(" Half Duplex\n");
- }
- } else {
- DEBUGOUT("1000 Mbs, Full Duplex\n");
- *speed = SPEED_1000;
- *duplex = FULL_DUPLEX;
- }
-
- /* IGP01 PHY may advertise full duplex operation after speed downgrade even
- * if it is operating at half duplex. Here we set the duplex settings to
- * match the duplex in the link partner's capabilities.
- */
- if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
- ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
- if (ret_val)
- return ret_val;
-
- if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
- *duplex = HALF_DUPLEX;
- else {
- ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
- if (ret_val)
- return ret_val;
- if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
- (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
- *duplex = HALF_DUPLEX;
- }
- }
-
- if ((hw->mac_type == e1000_80003es2lan) &&
- (hw->media_type == e1000_media_type_copper)) {
- if (*speed == SPEED_1000)
- ret_val = e1000_configure_kmrn_for_1000(hw);
- else
- ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
- if (ret_val)
- return ret_val;
- }
-
- if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
- ret_val = e1000_kumeran_lock_loss_workaround(hw);
- if (ret_val)
- return ret_val;
- }
-
- return E1000_SUCCESS;
+ u32 status;
+ s32 ret_val;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_get_speed_and_duplex");
+
+ if (hw->mac_type >= e1000_82543) {
+ status = er32(STATUS);
+ if (status & E1000_STATUS_SPEED_1000) {
+ *speed = SPEED_1000;
+ DEBUGOUT("1000 Mbs, ");
+ } else if (status & E1000_STATUS_SPEED_100) {
+ *speed = SPEED_100;
+ DEBUGOUT("100 Mbs, ");
+ } else {
+ *speed = SPEED_10;
+ DEBUGOUT("10 Mbs, ");
+ }
+
+ if (status & E1000_STATUS_FD) {
+ *duplex = FULL_DUPLEX;
+ DEBUGOUT("Full Duplex\n");
+ } else {
+ *duplex = HALF_DUPLEX;
+ DEBUGOUT(" Half Duplex\n");
+ }
+ } else {
+ DEBUGOUT("1000 Mbs, Full Duplex\n");
+ *speed = SPEED_1000;
+ *duplex = FULL_DUPLEX;
+ }
+
+ /* IGP01 PHY may advertise full duplex operation after speed downgrade even
+ * if it is operating at half duplex. Here we set the duplex settings to
+ * match the duplex in the link partner's capabilities.
+ */
+ if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
+ ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
+ *duplex = HALF_DUPLEX;
+ else {
+ ret_val =
+ e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
+ if (ret_val)
+ return ret_val;
+ if ((*speed == SPEED_100
+ && !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
+ || (*speed == SPEED_10
+ && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
+ *duplex = HALF_DUPLEX;
+ }
+ }
+
+ return E1000_SUCCESS;
}
-/******************************************************************************
-* Blocks until autoneg completes or times out (~4.5 seconds)
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
+/**
+ * e1000_wait_autoneg
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Blocks until autoneg completes or times out (~4.5 seconds)
+ */
static s32 e1000_wait_autoneg(struct e1000_hw *hw)
{
- s32 ret_val;
- u16 i;
- u16 phy_data;
-
- DEBUGFUNC("e1000_wait_autoneg");
- DEBUGOUT("Waiting for Auto-Neg to complete.\n");
-
- /* We will wait for autoneg to complete or 4.5 seconds to expire. */
- for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
- /* Read the MII Status Register and wait for Auto-Neg
- * Complete bit to be set.
- */
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
- if (phy_data & MII_SR_AUTONEG_COMPLETE) {
- return E1000_SUCCESS;
- }
- msleep(100);
- }
- return E1000_SUCCESS;
+ s32 ret_val;
+ u16 i;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_wait_autoneg");
+ DEBUGOUT("Waiting for Auto-Neg to complete.\n");
+
+ /* We will wait for autoneg to complete or 4.5 seconds to expire. */
+ for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
+ /* Read the MII Status Register and wait for Auto-Neg
+ * Complete bit to be set.
+ */
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+ if (ret_val)
+ return ret_val;
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+ if (ret_val)
+ return ret_val;
+ if (phy_data & MII_SR_AUTONEG_COMPLETE) {
+ return E1000_SUCCESS;
+ }
+ msleep(100);
+ }
+ return E1000_SUCCESS;
}
-/******************************************************************************
-* Raises the Management Data Clock
-*
-* hw - Struct containing variables accessed by shared code
-* ctrl - Device control register's current value
-******************************************************************************/
+/**
+ * e1000_raise_mdi_clk - Raises the Management Data Clock
+ * @hw: Struct containing variables accessed by shared code
+ * @ctrl: Device control register's current value
+ */
static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
{
- /* Raise the clock input to the Management Data Clock (by setting the MDC
- * bit), and then delay 10 microseconds.
- */
- ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
- E1000_WRITE_FLUSH();
- udelay(10);
+ /* Raise the clock input to the Management Data Clock (by setting the MDC
+ * bit), and then delay 10 microseconds.
+ */
+ ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
+ E1000_WRITE_FLUSH();
+ udelay(10);
}
-/******************************************************************************
-* Lowers the Management Data Clock
-*
-* hw - Struct containing variables accessed by shared code
-* ctrl - Device control register's current value
-******************************************************************************/
+/**
+ * e1000_lower_mdi_clk - Lowers the Management Data Clock
+ * @hw: Struct containing variables accessed by shared code
+ * @ctrl: Device control register's current value
+ */
static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
{
- /* Lower the clock input to the Management Data Clock (by clearing the MDC
- * bit), and then delay 10 microseconds.
- */
- ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
- E1000_WRITE_FLUSH();
- udelay(10);
+ /* Lower the clock input to the Management Data Clock (by clearing the MDC
+ * bit), and then delay 10 microseconds.
+ */
+ ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
+ E1000_WRITE_FLUSH();
+ udelay(10);
}
-/******************************************************************************
-* Shifts data bits out to the PHY
-*
-* hw - Struct containing variables accessed by shared code
-* data - Data to send out to the PHY
-* count - Number of bits to shift out
-*
-* Bits are shifted out in MSB to LSB order.
-******************************************************************************/
+/**
+ * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
+ * @hw: Struct containing variables accessed by shared code
+ * @data: Data to send out to the PHY
+ * @count: Number of bits to shift out
+ *
+ * Bits are shifted out in MSB to LSB order.
+ */
static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
{
- u32 ctrl;
- u32 mask;
-
- /* We need to shift "count" number of bits out to the PHY. So, the value
- * in the "data" parameter will be shifted out to the PHY one bit at a
- * time. In order to do this, "data" must be broken down into bits.
- */
- mask = 0x01;
- mask <<= (count - 1);
-
- ctrl = er32(CTRL);
-
- /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
- ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
-
- while (mask) {
- /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
- * then raising and lowering the Management Data Clock. A "0" is
- * shifted out to the PHY by setting the MDIO bit to "0" and then
- * raising and lowering the clock.
- */
- if (data & mask)
- ctrl |= E1000_CTRL_MDIO;
- else
- ctrl &= ~E1000_CTRL_MDIO;
-
- ew32(CTRL, ctrl);
- E1000_WRITE_FLUSH();
-
- udelay(10);
-
- e1000_raise_mdi_clk(hw, &ctrl);
- e1000_lower_mdi_clk(hw, &ctrl);
-
- mask = mask >> 1;
- }
-}
-
-/******************************************************************************
-* Shifts data bits in from the PHY
-*
-* hw - Struct containing variables accessed by shared code
-*
-* Bits are shifted in in MSB to LSB order.
-******************************************************************************/
-static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
-{
- u32 ctrl;
- u16 data = 0;
- u8 i;
-
- /* In order to read a register from the PHY, we need to shift in a total
- * of 18 bits from the PHY. The first two bit (turnaround) times are used
- * to avoid contention on the MDIO pin when a read operation is performed.
- * These two bits are ignored by us and thrown away. Bits are "shifted in"
- * by raising the input to the Management Data Clock (setting the MDC bit),
- * and then reading the value of the MDIO bit.
- */
- ctrl = er32(CTRL);
-
- /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
- ctrl &= ~E1000_CTRL_MDIO_DIR;
- ctrl &= ~E1000_CTRL_MDIO;
-
- ew32(CTRL, ctrl);
- E1000_WRITE_FLUSH();
-
- /* Raise and Lower the clock before reading in the data. This accounts for
- * the turnaround bits. The first clock occurred when we clocked out the
- * last bit of the Register Address.
- */
- e1000_raise_mdi_clk(hw, &ctrl);
- e1000_lower_mdi_clk(hw, &ctrl);
-
- for (data = 0, i = 0; i < 16; i++) {
- data = data << 1;
- e1000_raise_mdi_clk(hw, &ctrl);
- ctrl = er32(CTRL);
- /* Check to see if we shifted in a "1". */
- if (ctrl & E1000_CTRL_MDIO)
- data |= 1;
- e1000_lower_mdi_clk(hw, &ctrl);
- }
-
- e1000_raise_mdi_clk(hw, &ctrl);
- e1000_lower_mdi_clk(hw, &ctrl);
-
- return data;
-}
-
-static s32 e1000_swfw_sync_acquire(struct e1000_hw *hw, u16 mask)
-{
- u32 swfw_sync = 0;
- u32 swmask = mask;
- u32 fwmask = mask << 16;
- s32 timeout = 200;
+ u32 ctrl;
+ u32 mask;
- DEBUGFUNC("e1000_swfw_sync_acquire");
-
- if (hw->swfwhw_semaphore_present)
- return e1000_get_software_flag(hw);
+ /* We need to shift "count" number of bits out to the PHY. So, the value
+ * in the "data" parameter will be shifted out to the PHY one bit at a
+ * time. In order to do this, "data" must be broken down into bits.
+ */
+ mask = 0x01;
+ mask <<= (count - 1);
- if (!hw->swfw_sync_present)
- return e1000_get_hw_eeprom_semaphore(hw);
+ ctrl = er32(CTRL);
- while (timeout) {
- if (e1000_get_hw_eeprom_semaphore(hw))
- return -E1000_ERR_SWFW_SYNC;
+ /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
+ ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
- swfw_sync = er32(SW_FW_SYNC);
- if (!(swfw_sync & (fwmask | swmask))) {
- break;
- }
+ while (mask) {
+ /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
+ * then raising and lowering the Management Data Clock. A "0" is
+ * shifted out to the PHY by setting the MDIO bit to "0" and then
+ * raising and lowering the clock.
+ */
+ if (data & mask)
+ ctrl |= E1000_CTRL_MDIO;
+ else
+ ctrl &= ~E1000_CTRL_MDIO;
- /* firmware currently using resource (fwmask) */
- /* or other software thread currently using resource (swmask) */
- e1000_put_hw_eeprom_semaphore(hw);
- mdelay(5);
- timeout--;
- }
+ ew32(CTRL, ctrl);
+ E1000_WRITE_FLUSH();
- if (!timeout) {
- DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
- return -E1000_ERR_SWFW_SYNC;
- }
+ udelay(10);
- swfw_sync |= swmask;
- ew32(SW_FW_SYNC, swfw_sync);
+ e1000_raise_mdi_clk(hw, &ctrl);
+ e1000_lower_mdi_clk(hw, &ctrl);
- e1000_put_hw_eeprom_semaphore(hw);
- return E1000_SUCCESS;
+ mask = mask >> 1;
+ }
}
-static void e1000_swfw_sync_release(struct e1000_hw *hw, u16 mask)
+/**
+ * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Bits are shifted in in MSB to LSB order.
+ */
+static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
{
- u32 swfw_sync;
- u32 swmask = mask;
+ u32 ctrl;
+ u16 data = 0;
+ u8 i;
- DEBUGFUNC("e1000_swfw_sync_release");
+ /* In order to read a register from the PHY, we need to shift in a total
+ * of 18 bits from the PHY. The first two bit (turnaround) times are used
+ * to avoid contention on the MDIO pin when a read operation is performed.
+ * These two bits are ignored by us and thrown away. Bits are "shifted in"
+ * by raising the input to the Management Data Clock (setting the MDC bit),
+ * and then reading the value of the MDIO bit.
+ */
+ ctrl = er32(CTRL);
- if (hw->swfwhw_semaphore_present) {
- e1000_release_software_flag(hw);
- return;
- }
+ /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
+ ctrl &= ~E1000_CTRL_MDIO_DIR;
+ ctrl &= ~E1000_CTRL_MDIO;
- if (!hw->swfw_sync_present) {
- e1000_put_hw_eeprom_semaphore(hw);
- return;
- }
+ ew32(CTRL, ctrl);
+ E1000_WRITE_FLUSH();
- /* if (e1000_get_hw_eeprom_semaphore(hw))
- * return -E1000_ERR_SWFW_SYNC; */
- while (e1000_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS);
- /* empty */
+ /* Raise and Lower the clock before reading in the data. This accounts for
+ * the turnaround bits. The first clock occurred when we clocked out the
+ * last bit of the Register Address.
+ */
+ e1000_raise_mdi_clk(hw, &ctrl);
+ e1000_lower_mdi_clk(hw, &ctrl);
+
+ for (data = 0, i = 0; i < 16; i++) {
+ data = data << 1;
+ e1000_raise_mdi_clk(hw, &ctrl);
+ ctrl = er32(CTRL);
+ /* Check to see if we shifted in a "1". */
+ if (ctrl & E1000_CTRL_MDIO)
+ data |= 1;
+ e1000_lower_mdi_clk(hw, &ctrl);
+ }
- swfw_sync = er32(SW_FW_SYNC);
- swfw_sync &= ~swmask;
- ew32(SW_FW_SYNC, swfw_sync);
+ e1000_raise_mdi_clk(hw, &ctrl);
+ e1000_lower_mdi_clk(hw, &ctrl);
- e1000_put_hw_eeprom_semaphore(hw);
+ return data;
}
-/*****************************************************************************
-* Reads the value from a PHY register, if the value is on a specific non zero
-* page, sets the page first.
-* hw - Struct containing variables accessed by shared code
-* reg_addr - address of the PHY register to read
-******************************************************************************/
+
+/**
+ * e1000_read_phy_reg - read a phy register
+ * @hw: Struct containing variables accessed by shared code
+ * @reg_addr: address of the PHY register to read
+ *
+ * Reads the value from a PHY register, if the value is on a specific non zero
+ * page, sets the page first.
+ */
s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
{
- u32 ret_val;
- u16 swfw;
-
- DEBUGFUNC("e1000_read_phy_reg");
-
- if ((hw->mac_type == e1000_80003es2lan) &&
- (er32(STATUS) & E1000_STATUS_FUNC_1)) {
- swfw = E1000_SWFW_PHY1_SM;
- } else {
- swfw = E1000_SWFW_PHY0_SM;
- }
- if (e1000_swfw_sync_acquire(hw, swfw))
- return -E1000_ERR_SWFW_SYNC;
-
- if ((hw->phy_type == e1000_phy_igp ||
- hw->phy_type == e1000_phy_igp_3 ||
- hw->phy_type == e1000_phy_igp_2) &&
- (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
- ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
- (u16)reg_addr);
- if (ret_val) {
- e1000_swfw_sync_release(hw, swfw);
- return ret_val;
- }
- } else if (hw->phy_type == e1000_phy_gg82563) {
- if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
- (hw->mac_type == e1000_80003es2lan)) {
- /* Select Configuration Page */
- if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
- ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
- (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT));
- } else {
- /* Use Alternative Page Select register to access
- * registers 30 and 31
- */
- ret_val = e1000_write_phy_reg_ex(hw,
- GG82563_PHY_PAGE_SELECT_ALT,
- (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT));
- }
-
- if (ret_val) {
- e1000_swfw_sync_release(hw, swfw);
- return ret_val;
- }
- }
- }
-
- ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
- phy_data);
-
- e1000_swfw_sync_release(hw, swfw);
- return ret_val;
+ u32 ret_val;
+
+ DEBUGFUNC("e1000_read_phy_reg");
+
+ if ((hw->phy_type == e1000_phy_igp) &&
+ (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
+ ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
+ (u16) reg_addr);
+ if (ret_val)
+ return ret_val;
+ }
+
+ ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
+ phy_data);
+
+ return ret_val;
}
static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
u16 *phy_data)
{
- u32 i;
- u32 mdic = 0;
- const u32 phy_addr = 1;
-
- DEBUGFUNC("e1000_read_phy_reg_ex");
-
- if (reg_addr > MAX_PHY_REG_ADDRESS) {
- DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
- return -E1000_ERR_PARAM;
- }
-
- if (hw->mac_type > e1000_82543) {
- /* Set up Op-code, Phy Address, and register address in the MDI
- * Control register. The MAC will take care of interfacing with the
- * PHY to retrieve the desired data.
- */
- mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
- (phy_addr << E1000_MDIC_PHY_SHIFT) |
- (E1000_MDIC_OP_READ));
-
- ew32(MDIC, mdic);
-
- /* Poll the ready bit to see if the MDI read completed */
- for (i = 0; i < 64; i++) {
- udelay(50);
- mdic = er32(MDIC);
- if (mdic & E1000_MDIC_READY) break;
- }
- if (!(mdic & E1000_MDIC_READY)) {
- DEBUGOUT("MDI Read did not complete\n");
- return -E1000_ERR_PHY;
- }
- if (mdic & E1000_MDIC_ERROR) {
- DEBUGOUT("MDI Error\n");
- return -E1000_ERR_PHY;
- }
- *phy_data = (u16)mdic;
- } else {
- /* We must first send a preamble through the MDIO pin to signal the
- * beginning of an MII instruction. This is done by sending 32
- * consecutive "1" bits.
- */
- e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
-
- /* Now combine the next few fields that are required for a read
- * operation. We use this method instead of calling the
- * e1000_shift_out_mdi_bits routine five different times. The format of
- * a MII read instruction consists of a shift out of 14 bits and is
- * defined as follows:
- * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
- * followed by a shift in of 18 bits. This first two bits shifted in
- * are TurnAround bits used to avoid contention on the MDIO pin when a
- * READ operation is performed. These two bits are thrown away
- * followed by a shift in of 16 bits which contains the desired data.
- */
- mdic = ((reg_addr) | (phy_addr << 5) |
- (PHY_OP_READ << 10) | (PHY_SOF << 12));
-
- e1000_shift_out_mdi_bits(hw, mdic, 14);
-
- /* Now that we've shifted out the read command to the MII, we need to
- * "shift in" the 16-bit value (18 total bits) of the requested PHY
- * register address.
- */
- *phy_data = e1000_shift_in_mdi_bits(hw);
- }
- return E1000_SUCCESS;
+ u32 i;
+ u32 mdic = 0;
+ const u32 phy_addr = 1;
+
+ DEBUGFUNC("e1000_read_phy_reg_ex");
+
+ if (reg_addr > MAX_PHY_REG_ADDRESS) {
+ DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
+ return -E1000_ERR_PARAM;
+ }
+
+ if (hw->mac_type > e1000_82543) {
+ /* Set up Op-code, Phy Address, and register address in the MDI
+ * Control register. The MAC will take care of interfacing with the
+ * PHY to retrieve the desired data.
+ */
+ mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
+ (phy_addr << E1000_MDIC_PHY_SHIFT) |
+ (E1000_MDIC_OP_READ));
+
+ ew32(MDIC, mdic);
+
+ /* Poll the ready bit to see if the MDI read completed */
+ for (i = 0; i < 64; i++) {
+ udelay(50);
+ mdic = er32(MDIC);
+ if (mdic & E1000_MDIC_READY)
+ break;
+ }
+ if (!(mdic & E1000_MDIC_READY)) {
+ DEBUGOUT("MDI Read did not complete\n");
+ return -E1000_ERR_PHY;
+ }
+ if (mdic & E1000_MDIC_ERROR) {
+ DEBUGOUT("MDI Error\n");
+ return -E1000_ERR_PHY;
+ }
+ *phy_data = (u16) mdic;
+ } else {
+ /* We must first send a preamble through the MDIO pin to signal the
+ * beginning of an MII instruction. This is done by sending 32
+ * consecutive "1" bits.
+ */
+ e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+ /* Now combine the next few fields that are required for a read
+ * operation. We use this method instead of calling the
+ * e1000_shift_out_mdi_bits routine five different times. The format of
+ * a MII read instruction consists of a shift out of 14 bits and is
+ * defined as follows:
+ * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
+ * followed by a shift in of 18 bits. This first two bits shifted in
+ * are TurnAround bits used to avoid contention on the MDIO pin when a
+ * READ operation is performed. These two bits are thrown away
+ * followed by a shift in of 16 bits which contains the desired data.
+ */
+ mdic = ((reg_addr) | (phy_addr << 5) |
+ (PHY_OP_READ << 10) | (PHY_SOF << 12));
+
+ e1000_shift_out_mdi_bits(hw, mdic, 14);
+
+ /* Now that we've shifted out the read command to the MII, we need to
+ * "shift in" the 16-bit value (18 total bits) of the requested PHY
+ * register address.
+ */
+ *phy_data = e1000_shift_in_mdi_bits(hw);
+ }
+ return E1000_SUCCESS;
}
-/******************************************************************************
-* Writes a value to a PHY register
-*
-* hw - Struct containing variables accessed by shared code
-* reg_addr - address of the PHY register to write
-* data - data to write to the PHY
-******************************************************************************/
+/**
+ * e1000_write_phy_reg - write a phy register
+ *
+ * @hw: Struct containing variables accessed by shared code
+ * @reg_addr: address of the PHY register to write
+ * @data: data to write to the PHY
+
+ * Writes a value to a PHY register
+ */
s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
{
- u32 ret_val;
- u16 swfw;
-
- DEBUGFUNC("e1000_write_phy_reg");
-
- if ((hw->mac_type == e1000_80003es2lan) &&
- (er32(STATUS) & E1000_STATUS_FUNC_1)) {
- swfw = E1000_SWFW_PHY1_SM;
- } else {
- swfw = E1000_SWFW_PHY0_SM;
- }
- if (e1000_swfw_sync_acquire(hw, swfw))
- return -E1000_ERR_SWFW_SYNC;
-
- if ((hw->phy_type == e1000_phy_igp ||
- hw->phy_type == e1000_phy_igp_3 ||
- hw->phy_type == e1000_phy_igp_2) &&
- (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
- ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
- (u16)reg_addr);
- if (ret_val) {
- e1000_swfw_sync_release(hw, swfw);
- return ret_val;
- }
- } else if (hw->phy_type == e1000_phy_gg82563) {
- if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
- (hw->mac_type == e1000_80003es2lan)) {
- /* Select Configuration Page */
- if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
- ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
- (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT));
- } else {
- /* Use Alternative Page Select register to access
- * registers 30 and 31
- */
- ret_val = e1000_write_phy_reg_ex(hw,
- GG82563_PHY_PAGE_SELECT_ALT,
- (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT));
- }
-
- if (ret_val) {
- e1000_swfw_sync_release(hw, swfw);
- return ret_val;
- }
- }
- }
-
- ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
- phy_data);
-
- e1000_swfw_sync_release(hw, swfw);
- return ret_val;
+ u32 ret_val;
+
+ DEBUGFUNC("e1000_write_phy_reg");
+
+ if ((hw->phy_type == e1000_phy_igp) &&
+ (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
+ ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
+ (u16) reg_addr);
+ if (ret_val)
+ return ret_val;
+ }
+
+ ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
+ phy_data);
+
+ return ret_val;
}
static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
u16 phy_data)
{
- u32 i;
- u32 mdic = 0;
- const u32 phy_addr = 1;
-
- DEBUGFUNC("e1000_write_phy_reg_ex");
-
- if (reg_addr > MAX_PHY_REG_ADDRESS) {
- DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
- return -E1000_ERR_PARAM;
- }
-
- if (hw->mac_type > e1000_82543) {
- /* Set up Op-code, Phy Address, register address, and data intended
- * for the PHY register in the MDI Control register. The MAC will take
- * care of interfacing with the PHY to send the desired data.
- */
- mdic = (((u32)phy_data) |
- (reg_addr << E1000_MDIC_REG_SHIFT) |
- (phy_addr << E1000_MDIC_PHY_SHIFT) |
- (E1000_MDIC_OP_WRITE));
-
- ew32(MDIC, mdic);
-
- /* Poll the ready bit to see if the MDI read completed */
- for (i = 0; i < 641; i++) {
- udelay(5);
- mdic = er32(MDIC);
- if (mdic & E1000_MDIC_READY) break;
- }
- if (!(mdic & E1000_MDIC_READY)) {
- DEBUGOUT("MDI Write did not complete\n");
- return -E1000_ERR_PHY;
- }
- } else {
- /* We'll need to use the SW defined pins to shift the write command
- * out to the PHY. We first send a preamble to the PHY to signal the
- * beginning of the MII instruction. This is done by sending 32
- * consecutive "1" bits.
- */
- e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
-
- /* Now combine the remaining required fields that will indicate a
- * write operation. We use this method instead of calling the
- * e1000_shift_out_mdi_bits routine for each field in the command. The
- * format of a MII write instruction is as follows:
- * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
- */
- mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
- (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
- mdic <<= 16;
- mdic |= (u32)phy_data;
-
- e1000_shift_out_mdi_bits(hw, mdic, 32);
- }
-
- return E1000_SUCCESS;
-}
+ u32 i;
+ u32 mdic = 0;
+ const u32 phy_addr = 1;
-static s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 *data)
-{
- u32 reg_val;
- u16 swfw;
- DEBUGFUNC("e1000_read_kmrn_reg");
-
- if ((hw->mac_type == e1000_80003es2lan) &&
- (er32(STATUS) & E1000_STATUS_FUNC_1)) {
- swfw = E1000_SWFW_PHY1_SM;
- } else {
- swfw = E1000_SWFW_PHY0_SM;
- }
- if (e1000_swfw_sync_acquire(hw, swfw))
- return -E1000_ERR_SWFW_SYNC;
-
- /* Write register address */
- reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
- E1000_KUMCTRLSTA_OFFSET) |
- E1000_KUMCTRLSTA_REN;
- ew32(KUMCTRLSTA, reg_val);
- udelay(2);
-
- /* Read the data returned */
- reg_val = er32(KUMCTRLSTA);
- *data = (u16)reg_val;
-
- e1000_swfw_sync_release(hw, swfw);
- return E1000_SUCCESS;
-}
+ DEBUGFUNC("e1000_write_phy_reg_ex");
-static s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 data)
-{
- u32 reg_val;
- u16 swfw;
- DEBUGFUNC("e1000_write_kmrn_reg");
-
- if ((hw->mac_type == e1000_80003es2lan) &&
- (er32(STATUS) & E1000_STATUS_FUNC_1)) {
- swfw = E1000_SWFW_PHY1_SM;
- } else {
- swfw = E1000_SWFW_PHY0_SM;
- }
- if (e1000_swfw_sync_acquire(hw, swfw))
- return -E1000_ERR_SWFW_SYNC;
-
- reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
- E1000_KUMCTRLSTA_OFFSET) | data;
- ew32(KUMCTRLSTA, reg_val);
- udelay(2);
-
- e1000_swfw_sync_release(hw, swfw);
- return E1000_SUCCESS;
+ if (reg_addr > MAX_PHY_REG_ADDRESS) {
+ DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
+ return -E1000_ERR_PARAM;
+ }
+
+ if (hw->mac_type > e1000_82543) {
+ /* Set up Op-code, Phy Address, register address, and data intended
+ * for the PHY register in the MDI Control register. The MAC will take
+ * care of interfacing with the PHY to send the desired data.
+ */
+ mdic = (((u32) phy_data) |
+ (reg_addr << E1000_MDIC_REG_SHIFT) |
+ (phy_addr << E1000_MDIC_PHY_SHIFT) |
+ (E1000_MDIC_OP_WRITE));
+
+ ew32(MDIC, mdic);
+
+ /* Poll the ready bit to see if the MDI read completed */
+ for (i = 0; i < 641; i++) {
+ udelay(5);
+ mdic = er32(MDIC);
+ if (mdic & E1000_MDIC_READY)
+ break;
+ }
+ if (!(mdic & E1000_MDIC_READY)) {
+ DEBUGOUT("MDI Write did not complete\n");
+ return -E1000_ERR_PHY;
+ }
+ } else {
+ /* We'll need to use the SW defined pins to shift the write command
+ * out to the PHY. We first send a preamble to the PHY to signal the
+ * beginning of the MII instruction. This is done by sending 32
+ * consecutive "1" bits.
+ */
+ e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+ /* Now combine the remaining required fields that will indicate a
+ * write operation. We use this method instead of calling the
+ * e1000_shift_out_mdi_bits routine for each field in the command. The
+ * format of a MII write instruction is as follows:
+ * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
+ */
+ mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
+ (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
+ mdic <<= 16;
+ mdic |= (u32) phy_data;
+
+ e1000_shift_out_mdi_bits(hw, mdic, 32);
+ }
+
+ return E1000_SUCCESS;
}
-/******************************************************************************
-* Returns the PHY to the power-on reset state
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
+/**
+ * e1000_phy_hw_reset - reset the phy, hardware style
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Returns the PHY to the power-on reset state
+ */
s32 e1000_phy_hw_reset(struct e1000_hw *hw)
{
- u32 ctrl, ctrl_ext;
- u32 led_ctrl;
- s32 ret_val;
- u16 swfw;
-
- DEBUGFUNC("e1000_phy_hw_reset");
-
- /* In the case of the phy reset being blocked, it's not an error, we
- * simply return success without performing the reset. */
- ret_val = e1000_check_phy_reset_block(hw);
- if (ret_val)
- return E1000_SUCCESS;
-
- DEBUGOUT("Resetting Phy...\n");
-
- if (hw->mac_type > e1000_82543) {
- if ((hw->mac_type == e1000_80003es2lan) &&
- (er32(STATUS) & E1000_STATUS_FUNC_1)) {
- swfw = E1000_SWFW_PHY1_SM;
- } else {
- swfw = E1000_SWFW_PHY0_SM;
- }
- if (e1000_swfw_sync_acquire(hw, swfw)) {
- DEBUGOUT("Unable to acquire swfw sync\n");
- return -E1000_ERR_SWFW_SYNC;
- }
- /* Read the device control register and assert the E1000_CTRL_PHY_RST
- * bit. Then, take it out of reset.
- * For pre-e1000_82571 hardware, we delay for 10ms between the assert
- * and deassert. For e1000_82571 hardware and later, we instead delay
- * for 50us between and 10ms after the deassertion.
- */
- ctrl = er32(CTRL);
- ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
- E1000_WRITE_FLUSH();
-
- if (hw->mac_type < e1000_82571)
- msleep(10);
- else
- udelay(100);
-
- ew32(CTRL, ctrl);
- E1000_WRITE_FLUSH();
-
- if (hw->mac_type >= e1000_82571)
- mdelay(10);
-
- e1000_swfw_sync_release(hw, swfw);
- } else {
- /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
- * bit to put the PHY into reset. Then, take it out of reset.
- */
- ctrl_ext = er32(CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
- ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
- ew32(CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH();
- msleep(10);
- ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
- ew32(CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH();
- }
- udelay(150);
-
- if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
- /* Configure activity LED after PHY reset */
- led_ctrl = er32(LEDCTL);
- led_ctrl &= IGP_ACTIVITY_LED_MASK;
- led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
- ew32(LEDCTL, led_ctrl);
- }
-
- /* Wait for FW to finish PHY configuration. */
- ret_val = e1000_get_phy_cfg_done(hw);
- if (ret_val != E1000_SUCCESS)
- return ret_val;
- e1000_release_software_semaphore(hw);
-
- if ((hw->mac_type == e1000_ich8lan) && (hw->phy_type == e1000_phy_igp_3))
- ret_val = e1000_init_lcd_from_nvm(hw);
-
- return ret_val;
+ u32 ctrl, ctrl_ext;
+ u32 led_ctrl;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_phy_hw_reset");
+
+ DEBUGOUT("Resetting Phy...\n");
+
+ if (hw->mac_type > e1000_82543) {
+ /* Read the device control register and assert the E1000_CTRL_PHY_RST
+ * bit. Then, take it out of reset.
+ * For e1000 hardware, we delay for 10ms between the assert
+ * and deassert.
+ */
+ ctrl = er32(CTRL);
+ ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
+ E1000_WRITE_FLUSH();
+
+ msleep(10);
+
+ ew32(CTRL, ctrl);
+ E1000_WRITE_FLUSH();
+
+ } else {
+ /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
+ * bit to put the PHY into reset. Then, take it out of reset.
+ */
+ ctrl_ext = er32(CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
+ ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
+ ew32(CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH();
+ msleep(10);
+ ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
+ ew32(CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH();
+ }
+ udelay(150);
+
+ if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+ /* Configure activity LED after PHY reset */
+ led_ctrl = er32(LEDCTL);
+ led_ctrl &= IGP_ACTIVITY_LED_MASK;
+ led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+ ew32(LEDCTL, led_ctrl);
+ }
+
+ /* Wait for FW to finish PHY configuration. */
+ ret_val = e1000_get_phy_cfg_done(hw);
+ if (ret_val != E1000_SUCCESS)
+ return ret_val;
+
+ return ret_val;
}
-/******************************************************************************
-* Resets the PHY
-*
-* hw - Struct containing variables accessed by shared code
-*
-* Sets bit 15 of the MII Control register
-******************************************************************************/
+/**
+ * e1000_phy_reset - reset the phy to commit settings
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Resets the PHY
+ * Sets bit 15 of the MII Control register
+ */
s32 e1000_phy_reset(struct e1000_hw *hw)
{
- s32 ret_val;
- u16 phy_data;
-
- DEBUGFUNC("e1000_phy_reset");
-
- /* In the case of the phy reset being blocked, it's not an error, we
- * simply return success without performing the reset. */
- ret_val = e1000_check_phy_reset_block(hw);
- if (ret_val)
- return E1000_SUCCESS;
-
- switch (hw->phy_type) {
- case e1000_phy_igp:
- case e1000_phy_igp_2:
- case e1000_phy_igp_3:
- case e1000_phy_ife:
- ret_val = e1000_phy_hw_reset(hw);
- if (ret_val)
- return ret_val;
- break;
- default:
- ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= MII_CR_RESET;
- ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- udelay(1);
- break;
- }
-
- if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
- e1000_phy_init_script(hw);
-
- return E1000_SUCCESS;
-}
+ s32 ret_val;
+ u16 phy_data;
-/******************************************************************************
-* Work-around for 82566 power-down: on D3 entry-
-* 1) disable gigabit link
-* 2) write VR power-down enable
-* 3) read it back
-* if successful continue, else issue LCD reset and repeat
-*
-* hw - struct containing variables accessed by shared code
-******************************************************************************/
-void e1000_phy_powerdown_workaround(struct e1000_hw *hw)
-{
- s32 reg;
- u16 phy_data;
- s32 retry = 0;
+ DEBUGFUNC("e1000_phy_reset");
- DEBUGFUNC("e1000_phy_powerdown_workaround");
+ switch (hw->phy_type) {
+ case e1000_phy_igp:
+ ret_val = e1000_phy_hw_reset(hw);
+ if (ret_val)
+ return ret_val;
+ break;
+ default:
+ ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
- if (hw->phy_type != e1000_phy_igp_3)
- return;
+ phy_data |= MII_CR_RESET;
+ ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
- do {
- /* Disable link */
- reg = er32(PHY_CTRL);
- ew32(PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
- E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
+ udelay(1);
+ break;
+ }
- /* Write VR power-down enable - bits 9:8 should be 10b */
- e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
- phy_data |= (1 << 9);
- phy_data &= ~(1 << 8);
- e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data);
+ if (hw->phy_type == e1000_phy_igp)
+ e1000_phy_init_script(hw);
- /* Read it back and test */
- e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
- if (((phy_data & IGP3_VR_CTRL_MODE_MASK) == IGP3_VR_CTRL_MODE_SHUT) || retry)
- break;
+ return E1000_SUCCESS;
+}
- /* Issue PHY reset and repeat at most one more time */
- reg = er32(CTRL);
- ew32(CTRL, reg | E1000_CTRL_PHY_RST);
- retry++;
- } while (retry);
+/**
+ * e1000_detect_gig_phy - check the phy type
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Probes the expected PHY address for known PHY IDs
+ */
+static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
+{
+ s32 phy_init_status, ret_val;
+ u16 phy_id_high, phy_id_low;
+ bool match = false;
- return;
+ DEBUGFUNC("e1000_detect_gig_phy");
-}
+ if (hw->phy_id != 0)
+ return E1000_SUCCESS;
-/******************************************************************************
-* Work-around for 82566 Kumeran PCS lock loss:
-* On link status change (i.e. PCI reset, speed change) and link is up and
-* speed is gigabit-
-* 0) if workaround is optionally disabled do nothing
-* 1) wait 1ms for Kumeran link to come up
-* 2) check Kumeran Diagnostic register PCS lock loss bit
-* 3) if not set the link is locked (all is good), otherwise...
-* 4) reset the PHY
-* 5) repeat up to 10 times
-* Note: this is only called for IGP3 copper when speed is 1gb.
-*
-* hw - struct containing variables accessed by shared code
-******************************************************************************/
-static s32 e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw)
-{
- s32 ret_val;
- s32 reg;
- s32 cnt;
- u16 phy_data;
-
- if (hw->kmrn_lock_loss_workaround_disabled)
- return E1000_SUCCESS;
-
- /* Make sure link is up before proceeding. If not just return.
- * Attempting this while link is negotiating fouled up link
- * stability */
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
-
- if (phy_data & MII_SR_LINK_STATUS) {
- for (cnt = 0; cnt < 10; cnt++) {
- /* read once to clear */
- ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
- if (ret_val)
- return ret_val;
- /* and again to get new status */
- ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
- if (ret_val)
- return ret_val;
-
- /* check for PCS lock */
- if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
- return E1000_SUCCESS;
-
- /* Issue PHY reset */
- e1000_phy_hw_reset(hw);
- mdelay(5);
- }
- /* Disable GigE link negotiation */
- reg = er32(PHY_CTRL);
- ew32(PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
- E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
-
- /* unable to acquire PCS lock */
- return E1000_ERR_PHY;
- }
-
- return E1000_SUCCESS;
-}
+ /* Read the PHY ID Registers to identify which PHY is onboard. */
+ ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
+ if (ret_val)
+ return ret_val;
-/******************************************************************************
-* Probes the expected PHY address for known PHY IDs
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
-{
- s32 phy_init_status, ret_val;
- u16 phy_id_high, phy_id_low;
- bool match = false;
-
- DEBUGFUNC("e1000_detect_gig_phy");
-
- if (hw->phy_id != 0)
- return E1000_SUCCESS;
-
- /* The 82571 firmware may still be configuring the PHY. In this
- * case, we cannot access the PHY until the configuration is done. So
- * we explicitly set the PHY values. */
- if (hw->mac_type == e1000_82571 ||
- hw->mac_type == e1000_82572) {
- hw->phy_id = IGP01E1000_I_PHY_ID;
- hw->phy_type = e1000_phy_igp_2;
- return E1000_SUCCESS;
- }
-
- /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a work-
- * around that forces PHY page 0 to be set or the reads fail. The rest of
- * the code in this routine uses e1000_read_phy_reg to read the PHY ID.
- * So for ESB-2 we need to have this set so our reads won't fail. If the
- * attached PHY is not a e1000_phy_gg82563, the routines below will figure
- * this out as well. */
- if (hw->mac_type == e1000_80003es2lan)
- hw->phy_type = e1000_phy_gg82563;
-
- /* Read the PHY ID Registers to identify which PHY is onboard. */
- ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
- if (ret_val)
- return ret_val;
-
- hw->phy_id = (u32)(phy_id_high << 16);
- udelay(20);
- ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
- if (ret_val)
- return ret_val;
-
- hw->phy_id |= (u32)(phy_id_low & PHY_REVISION_MASK);
- hw->phy_revision = (u32)phy_id_low & ~PHY_REVISION_MASK;
-
- switch (hw->mac_type) {
- case e1000_82543:
- if (hw->phy_id == M88E1000_E_PHY_ID) match = true;
- break;
- case e1000_82544:
- if (hw->phy_id == M88E1000_I_PHY_ID) match = true;
- break;
- case e1000_82540:
- case e1000_82545:
- case e1000_82545_rev_3:
- case e1000_82546:
- case e1000_82546_rev_3:
- if (hw->phy_id == M88E1011_I_PHY_ID) match = true;
- break;
- case e1000_82541:
- case e1000_82541_rev_2:
- case e1000_82547:
- case e1000_82547_rev_2:
- if (hw->phy_id == IGP01E1000_I_PHY_ID) match = true;
- break;
- case e1000_82573:
- if (hw->phy_id == M88E1111_I_PHY_ID) match = true;
- break;
- case e1000_80003es2lan:
- if (hw->phy_id == GG82563_E_PHY_ID) match = true;
- break;
- case e1000_ich8lan:
- if (hw->phy_id == IGP03E1000_E_PHY_ID) match = true;
- if (hw->phy_id == IFE_E_PHY_ID) match = true;
- if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = true;
- if (hw->phy_id == IFE_C_E_PHY_ID) match = true;
- break;
- default:
- DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
- return -E1000_ERR_CONFIG;
- }
- phy_init_status = e1000_set_phy_type(hw);
-
- if ((match) && (phy_init_status == E1000_SUCCESS)) {
- DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
- return E1000_SUCCESS;
- }
- DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
- return -E1000_ERR_PHY;
+ hw->phy_id = (u32) (phy_id_high << 16);
+ udelay(20);
+ ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
+ if (ret_val)
+ return ret_val;
+
+ hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK);
+ hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK;
+
+ switch (hw->mac_type) {
+ case e1000_82543:
+ if (hw->phy_id == M88E1000_E_PHY_ID)
+ match = true;
+ break;
+ case e1000_82544:
+ if (hw->phy_id == M88E1000_I_PHY_ID)
+ match = true;
+ break;
+ case e1000_82540:
+ case e1000_82545:
+ case e1000_82545_rev_3:
+ case e1000_82546:
+ case e1000_82546_rev_3:
+ if (hw->phy_id == M88E1011_I_PHY_ID)
+ match = true;
+ break;
+ case e1000_82541:
+ case e1000_82541_rev_2:
+ case e1000_82547:
+ case e1000_82547_rev_2:
+ if (hw->phy_id == IGP01E1000_I_PHY_ID)
+ match = true;
+ break;
+ default:
+ DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
+ return -E1000_ERR_CONFIG;
+ }
+ phy_init_status = e1000_set_phy_type(hw);
+
+ if ((match) && (phy_init_status == E1000_SUCCESS)) {
+ DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
+ return E1000_SUCCESS;
+ }
+ DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
+ return -E1000_ERR_PHY;
}
-/******************************************************************************
-* Resets the PHY's DSP
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
+/**
+ * e1000_phy_reset_dsp - reset DSP
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Resets the PHY's DSP
+ */
static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
{
- s32 ret_val;
- DEBUGFUNC("e1000_phy_reset_dsp");
-
- do {
- if (hw->phy_type != e1000_phy_gg82563) {
- ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
- if (ret_val) break;
- }
- ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
- if (ret_val) break;
- ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
- if (ret_val) break;
- ret_val = E1000_SUCCESS;
- } while (0);
-
- return ret_val;
+ s32 ret_val;
+ DEBUGFUNC("e1000_phy_reset_dsp");
+
+ do {
+ ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
+ if (ret_val)
+ break;
+ ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
+ if (ret_val)
+ break;
+ ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
+ if (ret_val)
+ break;
+ ret_val = E1000_SUCCESS;
+ } while (0);
+
+ return ret_val;
}
-/******************************************************************************
-* Get PHY information from various PHY registers for igp PHY only.
-*
-* hw - Struct containing variables accessed by shared code
-* phy_info - PHY information structure
-******************************************************************************/
+/**
+ * e1000_phy_igp_get_info - get igp specific registers
+ * @hw: Struct containing variables accessed by shared code
+ * @phy_info: PHY information structure
+ *
+ * Get PHY information from various PHY registers for igp PHY only.
+ */
static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
struct e1000_phy_info *phy_info)
{
- s32 ret_val;
- u16 phy_data, min_length, max_length, average;
- e1000_rev_polarity polarity;
-
- DEBUGFUNC("e1000_phy_igp_get_info");
-
- /* The downshift status is checked only once, after link is established,
- * and it stored in the hw->speed_downgraded parameter. */
- phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
-
- /* IGP01E1000 does not need to support it. */
- phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
-
- /* IGP01E1000 always correct polarity reversal */
- phy_info->polarity_correction = e1000_polarity_reversal_enabled;
-
- /* Check polarity status */
- ret_val = e1000_check_polarity(hw, &polarity);
- if (ret_val)
- return ret_val;
-
- phy_info->cable_polarity = polarity;
-
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & IGP01E1000_PSSR_MDIX) >>
- IGP01E1000_PSSR_MDIX_SHIFT);
-
- if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
- IGP01E1000_PSSR_SPEED_1000MBPS) {
- /* Local/Remote Receiver Information are only valid at 1000 Mbps */
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
- SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
- e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
- phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
- SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
- e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
-
- /* Get cable length */
- ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
- if (ret_val)
- return ret_val;
-
- /* Translate to old method */
- average = (max_length + min_length) / 2;
-
- if (average <= e1000_igp_cable_length_50)
- phy_info->cable_length = e1000_cable_length_50;
- else if (average <= e1000_igp_cable_length_80)
- phy_info->cable_length = e1000_cable_length_50_80;
- else if (average <= e1000_igp_cable_length_110)
- phy_info->cable_length = e1000_cable_length_80_110;
- else if (average <= e1000_igp_cable_length_140)
- phy_info->cable_length = e1000_cable_length_110_140;
- else
- phy_info->cable_length = e1000_cable_length_140;
- }
-
- return E1000_SUCCESS;
-}
+ s32 ret_val;
+ u16 phy_data, min_length, max_length, average;
+ e1000_rev_polarity polarity;
+
+ DEBUGFUNC("e1000_phy_igp_get_info");
+
+ /* The downshift status is checked only once, after link is established,
+ * and it stored in the hw->speed_downgraded parameter. */
+ phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
+
+ /* IGP01E1000 does not need to support it. */
+ phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
+
+ /* IGP01E1000 always correct polarity reversal */
+ phy_info->polarity_correction = e1000_polarity_reversal_enabled;
+
+ /* Check polarity status */
+ ret_val = e1000_check_polarity(hw, &polarity);
+ if (ret_val)
+ return ret_val;
+
+ phy_info->cable_polarity = polarity;
+
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_info->mdix_mode =
+ (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
+ IGP01E1000_PSSR_MDIX_SHIFT);
+
+ if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
+ IGP01E1000_PSSR_SPEED_1000MBPS) {
+ /* Local/Remote Receiver Information are only valid at 1000 Mbps */
+ ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
+ SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
+ e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+ phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
+ SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
+ e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+
+ /* Get cable length */
+ ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
+ if (ret_val)
+ return ret_val;
+
+ /* Translate to old method */
+ average = (max_length + min_length) / 2;
+
+ if (average <= e1000_igp_cable_length_50)
+ phy_info->cable_length = e1000_cable_length_50;
+ else if (average <= e1000_igp_cable_length_80)
+ phy_info->cable_length = e1000_cable_length_50_80;
+ else if (average <= e1000_igp_cable_length_110)
+ phy_info->cable_length = e1000_cable_length_80_110;
+ else if (average <= e1000_igp_cable_length_140)
+ phy_info->cable_length = e1000_cable_length_110_140;
+ else
+ phy_info->cable_length = e1000_cable_length_140;
+ }
-/******************************************************************************
-* Get PHY information from various PHY registers for ife PHY only.
-*
-* hw - Struct containing variables accessed by shared code
-* phy_info - PHY information structure
-******************************************************************************/
-static s32 e1000_phy_ife_get_info(struct e1000_hw *hw,
- struct e1000_phy_info *phy_info)
-{
- s32 ret_val;
- u16 phy_data;
- e1000_rev_polarity polarity;
-
- DEBUGFUNC("e1000_phy_ife_get_info");
-
- phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
- phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
-
- ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
- phy_info->polarity_correction =
- ((phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >>
- IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT) ?
- e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
-
- if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) {
- ret_val = e1000_check_polarity(hw, &polarity);
- if (ret_val)
- return ret_val;
- } else {
- /* Polarity is forced. */
- polarity = ((phy_data & IFE_PSC_FORCE_POLARITY) >>
- IFE_PSC_FORCE_POLARITY_SHIFT) ?
- e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
- }
- phy_info->cable_polarity = polarity;
-
- ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_info->mdix_mode = (e1000_auto_x_mode)
- ((phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >>
- IFE_PMC_MDIX_MODE_SHIFT);
-
- return E1000_SUCCESS;
+ return E1000_SUCCESS;
}
-/******************************************************************************
-* Get PHY information from various PHY registers fot m88 PHY only.
-*
-* hw - Struct containing variables accessed by shared code
-* phy_info - PHY information structure
-******************************************************************************/
+/**
+ * e1000_phy_m88_get_info - get m88 specific registers
+ * @hw: Struct containing variables accessed by shared code
+ * @phy_info: PHY information structure
+ *
+ * Get PHY information from various PHY registers for m88 PHY only.
+ */
static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
struct e1000_phy_info *phy_info)
{
- s32 ret_val;
- u16 phy_data;
- e1000_rev_polarity polarity;
-
- DEBUGFUNC("e1000_phy_m88_get_info");
-
- /* The downshift status is checked only once, after link is established,
- * and it stored in the hw->speed_downgraded parameter. */
- phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
-
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_info->extended_10bt_distance =
- ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
- M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
- e1000_10bt_ext_dist_enable_lower : e1000_10bt_ext_dist_enable_normal;
-
- phy_info->polarity_correction =
- ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
- M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
- e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
-
- /* Check polarity status */
- ret_val = e1000_check_polarity(hw, &polarity);
- if (ret_val)
- return ret_val;
- phy_info->cable_polarity = polarity;
-
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & M88E1000_PSSR_MDIX) >>
- M88E1000_PSSR_MDIX_SHIFT);
-
- if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
- /* Cable Length Estimation and Local/Remote Receiver Information
- * are only valid at 1000 Mbps.
- */
- if (hw->phy_type != e1000_phy_gg82563) {
- phy_info->cable_length = (e1000_cable_length)((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
- M88E1000_PSSR_CABLE_LENGTH_SHIFT);
- } else {
- ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_info->cable_length = (e1000_cable_length)(phy_data & GG82563_DSPD_CABLE_LENGTH);
- }
-
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
- SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
- e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
- phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
- SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
- e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
-
- }
-
- return E1000_SUCCESS;
+ s32 ret_val;
+ u16 phy_data;
+ e1000_rev_polarity polarity;
+
+ DEBUGFUNC("e1000_phy_m88_get_info");
+
+ /* The downshift status is checked only once, after link is established,
+ * and it stored in the hw->speed_downgraded parameter. */
+ phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
+
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_info->extended_10bt_distance =
+ ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
+ M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
+ e1000_10bt_ext_dist_enable_lower :
+ e1000_10bt_ext_dist_enable_normal;
+
+ phy_info->polarity_correction =
+ ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
+ M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
+ e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
+
+ /* Check polarity status */
+ ret_val = e1000_check_polarity(hw, &polarity);
+ if (ret_val)
+ return ret_val;
+ phy_info->cable_polarity = polarity;
+
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_info->mdix_mode =
+ (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
+ M88E1000_PSSR_MDIX_SHIFT);
+
+ if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
+ /* Cable Length Estimation and Local/Remote Receiver Information
+ * are only valid at 1000 Mbps.
+ */
+ phy_info->cable_length =
+ (e1000_cable_length) ((phy_data &
+ M88E1000_PSSR_CABLE_LENGTH) >>
+ M88E1000_PSSR_CABLE_LENGTH_SHIFT);
+
+ ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
+ SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
+ e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+ phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
+ SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
+ e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+
+ }
+
+ return E1000_SUCCESS;
}
-/******************************************************************************
-* Get PHY information from various PHY registers
-*
-* hw - Struct containing variables accessed by shared code
-* phy_info - PHY information structure
-******************************************************************************/
+/**
+ * e1000_phy_get_info - request phy info
+ * @hw: Struct containing variables accessed by shared code
+ * @phy_info: PHY information structure
+ *
+ * Get PHY information from various PHY registers
+ */
s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
{
- s32 ret_val;
- u16 phy_data;
-
- DEBUGFUNC("e1000_phy_get_info");
-
- phy_info->cable_length = e1000_cable_length_undefined;
- phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
- phy_info->cable_polarity = e1000_rev_polarity_undefined;
- phy_info->downshift = e1000_downshift_undefined;
- phy_info->polarity_correction = e1000_polarity_reversal_undefined;
- phy_info->mdix_mode = e1000_auto_x_mode_undefined;
- phy_info->local_rx = e1000_1000t_rx_status_undefined;
- phy_info->remote_rx = e1000_1000t_rx_status_undefined;
-
- if (hw->media_type != e1000_media_type_copper) {
- DEBUGOUT("PHY info is only valid for copper media\n");
- return -E1000_ERR_CONFIG;
- }
-
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
- DEBUGOUT("PHY info is only valid if link is up\n");
- return -E1000_ERR_CONFIG;
- }
-
- if (hw->phy_type == e1000_phy_igp ||
- hw->phy_type == e1000_phy_igp_3 ||
- hw->phy_type == e1000_phy_igp_2)
- return e1000_phy_igp_get_info(hw, phy_info);
- else if (hw->phy_type == e1000_phy_ife)
- return e1000_phy_ife_get_info(hw, phy_info);
- else
- return e1000_phy_m88_get_info(hw, phy_info);
+ s32 ret_val;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_phy_get_info");
+
+ phy_info->cable_length = e1000_cable_length_undefined;
+ phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
+ phy_info->cable_polarity = e1000_rev_polarity_undefined;
+ phy_info->downshift = e1000_downshift_undefined;
+ phy_info->polarity_correction = e1000_polarity_reversal_undefined;
+ phy_info->mdix_mode = e1000_auto_x_mode_undefined;
+ phy_info->local_rx = e1000_1000t_rx_status_undefined;
+ phy_info->remote_rx = e1000_1000t_rx_status_undefined;
+
+ if (hw->media_type != e1000_media_type_copper) {
+ DEBUGOUT("PHY info is only valid for copper media\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
+ DEBUGOUT("PHY info is only valid if link is up\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ if (hw->phy_type == e1000_phy_igp)
+ return e1000_phy_igp_get_info(hw, phy_info);
+ else
+ return e1000_phy_m88_get_info(hw, phy_info);
}
s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
{
- DEBUGFUNC("e1000_validate_mdi_settings");
-
- if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
- DEBUGOUT("Invalid MDI setting detected\n");
- hw->mdix = 1;
- return -E1000_ERR_CONFIG;
- }
- return E1000_SUCCESS;
-}
+ DEBUGFUNC("e1000_validate_mdi_settings");
+ if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
+ DEBUGOUT("Invalid MDI setting detected\n");
+ hw->mdix = 1;
+ return -E1000_ERR_CONFIG;
+ }
+ return E1000_SUCCESS;
+}
-/******************************************************************************
- * Sets up eeprom variables in the hw struct. Must be called after mac_type
- * is configured. Additionally, if this is ICH8, the flash controller GbE
- * registers must be mapped, or this will crash.
+/**
+ * e1000_init_eeprom_params - initialize sw eeprom vars
+ * @hw: Struct containing variables accessed by shared code
*
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
+ * Sets up eeprom variables in the hw struct. Must be called after mac_type
+ * is configured.
+ */
s32 e1000_init_eeprom_params(struct e1000_hw *hw)
{
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
- u32 eecd = er32(EECD);
- s32 ret_val = E1000_SUCCESS;
- u16 eeprom_size;
-
- DEBUGFUNC("e1000_init_eeprom_params");
-
- switch (hw->mac_type) {
- case e1000_82542_rev2_0:
- case e1000_82542_rev2_1:
- case e1000_82543:
- case e1000_82544:
- eeprom->type = e1000_eeprom_microwire;
- eeprom->word_size = 64;
- eeprom->opcode_bits = 3;
- eeprom->address_bits = 6;
- eeprom->delay_usec = 50;
- eeprom->use_eerd = false;
- eeprom->use_eewr = false;
- break;
- case e1000_82540:
- case e1000_82545:
- case e1000_82545_rev_3:
- case e1000_82546:
- case e1000_82546_rev_3:
- eeprom->type = e1000_eeprom_microwire;
- eeprom->opcode_bits = 3;
- eeprom->delay_usec = 50;
- if (eecd & E1000_EECD_SIZE) {
- eeprom->word_size = 256;
- eeprom->address_bits = 8;
- } else {
- eeprom->word_size = 64;
- eeprom->address_bits = 6;
- }
- eeprom->use_eerd = false;
- eeprom->use_eewr = false;
- break;
- case e1000_82541:
- case e1000_82541_rev_2:
- case e1000_82547:
- case e1000_82547_rev_2:
- if (eecd & E1000_EECD_TYPE) {
- eeprom->type = e1000_eeprom_spi;
- eeprom->opcode_bits = 8;
- eeprom->delay_usec = 1;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->page_size = 32;
- eeprom->address_bits = 16;
- } else {
- eeprom->page_size = 8;
- eeprom->address_bits = 8;
- }
- } else {
- eeprom->type = e1000_eeprom_microwire;
- eeprom->opcode_bits = 3;
- eeprom->delay_usec = 50;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->word_size = 256;
- eeprom->address_bits = 8;
- } else {
- eeprom->word_size = 64;
- eeprom->address_bits = 6;
- }
- }
- eeprom->use_eerd = false;
- eeprom->use_eewr = false;
- break;
- case e1000_82571:
- case e1000_82572:
- eeprom->type = e1000_eeprom_spi;
- eeprom->opcode_bits = 8;
- eeprom->delay_usec = 1;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->page_size = 32;
- eeprom->address_bits = 16;
- } else {
- eeprom->page_size = 8;
- eeprom->address_bits = 8;
- }
- eeprom->use_eerd = false;
- eeprom->use_eewr = false;
- break;
- case e1000_82573:
- eeprom->type = e1000_eeprom_spi;
- eeprom->opcode_bits = 8;
- eeprom->delay_usec = 1;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->page_size = 32;
- eeprom->address_bits = 16;
- } else {
- eeprom->page_size = 8;
- eeprom->address_bits = 8;
- }
- eeprom->use_eerd = true;
- eeprom->use_eewr = true;
- if (!e1000_is_onboard_nvm_eeprom(hw)) {
- eeprom->type = e1000_eeprom_flash;
- eeprom->word_size = 2048;
-
- /* Ensure that the Autonomous FLASH update bit is cleared due to
- * Flash update issue on parts which use a FLASH for NVM. */
- eecd &= ~E1000_EECD_AUPDEN;
- ew32(EECD, eecd);
- }
- break;
- case e1000_80003es2lan:
- eeprom->type = e1000_eeprom_spi;
- eeprom->opcode_bits = 8;
- eeprom->delay_usec = 1;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->page_size = 32;
- eeprom->address_bits = 16;
- } else {
- eeprom->page_size = 8;
- eeprom->address_bits = 8;
- }
- eeprom->use_eerd = true;
- eeprom->use_eewr = false;
- break;
- case e1000_ich8lan:
- {
- s32 i = 0;
- u32 flash_size = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_GFPREG);
-
- eeprom->type = e1000_eeprom_ich8;
- eeprom->use_eerd = false;
- eeprom->use_eewr = false;
- eeprom->word_size = E1000_SHADOW_RAM_WORDS;
-
- /* Zero the shadow RAM structure. But don't load it from NVM
- * so as to save time for driver init */
- if (hw->eeprom_shadow_ram != NULL) {
- for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
- hw->eeprom_shadow_ram[i].modified = false;
- hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
- }
- }
-
- hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
- ICH_FLASH_SECTOR_SIZE;
-
- hw->flash_bank_size = ((flash_size >> 16) & ICH_GFPREG_BASE_MASK) + 1;
- hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
-
- hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
-
- hw->flash_bank_size /= 2 * sizeof(u16);
-
- break;
- }
- default:
- break;
- }
-
- if (eeprom->type == e1000_eeprom_spi) {
- /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
- * 32KB (incremented by powers of 2).
- */
- if (hw->mac_type <= e1000_82547_rev_2) {
- /* Set to default value for initial eeprom read. */
- eeprom->word_size = 64;
- ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
- if (ret_val)
- return ret_val;
- eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
- /* 256B eeprom size was not supported in earlier hardware, so we
- * bump eeprom_size up one to ensure that "1" (which maps to 256B)
- * is never the result used in the shifting logic below. */
- if (eeprom_size)
- eeprom_size++;
- } else {
- eeprom_size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
- E1000_EECD_SIZE_EX_SHIFT);
- }
-
- eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
- }
- return ret_val;
+ struct e1000_eeprom_info *eeprom = &hw->eeprom;
+ u32 eecd = er32(EECD);
+ s32 ret_val = E1000_SUCCESS;
+ u16 eeprom_size;
+
+ DEBUGFUNC("e1000_init_eeprom_params");
+
+ switch (hw->mac_type) {
+ case e1000_82542_rev2_0:
+ case e1000_82542_rev2_1:
+ case e1000_82543:
+ case e1000_82544:
+ eeprom->type = e1000_eeprom_microwire;
+ eeprom->word_size = 64;
+ eeprom->opcode_bits = 3;
+ eeprom->address_bits = 6;
+ eeprom->delay_usec = 50;
+ break;
+ case e1000_82540:
+ case e1000_82545:
+ case e1000_82545_rev_3:
+ case e1000_82546:
+ case e1000_82546_rev_3:
+ eeprom->type = e1000_eeprom_microwire;
+ eeprom->opcode_bits = 3;
+ eeprom->delay_usec = 50;
+ if (eecd & E1000_EECD_SIZE) {
+ eeprom->word_size = 256;
+ eeprom->address_bits = 8;
+ } else {
+ eeprom->word_size = 64;
+ eeprom->address_bits = 6;
+ }
+ break;
+ case e1000_82541:
+ case e1000_82541_rev_2:
+ case e1000_82547:
+ case e1000_82547_rev_2:
+ if (eecd & E1000_EECD_TYPE) {
+ eeprom->type = e1000_eeprom_spi;
+ eeprom->opcode_bits = 8;
+ eeprom->delay_usec = 1;
+ if (eecd & E1000_EECD_ADDR_BITS) {
+ eeprom->page_size = 32;
+ eeprom->address_bits = 16;
+ } else {
+ eeprom->page_size = 8;
+ eeprom->address_bits = 8;
+ }
+ } else {
+ eeprom->type = e1000_eeprom_microwire;
+ eeprom->opcode_bits = 3;
+ eeprom->delay_usec = 50;
+ if (eecd & E1000_EECD_ADDR_BITS) {
+ eeprom->word_size = 256;
+ eeprom->address_bits = 8;
+ } else {
+ eeprom->word_size = 64;
+ eeprom->address_bits = 6;
+ }
+ }
+ break;
+ default:
+ break;
+ }
+
+ if (eeprom->type == e1000_eeprom_spi) {
+ /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
+ * 32KB (incremented by powers of 2).
+ */
+ /* Set to default value for initial eeprom read. */
+ eeprom->word_size = 64;
+ ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
+ if (ret_val)
+ return ret_val;
+ eeprom_size =
+ (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
+ /* 256B eeprom size was not supported in earlier hardware, so we
+ * bump eeprom_size up one to ensure that "1" (which maps to 256B)
+ * is never the result used in the shifting logic below. */
+ if (eeprom_size)
+ eeprom_size++;
+
+ eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
+ }
+ return ret_val;
}
-/******************************************************************************
- * Raises the EEPROM's clock input.
- *
- * hw - Struct containing variables accessed by shared code
- * eecd - EECD's current value
- *****************************************************************************/
+/**
+ * e1000_raise_ee_clk - Raises the EEPROM's clock input.
+ * @hw: Struct containing variables accessed by shared code
+ * @eecd: EECD's current value
+ */
static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
{
- /* Raise the clock input to the EEPROM (by setting the SK bit), and then
- * wait <delay> microseconds.
- */
- *eecd = *eecd | E1000_EECD_SK;
- ew32(EECD, *eecd);
- E1000_WRITE_FLUSH();
- udelay(hw->eeprom.delay_usec);
+ /* Raise the clock input to the EEPROM (by setting the SK bit), and then
+ * wait <delay> microseconds.
+ */
+ *eecd = *eecd | E1000_EECD_SK;
+ ew32(EECD, *eecd);
+ E1000_WRITE_FLUSH();
+ udelay(hw->eeprom.delay_usec);
}
-/******************************************************************************
- * Lowers the EEPROM's clock input.
- *
- * hw - Struct containing variables accessed by shared code
- * eecd - EECD's current value
- *****************************************************************************/
+/**
+ * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
+ * @hw: Struct containing variables accessed by shared code
+ * @eecd: EECD's current value
+ */
static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
{
- /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
- * wait 50 microseconds.
- */
- *eecd = *eecd & ~E1000_EECD_SK;
- ew32(EECD, *eecd);
- E1000_WRITE_FLUSH();
- udelay(hw->eeprom.delay_usec);
+ /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
+ * wait 50 microseconds.
+ */
+ *eecd = *eecd & ~E1000_EECD_SK;
+ ew32(EECD, *eecd);
+ E1000_WRITE_FLUSH();
+ udelay(hw->eeprom.delay_usec);
}
-/******************************************************************************
- * Shift data bits out to the EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- * data - data to send to the EEPROM
- * count - number of bits to shift out
- *****************************************************************************/
+/**
+ * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
+ * @hw: Struct containing variables accessed by shared code
+ * @data: data to send to the EEPROM
+ * @count: number of bits to shift out
+ */
static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
{
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
- u32 eecd;
- u32 mask;
-
- /* We need to shift "count" bits out to the EEPROM. So, value in the
- * "data" parameter will be shifted out to the EEPROM one bit at a time.
- * In order to do this, "data" must be broken down into bits.
- */
- mask = 0x01 << (count - 1);
- eecd = er32(EECD);
- if (eeprom->type == e1000_eeprom_microwire) {
- eecd &= ~E1000_EECD_DO;
- } else if (eeprom->type == e1000_eeprom_spi) {
- eecd |= E1000_EECD_DO;
- }
- do {
- /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
- * and then raising and then lowering the clock (the SK bit controls
- * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
- * by setting "DI" to "0" and then raising and then lowering the clock.
- */
- eecd &= ~E1000_EECD_DI;
-
- if (data & mask)
- eecd |= E1000_EECD_DI;
-
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
-
- udelay(eeprom->delay_usec);
-
- e1000_raise_ee_clk(hw, &eecd);
- e1000_lower_ee_clk(hw, &eecd);
-
- mask = mask >> 1;
-
- } while (mask);
-
- /* We leave the "DI" bit set to "0" when we leave this routine. */
- eecd &= ~E1000_EECD_DI;
- ew32(EECD, eecd);
+ struct e1000_eeprom_info *eeprom = &hw->eeprom;
+ u32 eecd;
+ u32 mask;
+
+ /* We need to shift "count" bits out to the EEPROM. So, value in the
+ * "data" parameter will be shifted out to the EEPROM one bit at a time.
+ * In order to do this, "data" must be broken down into bits.
+ */
+ mask = 0x01 << (count - 1);
+ eecd = er32(EECD);
+ if (eeprom->type == e1000_eeprom_microwire) {
+ eecd &= ~E1000_EECD_DO;
+ } else if (eeprom->type == e1000_eeprom_spi) {
+ eecd |= E1000_EECD_DO;
+ }
+ do {
+ /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
+ * and then raising and then lowering the clock (the SK bit controls
+ * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
+ * by setting "DI" to "0" and then raising and then lowering the clock.
+ */
+ eecd &= ~E1000_EECD_DI;
+
+ if (data & mask)
+ eecd |= E1000_EECD_DI;
+
+ ew32(EECD, eecd);
+ E1000_WRITE_FLUSH();
+
+ udelay(eeprom->delay_usec);
+
+ e1000_raise_ee_clk(hw, &eecd);
+ e1000_lower_ee_clk(hw, &eecd);
+
+ mask = mask >> 1;
+
+ } while (mask);
+
+ /* We leave the "DI" bit set to "0" when we leave this routine. */
+ eecd &= ~E1000_EECD_DI;
+ ew32(EECD, eecd);
}
-/******************************************************************************
- * Shift data bits in from the EEPROM
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
+/**
+ * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
+ * @hw: Struct containing variables accessed by shared code
+ * @count: number of bits to shift in
+ */
static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
{
- u32 eecd;
- u32 i;
- u16 data;
+ u32 eecd;
+ u32 i;
+ u16 data;
- /* In order to read a register from the EEPROM, we need to shift 'count'
- * bits in from the EEPROM. Bits are "shifted in" by raising the clock
- * input to the EEPROM (setting the SK bit), and then reading the value of
- * the "DO" bit. During this "shifting in" process the "DI" bit should
- * always be clear.
- */
+ /* In order to read a register from the EEPROM, we need to shift 'count'
+ * bits in from the EEPROM. Bits are "shifted in" by raising the clock
+ * input to the EEPROM (setting the SK bit), and then reading the value of
+ * the "DO" bit. During this "shifting in" process the "DI" bit should
+ * always be clear.
+ */
- eecd = er32(EECD);
+ eecd = er32(EECD);
- eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
- data = 0;
+ eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+ data = 0;
- for (i = 0; i < count; i++) {
- data = data << 1;
- e1000_raise_ee_clk(hw, &eecd);
+ for (i = 0; i < count; i++) {
+ data = data << 1;
+ e1000_raise_ee_clk(hw, &eecd);
- eecd = er32(EECD);
+ eecd = er32(EECD);
- eecd &= ~(E1000_EECD_DI);
- if (eecd & E1000_EECD_DO)
- data |= 1;
+ eecd &= ~(E1000_EECD_DI);
+ if (eecd & E1000_EECD_DO)
+ data |= 1;
- e1000_lower_ee_clk(hw, &eecd);
- }
+ e1000_lower_ee_clk(hw, &eecd);
+ }
- return data;
+ return data;
}
-/******************************************************************************
- * Prepares EEPROM for access
- *
- * hw - Struct containing variables accessed by shared code
+/**
+ * e1000_acquire_eeprom - Prepares EEPROM for access
+ * @hw: Struct containing variables accessed by shared code
*
* Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
* function should be called before issuing a command to the EEPROM.
- *****************************************************************************/
+ */
static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
{
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
- u32 eecd, i=0;
-
- DEBUGFUNC("e1000_acquire_eeprom");
-
- if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
- return -E1000_ERR_SWFW_SYNC;
- eecd = er32(EECD);
-
- if (hw->mac_type != e1000_82573) {
- /* Request EEPROM Access */
- if (hw->mac_type > e1000_82544) {
- eecd |= E1000_EECD_REQ;
- ew32(EECD, eecd);
- eecd = er32(EECD);
- while ((!(eecd & E1000_EECD_GNT)) &&
- (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
- i++;
- udelay(5);
- eecd = er32(EECD);
- }
- if (!(eecd & E1000_EECD_GNT)) {
- eecd &= ~E1000_EECD_REQ;
- ew32(EECD, eecd);
- DEBUGOUT("Could not acquire EEPROM grant\n");
- e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
- return -E1000_ERR_EEPROM;
- }
- }
- }
-
- /* Setup EEPROM for Read/Write */
-
- if (eeprom->type == e1000_eeprom_microwire) {
- /* Clear SK and DI */
- eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
- ew32(EECD, eecd);
-
- /* Set CS */
- eecd |= E1000_EECD_CS;
- ew32(EECD, eecd);
- } else if (eeprom->type == e1000_eeprom_spi) {
- /* Clear SK and CS */
- eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
- ew32(EECD, eecd);
- udelay(1);
- }
-
- return E1000_SUCCESS;
+ struct e1000_eeprom_info *eeprom = &hw->eeprom;
+ u32 eecd, i = 0;
+
+ DEBUGFUNC("e1000_acquire_eeprom");
+
+ eecd = er32(EECD);
+
+ /* Request EEPROM Access */
+ if (hw->mac_type > e1000_82544) {
+ eecd |= E1000_EECD_REQ;
+ ew32(EECD, eecd);
+ eecd = er32(EECD);
+ while ((!(eecd & E1000_EECD_GNT)) &&
+ (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
+ i++;
+ udelay(5);
+ eecd = er32(EECD);
+ }
+ if (!(eecd & E1000_EECD_GNT)) {
+ eecd &= ~E1000_EECD_REQ;
+ ew32(EECD, eecd);
+ DEBUGOUT("Could not acquire EEPROM grant\n");
+ return -E1000_ERR_EEPROM;
+ }
+ }
+
+ /* Setup EEPROM for Read/Write */
+
+ if (eeprom->type == e1000_eeprom_microwire) {
+ /* Clear SK and DI */
+ eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
+ ew32(EECD, eecd);
+
+ /* Set CS */
+ eecd |= E1000_EECD_CS;
+ ew32(EECD, eecd);
+ } else if (eeprom->type == e1000_eeprom_spi) {
+ /* Clear SK and CS */
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+ ew32(EECD, eecd);
+ udelay(1);
+ }
+
+ return E1000_SUCCESS;
}
-/******************************************************************************
- * Returns EEPROM to a "standby" state
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
+/**
+ * e1000_standby_eeprom - Returns EEPROM to a "standby" state
+ * @hw: Struct containing variables accessed by shared code
+ */
static void e1000_standby_eeprom(struct e1000_hw *hw)
{
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
- u32 eecd;
-
- eecd = er32(EECD);
-
- if (eeprom->type == e1000_eeprom_microwire) {
- eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
- udelay(eeprom->delay_usec);
-
- /* Clock high */
- eecd |= E1000_EECD_SK;
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
- udelay(eeprom->delay_usec);
-
- /* Select EEPROM */
- eecd |= E1000_EECD_CS;
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
- udelay(eeprom->delay_usec);
-
- /* Clock low */
- eecd &= ~E1000_EECD_SK;
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
- udelay(eeprom->delay_usec);
- } else if (eeprom->type == e1000_eeprom_spi) {
- /* Toggle CS to flush commands */
- eecd |= E1000_EECD_CS;
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
- udelay(eeprom->delay_usec);
- eecd &= ~E1000_EECD_CS;
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
- udelay(eeprom->delay_usec);
- }
+ struct e1000_eeprom_info *eeprom = &hw->eeprom;
+ u32 eecd;
+
+ eecd = er32(EECD);
+
+ if (eeprom->type == e1000_eeprom_microwire) {
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+ ew32(EECD, eecd);
+ E1000_WRITE_FLUSH();
+ udelay(eeprom->delay_usec);
+
+ /* Clock high */
+ eecd |= E1000_EECD_SK;
+ ew32(EECD, eecd);
+ E1000_WRITE_FLUSH();
+ udelay(eeprom->delay_usec);
+
+ /* Select EEPROM */
+ eecd |= E1000_EECD_CS;
+ ew32(EECD, eecd);
+ E1000_WRITE_FLUSH();
+ udelay(eeprom->delay_usec);
+
+ /* Clock low */
+ eecd &= ~E1000_EECD_SK;
+ ew32(EECD, eecd);
+ E1000_WRITE_FLUSH();
+ udelay(eeprom->delay_usec);
+ } else if (eeprom->type == e1000_eeprom_spi) {
+ /* Toggle CS to flush commands */
+ eecd |= E1000_EECD_CS;
+ ew32(EECD, eecd);
+ E1000_WRITE_FLUSH();
+ udelay(eeprom->delay_usec);
+ eecd &= ~E1000_EECD_CS;
+ ew32(EECD, eecd);
+ E1000_WRITE_FLUSH();
+ udelay(eeprom->delay_usec);
+ }
}
-/******************************************************************************
- * Terminates a command by inverting the EEPROM's chip select pin
+/**
+ * e1000_release_eeprom - drop chip select
+ * @hw: Struct containing variables accessed by shared code
*
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
+ * Terminates a command by inverting the EEPROM's chip select pin
+ */
static void e1000_release_eeprom(struct e1000_hw *hw)
{
- u32 eecd;
-
- DEBUGFUNC("e1000_release_eeprom");
+ u32 eecd;
- eecd = er32(EECD);
+ DEBUGFUNC("e1000_release_eeprom");
- if (hw->eeprom.type == e1000_eeprom_spi) {
- eecd |= E1000_EECD_CS; /* Pull CS high */
- eecd &= ~E1000_EECD_SK; /* Lower SCK */
+ eecd = er32(EECD);
- ew32(EECD, eecd);
+ if (hw->eeprom.type == e1000_eeprom_spi) {
+ eecd |= E1000_EECD_CS; /* Pull CS high */
+ eecd &= ~E1000_EECD_SK; /* Lower SCK */
- udelay(hw->eeprom.delay_usec);
- } else if (hw->eeprom.type == e1000_eeprom_microwire) {
- /* cleanup eeprom */
+ ew32(EECD, eecd);
- /* CS on Microwire is active-high */
- eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
+ udelay(hw->eeprom.delay_usec);
+ } else if (hw->eeprom.type == e1000_eeprom_microwire) {
+ /* cleanup eeprom */
- ew32(EECD, eecd);
+ /* CS on Microwire is active-high */
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
- /* Rising edge of clock */
- eecd |= E1000_EECD_SK;
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
- udelay(hw->eeprom.delay_usec);
+ ew32(EECD, eecd);
- /* Falling edge of clock */
- eecd &= ~E1000_EECD_SK;
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
- udelay(hw->eeprom.delay_usec);
- }
+ /* Rising edge of clock */
+ eecd |= E1000_EECD_SK;
+ ew32(EECD, eecd);
+ E1000_WRITE_FLUSH();
+ udelay(hw->eeprom.delay_usec);
- /* Stop requesting EEPROM access */
- if (hw->mac_type > e1000_82544) {
- eecd &= ~E1000_EECD_REQ;
- ew32(EECD, eecd);
- }
+ /* Falling edge of clock */
+ eecd &= ~E1000_EECD_SK;
+ ew32(EECD, eecd);
+ E1000_WRITE_FLUSH();
+ udelay(hw->eeprom.delay_usec);
+ }
- e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
+ /* Stop requesting EEPROM access */
+ if (hw->mac_type > e1000_82544) {
+ eecd &= ~E1000_EECD_REQ;
+ ew32(EECD, eecd);
+ }
}
-/******************************************************************************
- * Reads a 16 bit word from the EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
+/**
+ * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
+ * @hw: Struct containing variables accessed by shared code
+ */
static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
{
- u16 retry_count = 0;
- u8 spi_stat_reg;
-
- DEBUGFUNC("e1000_spi_eeprom_ready");
-
- /* Read "Status Register" repeatedly until the LSB is cleared. The
- * EEPROM will signal that the command has been completed by clearing
- * bit 0 of the internal status register. If it's not cleared within
- * 5 milliseconds, then error out.
- */
- retry_count = 0;
- do {
- e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
- hw->eeprom.opcode_bits);
- spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, 8);
- if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
- break;
-
- udelay(5);
- retry_count += 5;
-
- e1000_standby_eeprom(hw);
- } while (retry_count < EEPROM_MAX_RETRY_SPI);
-
- /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
- * only 0-5mSec on 5V devices)
- */
- if (retry_count >= EEPROM_MAX_RETRY_SPI) {
- DEBUGOUT("SPI EEPROM Status error\n");
- return -E1000_ERR_EEPROM;
- }
-
- return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Reads a 16 bit word from the EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
- s32 ret;
- spin_lock(&e1000_eeprom_lock);
- ret = e1000_do_read_eeprom(hw, offset, words, data);
- spin_unlock(&e1000_eeprom_lock);
- return ret;
-}
-
-static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
- u32 i = 0;
-
- DEBUGFUNC("e1000_read_eeprom");
-
- /* If eeprom is not yet detected, do so now */
- if (eeprom->word_size == 0)
- e1000_init_eeprom_params(hw);
-
- /* A check for invalid values: offset too large, too many words, and not
- * enough words.
- */
- if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
- (words == 0)) {
- DEBUGOUT2("\"words\" parameter out of bounds. Words = %d, size = %d\n", offset, eeprom->word_size);
- return -E1000_ERR_EEPROM;
- }
-
- /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
- * directly. In this case, we need to acquire the EEPROM so that
- * FW or other port software does not interrupt.
- */
- if (e1000_is_onboard_nvm_eeprom(hw) && !hw->eeprom.use_eerd) {
- /* Prepare the EEPROM for bit-bang reading */
- if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
- return -E1000_ERR_EEPROM;
- }
-
- /* Eerd register EEPROM access requires no eeprom aquire/release */
- if (eeprom->use_eerd)
- return e1000_read_eeprom_eerd(hw, offset, words, data);
-
- /* ICH EEPROM access is done via the ICH flash controller */
- if (eeprom->type == e1000_eeprom_ich8)
- return e1000_read_eeprom_ich8(hw, offset, words, data);
-
- /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
- * acquired the EEPROM at this point, so any returns should relase it */
- if (eeprom->type == e1000_eeprom_spi) {
- u16 word_in;
- u8 read_opcode = EEPROM_READ_OPCODE_SPI;
-
- if (e1000_spi_eeprom_ready(hw)) {
- e1000_release_eeprom(hw);
- return -E1000_ERR_EEPROM;
- }
-
- e1000_standby_eeprom(hw);
-
- /* Some SPI eeproms use the 8th address bit embedded in the opcode */
- if ((eeprom->address_bits == 8) && (offset >= 128))
- read_opcode |= EEPROM_A8_OPCODE_SPI;
-
- /* Send the READ command (opcode + addr) */
- e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
- e1000_shift_out_ee_bits(hw, (u16)(offset*2), eeprom->address_bits);
-
- /* Read the data. The address of the eeprom internally increments with
- * each byte (spi) being read, saving on the overhead of eeprom setup
- * and tear-down. The address counter will roll over if reading beyond
- * the size of the eeprom, thus allowing the entire memory to be read
- * starting from any offset. */
- for (i = 0; i < words; i++) {
- word_in = e1000_shift_in_ee_bits(hw, 16);
- data[i] = (word_in >> 8) | (word_in << 8);
- }
- } else if (eeprom->type == e1000_eeprom_microwire) {
- for (i = 0; i < words; i++) {
- /* Send the READ command (opcode + addr) */
- e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
- eeprom->opcode_bits);
- e1000_shift_out_ee_bits(hw, (u16)(offset + i),
- eeprom->address_bits);
-
- /* Read the data. For microwire, each word requires the overhead
- * of eeprom setup and tear-down. */
- data[i] = e1000_shift_in_ee_bits(hw, 16);
- e1000_standby_eeprom(hw);
- }
- }
-
- /* End this read operation */
- e1000_release_eeprom(hw);
-
- return E1000_SUCCESS;
-}
+ u16 retry_count = 0;
+ u8 spi_stat_reg;
-/******************************************************************************
- * Reads a 16 bit word from the EEPROM using the EERD register.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-static s32 e1000_read_eeprom_eerd(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
-{
- u32 i, eerd = 0;
- s32 error = 0;
+ DEBUGFUNC("e1000_spi_eeprom_ready");
- for (i = 0; i < words; i++) {
- eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
- E1000_EEPROM_RW_REG_START;
+ /* Read "Status Register" repeatedly until the LSB is cleared. The
+ * EEPROM will signal that the command has been completed by clearing
+ * bit 0 of the internal status register. If it's not cleared within
+ * 5 milliseconds, then error out.
+ */
+ retry_count = 0;
+ do {
+ e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
+ hw->eeprom.opcode_bits);
+ spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8);
+ if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
+ break;
- ew32(EERD, eerd);
- error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
+ udelay(5);
+ retry_count += 5;
- if (error) {
- break;
- }
- data[i] = (er32(EERD) >> E1000_EEPROM_RW_REG_DATA);
+ e1000_standby_eeprom(hw);
+ } while (retry_count < EEPROM_MAX_RETRY_SPI);
- }
+ /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
+ * only 0-5mSec on 5V devices)
+ */
+ if (retry_count >= EEPROM_MAX_RETRY_SPI) {
+ DEBUGOUT("SPI EEPROM Status error\n");
+ return -E1000_ERR_EEPROM;
+ }
- return error;
+ return E1000_SUCCESS;
}
-/******************************************************************************
- * Writes a 16 bit word from the EEPROM using the EEWR register.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-static s32 e1000_write_eeprom_eewr(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
+/**
+ * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: offset of word in the EEPROM to read
+ * @data: word read from the EEPROM
+ * @words: number of words to read
+ */
+s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
- u32 register_value = 0;
- u32 i = 0;
- s32 error = 0;
-
- if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
- return -E1000_ERR_SWFW_SYNC;
-
- for (i = 0; i < words; i++) {
- register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
- ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
- E1000_EEPROM_RW_REG_START;
-
- error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
- if (error) {
- break;
- }
-
- ew32(EEWR, register_value);
-
- error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
-
- if (error) {
- break;
- }
- }
-
- e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
- return error;
+ s32 ret;
+ spin_lock(&e1000_eeprom_lock);
+ ret = e1000_do_read_eeprom(hw, offset, words, data);
+ spin_unlock(&e1000_eeprom_lock);
+ return ret;
}
-/******************************************************************************
- * Polls the status bit (bit 1) of the EERD to determine when the read is done.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
+static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data)
{
- u32 attempts = 100000;
- u32 i, reg = 0;
- s32 done = E1000_ERR_EEPROM;
-
- for (i = 0; i < attempts; i++) {
- if (eerd == E1000_EEPROM_POLL_READ)
- reg = er32(EERD);
- else
- reg = er32(EEWR);
-
- if (reg & E1000_EEPROM_RW_REG_DONE) {
- done = E1000_SUCCESS;
- break;
- }
- udelay(5);
- }
-
- return done;
-}
+ struct e1000_eeprom_info *eeprom = &hw->eeprom;
+ u32 i = 0;
-/***************************************************************************
-* Description: Determines if the onboard NVM is FLASH or EEPROM.
-*
-* hw - Struct containing variables accessed by shared code
-****************************************************************************/
-static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
-{
- u32 eecd = 0;
+ DEBUGFUNC("e1000_read_eeprom");
- DEBUGFUNC("e1000_is_onboard_nvm_eeprom");
+ /* If eeprom is not yet detected, do so now */
+ if (eeprom->word_size == 0)
+ e1000_init_eeprom_params(hw);
+
+ /* A check for invalid values: offset too large, too many words, and not
+ * enough words.
+ */
+ if ((offset >= eeprom->word_size)
+ || (words > eeprom->word_size - offset) || (words == 0)) {
+ DEBUGOUT2
+ ("\"words\" parameter out of bounds. Words = %d, size = %d\n",
+ offset, eeprom->word_size);
+ return -E1000_ERR_EEPROM;
+ }
- if (hw->mac_type == e1000_ich8lan)
- return false;
+ /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
+ * directly. In this case, we need to acquire the EEPROM so that
+ * FW or other port software does not interrupt.
+ */
+ /* Prepare the EEPROM for bit-bang reading */
+ if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
+ return -E1000_ERR_EEPROM;
+
+ /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
+ * acquired the EEPROM at this point, so any returns should release it */
+ if (eeprom->type == e1000_eeprom_spi) {
+ u16 word_in;
+ u8 read_opcode = EEPROM_READ_OPCODE_SPI;
+
+ if (e1000_spi_eeprom_ready(hw)) {
+ e1000_release_eeprom(hw);
+ return -E1000_ERR_EEPROM;
+ }
- if (hw->mac_type == e1000_82573) {
- eecd = er32(EECD);
+ e1000_standby_eeprom(hw);
+
+ /* Some SPI eeproms use the 8th address bit embedded in the opcode */
+ if ((eeprom->address_bits == 8) && (offset >= 128))
+ read_opcode |= EEPROM_A8_OPCODE_SPI;
+
+ /* Send the READ command (opcode + addr) */
+ e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
+ e1000_shift_out_ee_bits(hw, (u16) (offset * 2),
+ eeprom->address_bits);
+
+ /* Read the data. The address of the eeprom internally increments with
+ * each byte (spi) being read, saving on the overhead of eeprom setup
+ * and tear-down. The address counter will roll over if reading beyond
+ * the size of the eeprom, thus allowing the entire memory to be read
+ * starting from any offset. */
+ for (i = 0; i < words; i++) {
+ word_in = e1000_shift_in_ee_bits(hw, 16);
+ data[i] = (word_in >> 8) | (word_in << 8);
+ }
+ } else if (eeprom->type == e1000_eeprom_microwire) {
+ for (i = 0; i < words; i++) {
+ /* Send the READ command (opcode + addr) */
+ e1000_shift_out_ee_bits(hw,
+ EEPROM_READ_OPCODE_MICROWIRE,
+ eeprom->opcode_bits);
+ e1000_shift_out_ee_bits(hw, (u16) (offset + i),
+ eeprom->address_bits);
+
+ /* Read the data. For microwire, each word requires the overhead
+ * of eeprom setup and tear-down. */
+ data[i] = e1000_shift_in_ee_bits(hw, 16);
+ e1000_standby_eeprom(hw);
+ }
+ }
- /* Isolate bits 15 & 16 */
- eecd = ((eecd >> 15) & 0x03);
+ /* End this read operation */
+ e1000_release_eeprom(hw);
- /* If both bits are set, device is Flash type */
- if (eecd == 0x03) {
- return false;
- }
- }
- return true;
+ return E1000_SUCCESS;
}
-/******************************************************************************
- * Verifies that the EEPROM has a valid checksum
- *
- * hw - Struct containing variables accessed by shared code
+/**
+ * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
+ * @hw: Struct containing variables accessed by shared code
*
* Reads the first 64 16 bit words of the EEPROM and sums the values read.
* If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
* valid.
- *****************************************************************************/
+ */
s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
{
- u16 checksum = 0;
- u16 i, eeprom_data;
-
- DEBUGFUNC("e1000_validate_eeprom_checksum");
-
- if ((hw->mac_type == e1000_82573) && !e1000_is_onboard_nvm_eeprom(hw)) {
- /* Check bit 4 of word 10h. If it is 0, firmware is done updating
- * 10h-12h. Checksum may need to be fixed. */
- e1000_read_eeprom(hw, 0x10, 1, &eeprom_data);
- if ((eeprom_data & 0x10) == 0) {
- /* Read 0x23 and check bit 15. This bit is a 1 when the checksum
- * has already been fixed. If the checksum is still wrong and this
- * bit is a 1, we need to return bad checksum. Otherwise, we need
- * to set this bit to a 1 and update the checksum. */
- e1000_read_eeprom(hw, 0x23, 1, &eeprom_data);
- if ((eeprom_data & 0x8000) == 0) {
- eeprom_data |= 0x8000;
- e1000_write_eeprom(hw, 0x23, 1, &eeprom_data);
- e1000_update_eeprom_checksum(hw);
- }
- }
- }
-
- if (hw->mac_type == e1000_ich8lan) {
- /* Drivers must allocate the shadow ram structure for the
- * EEPROM checksum to be updated. Otherwise, this bit as well
- * as the checksum must both be set correctly for this
- * validation to pass.
- */
- e1000_read_eeprom(hw, 0x19, 1, &eeprom_data);
- if ((eeprom_data & 0x40) == 0) {
- eeprom_data |= 0x40;
- e1000_write_eeprom(hw, 0x19, 1, &eeprom_data);
- e1000_update_eeprom_checksum(hw);
- }
- }
-
- for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
- if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- checksum += eeprom_data;
- }
-
- if (checksum == (u16)EEPROM_SUM)
- return E1000_SUCCESS;
- else {
- DEBUGOUT("EEPROM Checksum Invalid\n");
- return -E1000_ERR_EEPROM;
- }
+ u16 checksum = 0;
+ u16 i, eeprom_data;
+
+ DEBUGFUNC("e1000_validate_eeprom_checksum");
+
+ for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
+ if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ checksum += eeprom_data;
+ }
+
+ if (checksum == (u16) EEPROM_SUM)
+ return E1000_SUCCESS;
+ else {
+ DEBUGOUT("EEPROM Checksum Invalid\n");
+ return -E1000_ERR_EEPROM;
+ }
}
-/******************************************************************************
- * Calculates the EEPROM checksum and writes it to the EEPROM
- *
- * hw - Struct containing variables accessed by shared code
+/**
+ * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
+ * @hw: Struct containing variables accessed by shared code
*
* Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
* Writes the difference to word offset 63 of the EEPROM.
- *****************************************************************************/
+ */
s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
{
- u32 ctrl_ext;
- u16 checksum = 0;
- u16 i, eeprom_data;
-
- DEBUGFUNC("e1000_update_eeprom_checksum");
-
- for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
- if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- checksum += eeprom_data;
- }
- checksum = (u16)EEPROM_SUM - checksum;
- if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
- DEBUGOUT("EEPROM Write Error\n");
- return -E1000_ERR_EEPROM;
- } else if (hw->eeprom.type == e1000_eeprom_flash) {
- e1000_commit_shadow_ram(hw);
- } else if (hw->eeprom.type == e1000_eeprom_ich8) {
- e1000_commit_shadow_ram(hw);
- /* Reload the EEPROM, or else modifications will not appear
- * until after next adapter reset. */
- ctrl_ext = er32(CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_EE_RST;
- ew32(CTRL_EXT, ctrl_ext);
- msleep(10);
- }
- return E1000_SUCCESS;
+ u16 checksum = 0;
+ u16 i, eeprom_data;
+
+ DEBUGFUNC("e1000_update_eeprom_checksum");
+
+ for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
+ if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ checksum += eeprom_data;
+ }
+ checksum = (u16) EEPROM_SUM - checksum;
+ if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
+ DEBUGOUT("EEPROM Write Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ return E1000_SUCCESS;
}
-/******************************************************************************
- * Parent function for writing words to the different EEPROM types.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset within the EEPROM to be written to
- * words - number of words to write
- * data - 16 bit word to be written to the EEPROM
+/**
+ * e1000_write_eeprom - write words to the different EEPROM types.
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: 16 bit word to be written to the EEPROM
*
* If e1000_update_eeprom_checksum is not called after this function, the
* EEPROM will most likely contain an invalid checksum.
- *****************************************************************************/
+ */
s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
- s32 ret;
- spin_lock(&e1000_eeprom_lock);
- ret = e1000_do_write_eeprom(hw, offset, words, data);
- spin_unlock(&e1000_eeprom_lock);
- return ret;
+ s32 ret;
+ spin_lock(&e1000_eeprom_lock);
+ ret = e1000_do_write_eeprom(hw, offset, words, data);
+ spin_unlock(&e1000_eeprom_lock);
+ return ret;
}
-
-static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data)
{
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
- s32 status = 0;
-
- DEBUGFUNC("e1000_write_eeprom");
-
- /* If eeprom is not yet detected, do so now */
- if (eeprom->word_size == 0)
- e1000_init_eeprom_params(hw);
-
- /* A check for invalid values: offset too large, too many words, and not
- * enough words.
- */
- if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
- (words == 0)) {
- DEBUGOUT("\"words\" parameter out of bounds\n");
- return -E1000_ERR_EEPROM;
- }
-
- /* 82573 writes only through eewr */
- if (eeprom->use_eewr)
- return e1000_write_eeprom_eewr(hw, offset, words, data);
-
- if (eeprom->type == e1000_eeprom_ich8)
- return e1000_write_eeprom_ich8(hw, offset, words, data);
-
- /* Prepare the EEPROM for writing */
- if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
- return -E1000_ERR_EEPROM;
-
- if (eeprom->type == e1000_eeprom_microwire) {
- status = e1000_write_eeprom_microwire(hw, offset, words, data);
- } else {
- status = e1000_write_eeprom_spi(hw, offset, words, data);
- msleep(10);
- }
-
- /* Done with writing */
- e1000_release_eeprom(hw);
-
- return status;
+ struct e1000_eeprom_info *eeprom = &hw->eeprom;
+ s32 status = 0;
+
+ DEBUGFUNC("e1000_write_eeprom");
+
+ /* If eeprom is not yet detected, do so now */
+ if (eeprom->word_size == 0)
+ e1000_init_eeprom_params(hw);
+
+ /* A check for invalid values: offset too large, too many words, and not
+ * enough words.
+ */
+ if ((offset >= eeprom->word_size)
+ || (words > eeprom->word_size - offset) || (words == 0)) {
+ DEBUGOUT("\"words\" parameter out of bounds\n");
+ return -E1000_ERR_EEPROM;
+ }
+
+ /* Prepare the EEPROM for writing */
+ if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
+ return -E1000_ERR_EEPROM;
+
+ if (eeprom->type == e1000_eeprom_microwire) {
+ status = e1000_write_eeprom_microwire(hw, offset, words, data);
+ } else {
+ status = e1000_write_eeprom_spi(hw, offset, words, data);
+ msleep(10);
+ }
+
+ /* Done with writing */
+ e1000_release_eeprom(hw);
+
+ return status;
}
-/******************************************************************************
- * Writes a 16 bit word to a given offset in an SPI EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset within the EEPROM to be written to
- * words - number of words to write
- * data - pointer to array of 8 bit words to be written to the EEPROM
- *
- *****************************************************************************/
+/**
+ * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: pointer to array of 8 bit words to be written to the EEPROM
+ */
static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
u16 *data)
{
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
- u16 widx = 0;
+ struct e1000_eeprom_info *eeprom = &hw->eeprom;
+ u16 widx = 0;
- DEBUGFUNC("e1000_write_eeprom_spi");
+ DEBUGFUNC("e1000_write_eeprom_spi");
- while (widx < words) {
- u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
+ while (widx < words) {
+ u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
- if (e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
+ if (e1000_spi_eeprom_ready(hw))
+ return -E1000_ERR_EEPROM;
- e1000_standby_eeprom(hw);
+ e1000_standby_eeprom(hw);
- /* Send the WRITE ENABLE command (8 bit opcode ) */
- e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
- eeprom->opcode_bits);
+ /* Send the WRITE ENABLE command (8 bit opcode ) */
+ e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
+ eeprom->opcode_bits);
- e1000_standby_eeprom(hw);
+ e1000_standby_eeprom(hw);
- /* Some SPI eeproms use the 8th address bit embedded in the opcode */
- if ((eeprom->address_bits == 8) && (offset >= 128))
- write_opcode |= EEPROM_A8_OPCODE_SPI;
+ /* Some SPI eeproms use the 8th address bit embedded in the opcode */
+ if ((eeprom->address_bits == 8) && (offset >= 128))
+ write_opcode |= EEPROM_A8_OPCODE_SPI;
- /* Send the Write command (8-bit opcode + addr) */
- e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
+ /* Send the Write command (8-bit opcode + addr) */
+ e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
- e1000_shift_out_ee_bits(hw, (u16)((offset + widx)*2),
- eeprom->address_bits);
+ e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2),
+ eeprom->address_bits);
- /* Send the data */
+ /* Send the data */
- /* Loop to allow for up to whole page write (32 bytes) of eeprom */
- while (widx < words) {
- u16 word_out = data[widx];
- word_out = (word_out >> 8) | (word_out << 8);
- e1000_shift_out_ee_bits(hw, word_out, 16);
- widx++;
+ /* Loop to allow for up to whole page write (32 bytes) of eeprom */
+ while (widx < words) {
+ u16 word_out = data[widx];
+ word_out = (word_out >> 8) | (word_out << 8);
+ e1000_shift_out_ee_bits(hw, word_out, 16);
+ widx++;
- /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
- * operation, while the smaller eeproms are capable of an 8-byte
- * PAGE WRITE operation. Break the inner loop to pass new address
- */
- if ((((offset + widx)*2) % eeprom->page_size) == 0) {
- e1000_standby_eeprom(hw);
- break;
- }
- }
- }
+ /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
+ * operation, while the smaller eeproms are capable of an 8-byte
+ * PAGE WRITE operation. Break the inner loop to pass new address
+ */
+ if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
+ e1000_standby_eeprom(hw);
+ break;
+ }
+ }
+ }
- return E1000_SUCCESS;
+ return E1000_SUCCESS;
}
-/******************************************************************************
- * Writes a 16 bit word to a given offset in a Microwire EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset within the EEPROM to be written to
- * words - number of words to write
- * data - pointer to array of 16 bit words to be written to the EEPROM
- *
- *****************************************************************************/
+/**
+ * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: pointer to array of 8 bit words to be written to the EEPROM
+ */
static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
u16 words, u16 *data)
{
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
- u32 eecd;
- u16 words_written = 0;
- u16 i = 0;
-
- DEBUGFUNC("e1000_write_eeprom_microwire");
-
- /* Send the write enable command to the EEPROM (3-bit opcode plus
- * 6/8-bit dummy address beginning with 11). It's less work to include
- * the 11 of the dummy address as part of the opcode than it is to shift
- * it over the correct number of bits for the address. This puts the
- * EEPROM into write/erase mode.
- */
- e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
- (u16)(eeprom->opcode_bits + 2));
-
- e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
-
- /* Prepare the EEPROM */
- e1000_standby_eeprom(hw);
-
- while (words_written < words) {
- /* Send the Write command (3-bit opcode + addr) */
- e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
- eeprom->opcode_bits);
-
- e1000_shift_out_ee_bits(hw, (u16)(offset + words_written),
- eeprom->address_bits);
-
- /* Send the data */
- e1000_shift_out_ee_bits(hw, data[words_written], 16);
-
- /* Toggle the CS line. This in effect tells the EEPROM to execute
- * the previous command.
- */
- e1000_standby_eeprom(hw);
-
- /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will
- * signal that the command has been completed by raising the DO signal.
- * If DO does not go high in 10 milliseconds, then error out.
- */
- for (i = 0; i < 200; i++) {
- eecd = er32(EECD);
- if (eecd & E1000_EECD_DO) break;
- udelay(50);
- }
- if (i == 200) {
- DEBUGOUT("EEPROM Write did not complete\n");
- return -E1000_ERR_EEPROM;
- }
-
- /* Recover from write */
- e1000_standby_eeprom(hw);
-
- words_written++;
- }
-
- /* Send the write disable command to the EEPROM (3-bit opcode plus
- * 6/8-bit dummy address beginning with 10). It's less work to include
- * the 10 of the dummy address as part of the opcode than it is to shift
- * it over the correct number of bits for the address. This takes the
- * EEPROM out of write/erase mode.
- */
- e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
- (u16)(eeprom->opcode_bits + 2));
-
- e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
-
- return E1000_SUCCESS;
-}
+ struct e1000_eeprom_info *eeprom = &hw->eeprom;
+ u32 eecd;
+ u16 words_written = 0;
+ u16 i = 0;
-/******************************************************************************
- * Flushes the cached eeprom to NVM. This is done by saving the modified values
- * in the eeprom cache and the non modified values in the currently active bank
- * to the new bank.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-static s32 e1000_commit_shadow_ram(struct e1000_hw *hw)
-{
- u32 attempts = 100000;
- u32 eecd = 0;
- u32 flop = 0;
- u32 i = 0;
- s32 error = E1000_SUCCESS;
- u32 old_bank_offset = 0;
- u32 new_bank_offset = 0;
- u8 low_byte = 0;
- u8 high_byte = 0;
- bool sector_write_failed = false;
-
- if (hw->mac_type == e1000_82573) {
- /* The flop register will be used to determine if flash type is STM */
- flop = er32(FLOP);
- for (i=0; i < attempts; i++) {
- eecd = er32(EECD);
- if ((eecd & E1000_EECD_FLUPD) == 0) {
- break;
- }
- udelay(5);
- }
-
- if (i == attempts) {
- return -E1000_ERR_EEPROM;
- }
-
- /* If STM opcode located in bits 15:8 of flop, reset firmware */
- if ((flop & 0xFF00) == E1000_STM_OPCODE) {
- ew32(HICR, E1000_HICR_FW_RESET);
- }
-
- /* Perform the flash update */
- ew32(EECD, eecd | E1000_EECD_FLUPD);
-
- for (i=0; i < attempts; i++) {
- eecd = er32(EECD);
- if ((eecd & E1000_EECD_FLUPD) == 0) {
- break;
- }
- udelay(5);
- }
-
- if (i == attempts) {
- return -E1000_ERR_EEPROM;
- }
- }
-
- if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) {
- /* We're writing to the opposite bank so if we're on bank 1,
- * write to bank 0 etc. We also need to erase the segment that
- * is going to be written */
- if (!(er32(EECD) & E1000_EECD_SEC1VAL)) {
- new_bank_offset = hw->flash_bank_size * 2;
- old_bank_offset = 0;
- e1000_erase_ich8_4k_segment(hw, 1);
- } else {
- old_bank_offset = hw->flash_bank_size * 2;
- new_bank_offset = 0;
- e1000_erase_ich8_4k_segment(hw, 0);
- }
-
- sector_write_failed = false;
- /* Loop for every byte in the shadow RAM,
- * which is in units of words. */
- for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
- /* Determine whether to write the value stored
- * in the other NVM bank or a modified value stored
- * in the shadow RAM */
- if (hw->eeprom_shadow_ram[i].modified) {
- low_byte = (u8)hw->eeprom_shadow_ram[i].eeprom_word;
- udelay(100);
- error = e1000_verify_write_ich8_byte(hw,
- (i << 1) + new_bank_offset, low_byte);
-
- if (error != E1000_SUCCESS)
- sector_write_failed = true;
- else {
- high_byte =
- (u8)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
- udelay(100);
- }
- } else {
- e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
- &low_byte);
- udelay(100);
- error = e1000_verify_write_ich8_byte(hw,
- (i << 1) + new_bank_offset, low_byte);
-
- if (error != E1000_SUCCESS)
- sector_write_failed = true;
- else {
- e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
- &high_byte);
- udelay(100);
- }
- }
-
- /* If the write of the low byte was successful, go ahead and
- * write the high byte while checking to make sure that if it
- * is the signature byte, then it is handled properly */
- if (!sector_write_failed) {
- /* If the word is 0x13, then make sure the signature bits
- * (15:14) are 11b until the commit has completed.
- * This will allow us to write 10b which indicates the
- * signature is valid. We want to do this after the write
- * has completed so that we don't mark the segment valid
- * while the write is still in progress */
- if (i == E1000_ICH_NVM_SIG_WORD)
- high_byte = E1000_ICH_NVM_SIG_MASK | high_byte;
-
- error = e1000_verify_write_ich8_byte(hw,
- (i << 1) + new_bank_offset + 1, high_byte);
- if (error != E1000_SUCCESS)
- sector_write_failed = true;
-
- } else {
- /* If the write failed then break from the loop and
- * return an error */
- break;
- }
- }
-
- /* Don't bother writing the segment valid bits if sector
- * programming failed. */
- if (!sector_write_failed) {
- /* Finally validate the new segment by setting bit 15:14
- * to 10b in word 0x13 , this can be done without an
- * erase as well since these bits are 11 to start with
- * and we need to change bit 14 to 0b */
- e1000_read_ich8_byte(hw,
- E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
- &high_byte);
- high_byte &= 0xBF;
- error = e1000_verify_write_ich8_byte(hw,
- E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, high_byte);
- /* And invalidate the previously valid segment by setting
- * its signature word (0x13) high_byte to 0b. This can be
- * done without an erase because flash erase sets all bits
- * to 1's. We can write 1's to 0's without an erase */
- if (error == E1000_SUCCESS) {
- error = e1000_verify_write_ich8_byte(hw,
- E1000_ICH_NVM_SIG_WORD * 2 + 1 + old_bank_offset, 0);
- }
-
- /* Clear the now not used entry in the cache */
- for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
- hw->eeprom_shadow_ram[i].modified = false;
- hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
- }
- }
- }
-
- return error;
+ DEBUGFUNC("e1000_write_eeprom_microwire");
+
+ /* Send the write enable command to the EEPROM (3-bit opcode plus
+ * 6/8-bit dummy address beginning with 11). It's less work to include
+ * the 11 of the dummy address as part of the opcode than it is to shift
+ * it over the correct number of bits for the address. This puts the
+ * EEPROM into write/erase mode.
+ */
+ e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
+ (u16) (eeprom->opcode_bits + 2));
+
+ e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
+
+ /* Prepare the EEPROM */
+ e1000_standby_eeprom(hw);
+
+ while (words_written < words) {
+ /* Send the Write command (3-bit opcode + addr) */
+ e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
+ eeprom->opcode_bits);
+
+ e1000_shift_out_ee_bits(hw, (u16) (offset + words_written),
+ eeprom->address_bits);
+
+ /* Send the data */
+ e1000_shift_out_ee_bits(hw, data[words_written], 16);
+
+ /* Toggle the CS line. This in effect tells the EEPROM to execute
+ * the previous command.
+ */
+ e1000_standby_eeprom(hw);
+
+ /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will
+ * signal that the command has been completed by raising the DO signal.
+ * If DO does not go high in 10 milliseconds, then error out.
+ */
+ for (i = 0; i < 200; i++) {
+ eecd = er32(EECD);
+ if (eecd & E1000_EECD_DO)
+ break;
+ udelay(50);
+ }
+ if (i == 200) {
+ DEBUGOUT("EEPROM Write did not complete\n");
+ return -E1000_ERR_EEPROM;
+ }
+
+ /* Recover from write */
+ e1000_standby_eeprom(hw);
+
+ words_written++;
+ }
+
+ /* Send the write disable command to the EEPROM (3-bit opcode plus
+ * 6/8-bit dummy address beginning with 10). It's less work to include
+ * the 10 of the dummy address as part of the opcode than it is to shift
+ * it over the correct number of bits for the address. This takes the
+ * EEPROM out of write/erase mode.
+ */
+ e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
+ (u16) (eeprom->opcode_bits + 2));
+
+ e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
+
+ return E1000_SUCCESS;
}
-/******************************************************************************
+/**
+ * e1000_read_mac_addr - read the adapters MAC from eeprom
+ * @hw: Struct containing variables accessed by shared code
+ *
* Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
* second function of dual function devices
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
+ */
s32 e1000_read_mac_addr(struct e1000_hw *hw)
{
- u16 offset;
- u16 eeprom_data, i;
-
- DEBUGFUNC("e1000_read_mac_addr");
-
- for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
- offset = i >> 1;
- if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- hw->perm_mac_addr[i] = (u8)(eeprom_data & 0x00FF);
- hw->perm_mac_addr[i+1] = (u8)(eeprom_data >> 8);
- }
-
- switch (hw->mac_type) {
- default:
- break;
- case e1000_82546:
- case e1000_82546_rev_3:
- case e1000_82571:
- case e1000_80003es2lan:
- if (er32(STATUS) & E1000_STATUS_FUNC_1)
- hw->perm_mac_addr[5] ^= 0x01;
- break;
- }
-
- for (i = 0; i < NODE_ADDRESS_SIZE; i++)
- hw->mac_addr[i] = hw->perm_mac_addr[i];
- return E1000_SUCCESS;
+ u16 offset;
+ u16 eeprom_data, i;
+
+ DEBUGFUNC("e1000_read_mac_addr");
+
+ for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
+ offset = i >> 1;
+ if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF);
+ hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8);
+ }
+
+ switch (hw->mac_type) {
+ default:
+ break;
+ case e1000_82546:
+ case e1000_82546_rev_3:
+ if (er32(STATUS) & E1000_STATUS_FUNC_1)
+ hw->perm_mac_addr[5] ^= 0x01;
+ break;
+ }
+
+ for (i = 0; i < NODE_ADDRESS_SIZE; i++)
+ hw->mac_addr[i] = hw->perm_mac_addr[i];
+ return E1000_SUCCESS;
}
-/******************************************************************************
- * Initializes receive address filters.
- *
- * hw - Struct containing variables accessed by shared code
+/**
+ * e1000_init_rx_addrs - Initializes receive address filters.
+ * @hw: Struct containing variables accessed by shared code
*
* Places the MAC address in receive address register 0 and clears the rest
- * of the receive addresss registers. Clears the multicast table. Assumes
+ * of the receive address registers. Clears the multicast table. Assumes
* the receiver is in reset when the routine is called.
- *****************************************************************************/
+ */
static void e1000_init_rx_addrs(struct e1000_hw *hw)
{
- u32 i;
- u32 rar_num;
-
- DEBUGFUNC("e1000_init_rx_addrs");
-
- /* Setup the receive address. */
- DEBUGOUT("Programming MAC Address into RAR[0]\n");
-
- e1000_rar_set(hw, hw->mac_addr, 0);
-
- rar_num = E1000_RAR_ENTRIES;
-
- /* Reserve a spot for the Locally Administered Address to work around
- * an 82571 issue in which a reset on one port will reload the MAC on
- * the other port. */
- if ((hw->mac_type == e1000_82571) && (hw->laa_is_present))
- rar_num -= 1;
- if (hw->mac_type == e1000_ich8lan)
- rar_num = E1000_RAR_ENTRIES_ICH8LAN;
-
- /* Zero out the other 15 receive addresses. */
- DEBUGOUT("Clearing RAR[1-15]\n");
- for (i = 1; i < rar_num; i++) {
- E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
- E1000_WRITE_FLUSH();
- E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
- E1000_WRITE_FLUSH();
- }
+ u32 i;
+ u32 rar_num;
+
+ DEBUGFUNC("e1000_init_rx_addrs");
+
+ /* Setup the receive address. */
+ DEBUGOUT("Programming MAC Address into RAR[0]\n");
+
+ e1000_rar_set(hw, hw->mac_addr, 0);
+
+ rar_num = E1000_RAR_ENTRIES;
+
+ /* Zero out the other 15 receive addresses. */
+ DEBUGOUT("Clearing RAR[1-15]\n");
+ for (i = 1; i < rar_num; i++) {
+ E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
+ E1000_WRITE_FLUSH();
+ E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
+ E1000_WRITE_FLUSH();
+ }
}
-/******************************************************************************
- * Hashes an address to determine its location in the multicast table
- *
- * hw - Struct containing variables accessed by shared code
- * mc_addr - the multicast address to hash
- *****************************************************************************/
+/**
+ * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
+ * @hw: Struct containing variables accessed by shared code
+ * @mc_addr: the multicast address to hash
+ */
u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
{
- u32 hash_value = 0;
-
- /* The portion of the address that is used for the hash table is
- * determined by the mc_filter_type setting.
- */
- switch (hw->mc_filter_type) {
- /* [0] [1] [2] [3] [4] [5]
- * 01 AA 00 12 34 56
- * LSB MSB
- */
- case 0:
- if (hw->mac_type == e1000_ich8lan) {
- /* [47:38] i.e. 0x158 for above example address */
- hash_value = ((mc_addr[4] >> 6) | (((u16)mc_addr[5]) << 2));
- } else {
- /* [47:36] i.e. 0x563 for above example address */
- hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
- }
- break;
- case 1:
- if (hw->mac_type == e1000_ich8lan) {
- /* [46:37] i.e. 0x2B1 for above example address */
- hash_value = ((mc_addr[4] >> 5) | (((u16)mc_addr[5]) << 3));
- } else {
- /* [46:35] i.e. 0xAC6 for above example address */
- hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
- }
- break;
- case 2:
- if (hw->mac_type == e1000_ich8lan) {
- /*[45:36] i.e. 0x163 for above example address */
- hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
- } else {
- /* [45:34] i.e. 0x5D8 for above example address */
- hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
- }
- break;
- case 3:
- if (hw->mac_type == e1000_ich8lan) {
- /* [43:34] i.e. 0x18D for above example address */
- hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
- } else {
- /* [43:32] i.e. 0x634 for above example address */
- hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
- }
- break;
- }
-
- hash_value &= 0xFFF;
- if (hw->mac_type == e1000_ich8lan)
- hash_value &= 0x3FF;
-
- return hash_value;
+ u32 hash_value = 0;
+
+ /* The portion of the address that is used for the hash table is
+ * determined by the mc_filter_type setting.
+ */
+ switch (hw->mc_filter_type) {
+ /* [0] [1] [2] [3] [4] [5]
+ * 01 AA 00 12 34 56
+ * LSB MSB
+ */
+ case 0:
+ /* [47:36] i.e. 0x563 for above example address */
+ hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
+ break;
+ case 1:
+ /* [46:35] i.e. 0xAC6 for above example address */
+ hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
+ break;
+ case 2:
+ /* [45:34] i.e. 0x5D8 for above example address */
+ hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
+ break;
+ case 3:
+ /* [43:32] i.e. 0x634 for above example address */
+ hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
+ break;
+ }
+
+ hash_value &= 0xFFF;
+ return hash_value;
}
-/******************************************************************************
- * Puts an ethernet address into a receive address register.
- *
- * hw - Struct containing variables accessed by shared code
- * addr - Address to put into receive address register
- * index - Receive address register to write
- *****************************************************************************/
+/**
+ * e1000_rar_set - Puts an ethernet address into a receive address register.
+ * @hw: Struct containing variables accessed by shared code
+ * @addr: Address to put into receive address register
+ * @index: Receive address register to write
+ */
void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
{
- u32 rar_low, rar_high;
-
- /* HW expects these in little endian so we reverse the byte order
- * from network order (big endian) to little endian
- */
- rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
- ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
- rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
-
- /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
- * unit hang.
- *
- * Description:
- * If there are any Rx frames queued up or otherwise present in the HW
- * before RSS is enabled, and then we enable RSS, the HW Rx unit will
- * hang. To work around this issue, we have to disable receives and
- * flush out all Rx frames before we enable RSS. To do so, we modify we
- * redirect all Rx traffic to manageability and then reset the HW.
- * This flushes away Rx frames, and (since the redirections to
- * manageability persists across resets) keeps new ones from coming in
- * while we work. Then, we clear the Address Valid AV bit for all MAC
- * addresses and undo the re-direction to manageability.
- * Now, frames are coming in again, but the MAC won't accept them, so
- * far so good. We now proceed to initialize RSS (if necessary) and
- * configure the Rx unit. Last, we re-enable the AV bits and continue
- * on our merry way.
- */
- switch (hw->mac_type) {
- case e1000_82571:
- case e1000_82572:
- case e1000_80003es2lan:
- if (hw->leave_av_bit_off)
- break;
- default:
- /* Indicate to hardware the Address is Valid. */
- rar_high |= E1000_RAH_AV;
- break;
- }
-
- E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
- E1000_WRITE_FLUSH();
- E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
- E1000_WRITE_FLUSH();
+ u32 rar_low, rar_high;
+
+ /* HW expects these in little endian so we reverse the byte order
+ * from network order (big endian) to little endian
+ */
+ rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
+ ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
+ rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
+
+ /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
+ * unit hang.
+ *
+ * Description:
+ * If there are any Rx frames queued up or otherwise present in the HW
+ * before RSS is enabled, and then we enable RSS, the HW Rx unit will
+ * hang. To work around this issue, we have to disable receives and
+ * flush out all Rx frames before we enable RSS. To do so, we modify we
+ * redirect all Rx traffic to manageability and then reset the HW.
+ * This flushes away Rx frames, and (since the redirections to
+ * manageability persists across resets) keeps new ones from coming in
+ * while we work. Then, we clear the Address Valid AV bit for all MAC
+ * addresses and undo the re-direction to manageability.
+ * Now, frames are coming in again, but the MAC won't accept them, so
+ * far so good. We now proceed to initialize RSS (if necessary) and
+ * configure the Rx unit. Last, we re-enable the AV bits and continue
+ * on our merry way.
+ */
+ switch (hw->mac_type) {
+ default:
+ /* Indicate to hardware the Address is Valid. */
+ rar_high |= E1000_RAH_AV;
+ break;
+ }
+
+ E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
+ E1000_WRITE_FLUSH();
+ E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
+ E1000_WRITE_FLUSH();
}
-/******************************************************************************
- * Writes a value to the specified offset in the VLAN filter table.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - Offset in VLAN filer table to write
- * value - Value to write into VLAN filter table
- *****************************************************************************/
+/**
+ * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: Offset in VLAN filer table to write
+ * @value: Value to write into VLAN filter table
+ */
void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
{
- u32 temp;
-
- if (hw->mac_type == e1000_ich8lan)
- return;
-
- if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
- temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
- E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
- E1000_WRITE_FLUSH();
- E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
- E1000_WRITE_FLUSH();
- } else {
- E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
- E1000_WRITE_FLUSH();
- }
+ u32 temp;
+
+ if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
+ temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
+ E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
+ E1000_WRITE_FLUSH();
+ E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
+ E1000_WRITE_FLUSH();
+ } else {
+ E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
+ E1000_WRITE_FLUSH();
+ }
}
-/******************************************************************************
- * Clears the VLAN filer table
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
+/**
+ * e1000_clear_vfta - Clears the VLAN filer table
+ * @hw: Struct containing variables accessed by shared code
+ */
static void e1000_clear_vfta(struct e1000_hw *hw)
{
- u32 offset;
- u32 vfta_value = 0;
- u32 vfta_offset = 0;
- u32 vfta_bit_in_reg = 0;
-
- if (hw->mac_type == e1000_ich8lan)
- return;
-
- if (hw->mac_type == e1000_82573) {
- if (hw->mng_cookie.vlan_id != 0) {
- /* The VFTA is a 4096b bit-field, each identifying a single VLAN
- * ID. The following operations determine which 32b entry
- * (i.e. offset) into the array we want to set the VLAN ID
- * (i.e. bit) of the manageability unit. */
- vfta_offset = (hw->mng_cookie.vlan_id >>
- E1000_VFTA_ENTRY_SHIFT) &
- E1000_VFTA_ENTRY_MASK;
- vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
- E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
- }
- }
- for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
- /* If the offset we want to clear is the same offset of the
- * manageability VLAN ID, then clear all bits except that of the
- * manageability unit */
- vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
- E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
- E1000_WRITE_FLUSH();
- }
+ u32 offset;
+ u32 vfta_value = 0;
+ u32 vfta_offset = 0;
+ u32 vfta_bit_in_reg = 0;
+
+ for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+ /* If the offset we want to clear is the same offset of the
+ * manageability VLAN ID, then clear all bits except that of the
+ * manageability unit */
+ vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
+ E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
+ E1000_WRITE_FLUSH();
+ }
}
static s32 e1000_id_led_init(struct e1000_hw *hw)
{
- u32 ledctl;
- const u32 ledctl_mask = 0x000000FF;
- const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
- const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
- u16 eeprom_data, i, temp;
- const u16 led_mask = 0x0F;
-
- DEBUGFUNC("e1000_id_led_init");
-
- if (hw->mac_type < e1000_82540) {
- /* Nothing to do */
- return E1000_SUCCESS;
- }
-
- ledctl = er32(LEDCTL);
- hw->ledctl_default = ledctl;
- hw->ledctl_mode1 = hw->ledctl_default;
- hw->ledctl_mode2 = hw->ledctl_default;
-
- if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
-
- if ((hw->mac_type == e1000_82573) &&
- (eeprom_data == ID_LED_RESERVED_82573))
- eeprom_data = ID_LED_DEFAULT_82573;
- else if ((eeprom_data == ID_LED_RESERVED_0000) ||
- (eeprom_data == ID_LED_RESERVED_FFFF)) {
- if (hw->mac_type == e1000_ich8lan)
- eeprom_data = ID_LED_DEFAULT_ICH8LAN;
- else
- eeprom_data = ID_LED_DEFAULT;
- }
-
- for (i = 0; i < 4; i++) {
- temp = (eeprom_data >> (i << 2)) & led_mask;
- switch (temp) {
- case ID_LED_ON1_DEF2:
- case ID_LED_ON1_ON2:
- case ID_LED_ON1_OFF2:
- hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
- hw->ledctl_mode1 |= ledctl_on << (i << 3);
- break;
- case ID_LED_OFF1_DEF2:
- case ID_LED_OFF1_ON2:
- case ID_LED_OFF1_OFF2:
- hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
- hw->ledctl_mode1 |= ledctl_off << (i << 3);
- break;
- default:
- /* Do nothing */
- break;
- }
- switch (temp) {
- case ID_LED_DEF1_ON2:
- case ID_LED_ON1_ON2:
- case ID_LED_OFF1_ON2:
- hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
- hw->ledctl_mode2 |= ledctl_on << (i << 3);
- break;
- case ID_LED_DEF1_OFF2:
- case ID_LED_ON1_OFF2:
- case ID_LED_OFF1_OFF2:
- hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
- hw->ledctl_mode2 |= ledctl_off << (i << 3);
- break;
- default:
- /* Do nothing */
- break;
- }
- }
- return E1000_SUCCESS;
+ u32 ledctl;
+ const u32 ledctl_mask = 0x000000FF;
+ const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
+ const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
+ u16 eeprom_data, i, temp;
+ const u16 led_mask = 0x0F;
+
+ DEBUGFUNC("e1000_id_led_init");
+
+ if (hw->mac_type < e1000_82540) {
+ /* Nothing to do */
+ return E1000_SUCCESS;
+ }
+
+ ledctl = er32(LEDCTL);
+ hw->ledctl_default = ledctl;
+ hw->ledctl_mode1 = hw->ledctl_default;
+ hw->ledctl_mode2 = hw->ledctl_default;
+
+ if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+
+ if ((eeprom_data == ID_LED_RESERVED_0000) ||
+ (eeprom_data == ID_LED_RESERVED_FFFF)) {
+ eeprom_data = ID_LED_DEFAULT;
+ }
+
+ for (i = 0; i < 4; i++) {
+ temp = (eeprom_data >> (i << 2)) & led_mask;
+ switch (temp) {
+ case ID_LED_ON1_DEF2:
+ case ID_LED_ON1_ON2:
+ case ID_LED_ON1_OFF2:
+ hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+ hw->ledctl_mode1 |= ledctl_on << (i << 3);
+ break;
+ case ID_LED_OFF1_DEF2:
+ case ID_LED_OFF1_ON2:
+ case ID_LED_OFF1_OFF2:
+ hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+ hw->ledctl_mode1 |= ledctl_off << (i << 3);
+ break;
+ default:
+ /* Do nothing */
+ break;
+ }
+ switch (temp) {
+ case ID_LED_DEF1_ON2:
+ case ID_LED_ON1_ON2:
+ case ID_LED_OFF1_ON2:
+ hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+ hw->ledctl_mode2 |= ledctl_on << (i << 3);
+ break;
+ case ID_LED_DEF1_OFF2:
+ case ID_LED_ON1_OFF2:
+ case ID_LED_OFF1_OFF2:
+ hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+ hw->ledctl_mode2 |= ledctl_off << (i << 3);
+ break;
+ default:
+ /* Do nothing */
+ break;
+ }
+ }
+ return E1000_SUCCESS;
}
-/******************************************************************************
- * Prepares SW controlable LED for use and saves the current state of the LED.
+/**
+ * e1000_setup_led
+ * @hw: Struct containing variables accessed by shared code
*
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
+ * Prepares SW controlable LED for use and saves the current state of the LED.
+ */
s32 e1000_setup_led(struct e1000_hw *hw)
{
- u32 ledctl;
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_setup_led");
-
- switch (hw->mac_type) {
- case e1000_82542_rev2_0:
- case e1000_82542_rev2_1:
- case e1000_82543:
- case e1000_82544:
- /* No setup necessary */
- break;
- case e1000_82541:
- case e1000_82547:
- case e1000_82541_rev_2:
- case e1000_82547_rev_2:
- /* Turn off PHY Smart Power Down (if enabled) */
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
- &hw->phy_spd_default);
- if (ret_val)
- return ret_val;
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
- (u16)(hw->phy_spd_default &
- ~IGP01E1000_GMII_SPD));
- if (ret_val)
- return ret_val;
- /* Fall Through */
- default:
- if (hw->media_type == e1000_media_type_fiber) {
- ledctl = er32(LEDCTL);
- /* Save current LEDCTL settings */
- hw->ledctl_default = ledctl;
- /* Turn off LED0 */
- ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
- E1000_LEDCTL_LED0_BLINK |
- E1000_LEDCTL_LED0_MODE_MASK);
- ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
- E1000_LEDCTL_LED0_MODE_SHIFT);
- ew32(LEDCTL, ledctl);
- } else if (hw->media_type == e1000_media_type_copper)
- ew32(LEDCTL, hw->ledctl_mode1);
- break;
- }
-
- return E1000_SUCCESS;
-}
+ u32 ledctl;
+ s32 ret_val = E1000_SUCCESS;
+ DEBUGFUNC("e1000_setup_led");
-/******************************************************************************
- * Used on 82571 and later Si that has LED blink bits.
- * Callers must use their own timer and should have already called
- * e1000_id_led_init()
- * Call e1000_cleanup led() to stop blinking
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-s32 e1000_blink_led_start(struct e1000_hw *hw)
-{
- s16 i;
- u32 ledctl_blink = 0;
-
- DEBUGFUNC("e1000_id_led_blink_on");
-
- if (hw->mac_type < e1000_82571) {
- /* Nothing to do */
- return E1000_SUCCESS;
- }
- if (hw->media_type == e1000_media_type_fiber) {
- /* always blink LED0 for PCI-E fiber */
- ledctl_blink = E1000_LEDCTL_LED0_BLINK |
- (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
- } else {
- /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */
- ledctl_blink = hw->ledctl_mode2;
- for (i=0; i < 4; i++)
- if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) ==
- E1000_LEDCTL_MODE_LED_ON)
- ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8));
- }
-
- ew32(LEDCTL, ledctl_blink);
-
- return E1000_SUCCESS;
+ switch (hw->mac_type) {
+ case e1000_82542_rev2_0:
+ case e1000_82542_rev2_1:
+ case e1000_82543:
+ case e1000_82544:
+ /* No setup necessary */
+ break;
+ case e1000_82541:
+ case e1000_82547:
+ case e1000_82541_rev_2:
+ case e1000_82547_rev_2:
+ /* Turn off PHY Smart Power Down (if enabled) */
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
+ &hw->phy_spd_default);
+ if (ret_val)
+ return ret_val;
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+ (u16) (hw->phy_spd_default &
+ ~IGP01E1000_GMII_SPD));
+ if (ret_val)
+ return ret_val;
+ /* Fall Through */
+ default:
+ if (hw->media_type == e1000_media_type_fiber) {
+ ledctl = er32(LEDCTL);
+ /* Save current LEDCTL settings */
+ hw->ledctl_default = ledctl;
+ /* Turn off LED0 */
+ ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
+ E1000_LEDCTL_LED0_BLINK |
+ E1000_LEDCTL_LED0_MODE_MASK);
+ ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
+ E1000_LEDCTL_LED0_MODE_SHIFT);
+ ew32(LEDCTL, ledctl);
+ } else if (hw->media_type == e1000_media_type_copper)
+ ew32(LEDCTL, hw->ledctl_mode1);
+ break;
+ }
+
+ return E1000_SUCCESS;
}
-/******************************************************************************
- * Restores the saved state of the SW controlable LED.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
+/**
+ * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
+ * @hw: Struct containing variables accessed by shared code
+ */
s32 e1000_cleanup_led(struct e1000_hw *hw)
{
- s32 ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_cleanup_led");
-
- switch (hw->mac_type) {
- case e1000_82542_rev2_0:
- case e1000_82542_rev2_1:
- case e1000_82543:
- case e1000_82544:
- /* No cleanup necessary */
- break;
- case e1000_82541:
- case e1000_82547:
- case e1000_82541_rev_2:
- case e1000_82547_rev_2:
- /* Turn on PHY Smart Power Down (if previously enabled) */
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
- hw->phy_spd_default);
- if (ret_val)
- return ret_val;
- /* Fall Through */
- default:
- if (hw->phy_type == e1000_phy_ife) {
- e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
- break;
- }
- /* Restore LEDCTL settings */
- ew32(LEDCTL, hw->ledctl_default);
- break;
- }
-
- return E1000_SUCCESS;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_cleanup_led");
+
+ switch (hw->mac_type) {
+ case e1000_82542_rev2_0:
+ case e1000_82542_rev2_1:
+ case e1000_82543:
+ case e1000_82544:
+ /* No cleanup necessary */
+ break;
+ case e1000_82541:
+ case e1000_82547:
+ case e1000_82541_rev_2:
+ case e1000_82547_rev_2:
+ /* Turn on PHY Smart Power Down (if previously enabled) */
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+ hw->phy_spd_default);
+ if (ret_val)
+ return ret_val;
+ /* Fall Through */
+ default:
+ /* Restore LEDCTL settings */
+ ew32(LEDCTL, hw->ledctl_default);
+ break;
+ }
+
+ return E1000_SUCCESS;
}
-/******************************************************************************
- * Turns on the software controllable LED
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
+/**
+ * e1000_led_on - Turns on the software controllable LED
+ * @hw: Struct containing variables accessed by shared code
+ */
s32 e1000_led_on(struct e1000_hw *hw)
{
- u32 ctrl = er32(CTRL);
-
- DEBUGFUNC("e1000_led_on");
-
- switch (hw->mac_type) {
- case e1000_82542_rev2_0:
- case e1000_82542_rev2_1:
- case e1000_82543:
- /* Set SW Defineable Pin 0 to turn on the LED */
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- break;
- case e1000_82544:
- if (hw->media_type == e1000_media_type_fiber) {
- /* Set SW Defineable Pin 0 to turn on the LED */
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- } else {
- /* Clear SW Defineable Pin 0 to turn on the LED */
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- }
- break;
- default:
- if (hw->media_type == e1000_media_type_fiber) {
- /* Clear SW Defineable Pin 0 to turn on the LED */
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- } else if (hw->phy_type == e1000_phy_ife) {
- e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
- (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
- } else if (hw->media_type == e1000_media_type_copper) {
- ew32(LEDCTL, hw->ledctl_mode2);
- return E1000_SUCCESS;
- }
- break;
- }
-
- ew32(CTRL, ctrl);
-
- return E1000_SUCCESS;
+ u32 ctrl = er32(CTRL);
+
+ DEBUGFUNC("e1000_led_on");
+
+ switch (hw->mac_type) {
+ case e1000_82542_rev2_0:
+ case e1000_82542_rev2_1:
+ case e1000_82543:
+ /* Set SW Defineable Pin 0 to turn on the LED */
+ ctrl |= E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ break;
+ case e1000_82544:
+ if (hw->media_type == e1000_media_type_fiber) {
+ /* Set SW Defineable Pin 0 to turn on the LED */
+ ctrl |= E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ } else {
+ /* Clear SW Defineable Pin 0 to turn on the LED */
+ ctrl &= ~E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ }
+ break;
+ default:
+ if (hw->media_type == e1000_media_type_fiber) {
+ /* Clear SW Defineable Pin 0 to turn on the LED */
+ ctrl &= ~E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ } else if (hw->media_type == e1000_media_type_copper) {
+ ew32(LEDCTL, hw->ledctl_mode2);
+ return E1000_SUCCESS;
+ }
+ break;
+ }
+
+ ew32(CTRL, ctrl);
+
+ return E1000_SUCCESS;
}
-/******************************************************************************
- * Turns off the software controllable LED
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
+/**
+ * e1000_led_off - Turns off the software controllable LED
+ * @hw: Struct containing variables accessed by shared code
+ */
s32 e1000_led_off(struct e1000_hw *hw)
{
- u32 ctrl = er32(CTRL);
-
- DEBUGFUNC("e1000_led_off");
-
- switch (hw->mac_type) {
- case e1000_82542_rev2_0:
- case e1000_82542_rev2_1:
- case e1000_82543:
- /* Clear SW Defineable Pin 0 to turn off the LED */
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- break;
- case e1000_82544:
- if (hw->media_type == e1000_media_type_fiber) {
- /* Clear SW Defineable Pin 0 to turn off the LED */
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- } else {
- /* Set SW Defineable Pin 0 to turn off the LED */
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- }
- break;
- default:
- if (hw->media_type == e1000_media_type_fiber) {
- /* Set SW Defineable Pin 0 to turn off the LED */
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- } else if (hw->phy_type == e1000_phy_ife) {
- e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
- (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
- } else if (hw->media_type == e1000_media_type_copper) {
- ew32(LEDCTL, hw->ledctl_mode1);
- return E1000_SUCCESS;
- }
- break;
- }
-
- ew32(CTRL, ctrl);
-
- return E1000_SUCCESS;
+ u32 ctrl = er32(CTRL);
+
+ DEBUGFUNC("e1000_led_off");
+
+ switch (hw->mac_type) {
+ case e1000_82542_rev2_0:
+ case e1000_82542_rev2_1:
+ case e1000_82543:
+ /* Clear SW Defineable Pin 0 to turn off the LED */
+ ctrl &= ~E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ break;
+ case e1000_82544:
+ if (hw->media_type == e1000_media_type_fiber) {
+ /* Clear SW Defineable Pin 0 to turn off the LED */
+ ctrl &= ~E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ } else {
+ /* Set SW Defineable Pin 0 to turn off the LED */
+ ctrl |= E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ }
+ break;
+ default:
+ if (hw->media_type == e1000_media_type_fiber) {
+ /* Set SW Defineable Pin 0 to turn off the LED */
+ ctrl |= E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ } else if (hw->media_type == e1000_media_type_copper) {
+ ew32(LEDCTL, hw->ledctl_mode1);
+ return E1000_SUCCESS;
+ }
+ break;
+ }
+
+ ew32(CTRL, ctrl);
+
+ return E1000_SUCCESS;
}
-/******************************************************************************
- * Clears all hardware statistics counters.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
+/**
+ * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
+ * @hw: Struct containing variables accessed by shared code
+ */
static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
{
- volatile u32 temp;
-
- temp = er32(CRCERRS);
- temp = er32(SYMERRS);
- temp = er32(MPC);
- temp = er32(SCC);
- temp = er32(ECOL);
- temp = er32(MCC);
- temp = er32(LATECOL);
- temp = er32(COLC);
- temp = er32(DC);
- temp = er32(SEC);
- temp = er32(RLEC);
- temp = er32(XONRXC);
- temp = er32(XONTXC);
- temp = er32(XOFFRXC);
- temp = er32(XOFFTXC);
- temp = er32(FCRUC);
-
- if (hw->mac_type != e1000_ich8lan) {
- temp = er32(PRC64);
- temp = er32(PRC127);
- temp = er32(PRC255);
- temp = er32(PRC511);
- temp = er32(PRC1023);
- temp = er32(PRC1522);
- }
-
- temp = er32(GPRC);
- temp = er32(BPRC);
- temp = er32(MPRC);
- temp = er32(GPTC);
- temp = er32(GORCL);
- temp = er32(GORCH);
- temp = er32(GOTCL);
- temp = er32(GOTCH);
- temp = er32(RNBC);
- temp = er32(RUC);
- temp = er32(RFC);
- temp = er32(ROC);
- temp = er32(RJC);
- temp = er32(TORL);
- temp = er32(TORH);
- temp = er32(TOTL);
- temp = er32(TOTH);
- temp = er32(TPR);
- temp = er32(TPT);
-
- if (hw->mac_type != e1000_ich8lan) {
- temp = er32(PTC64);
- temp = er32(PTC127);
- temp = er32(PTC255);
- temp = er32(PTC511);
- temp = er32(PTC1023);
- temp = er32(PTC1522);
- }
-
- temp = er32(MPTC);
- temp = er32(BPTC);
-
- if (hw->mac_type < e1000_82543) return;
-
- temp = er32(ALGNERRC);
- temp = er32(RXERRC);
- temp = er32(TNCRS);
- temp = er32(CEXTERR);
- temp = er32(TSCTC);
- temp = er32(TSCTFC);
-
- if (hw->mac_type <= e1000_82544) return;
-
- temp = er32(MGTPRC);
- temp = er32(MGTPDC);
- temp = er32(MGTPTC);
-
- if (hw->mac_type <= e1000_82547_rev_2) return;
-
- temp = er32(IAC);
- temp = er32(ICRXOC);
-
- if (hw->mac_type == e1000_ich8lan) return;
-
- temp = er32(ICRXPTC);
- temp = er32(ICRXATC);
- temp = er32(ICTXPTC);
- temp = er32(ICTXATC);
- temp = er32(ICTXQEC);
- temp = er32(ICTXQMTC);
- temp = er32(ICRXDMTC);
-}
-
-/******************************************************************************
- * Resets Adaptive IFS to its default state.
- *
- * hw - Struct containing variables accessed by shared code
+ volatile u32 temp;
+
+ temp = er32(CRCERRS);
+ temp = er32(SYMERRS);
+ temp = er32(MPC);
+ temp = er32(SCC);
+ temp = er32(ECOL);
+ temp = er32(MCC);
+ temp = er32(LATECOL);
+ temp = er32(COLC);
+ temp = er32(DC);
+ temp = er32(SEC);
+ temp = er32(RLEC);
+ temp = er32(XONRXC);
+ temp = er32(XONTXC);
+ temp = er32(XOFFRXC);
+ temp = er32(XOFFTXC);
+ temp = er32(FCRUC);
+
+ temp = er32(PRC64);
+ temp = er32(PRC127);
+ temp = er32(PRC255);
+ temp = er32(PRC511);
+ temp = er32(PRC1023);
+ temp = er32(PRC1522);
+
+ temp = er32(GPRC);
+ temp = er32(BPRC);
+ temp = er32(MPRC);
+ temp = er32(GPTC);
+ temp = er32(GORCL);
+ temp = er32(GORCH);
+ temp = er32(GOTCL);
+ temp = er32(GOTCH);
+ temp = er32(RNBC);
+ temp = er32(RUC);
+ temp = er32(RFC);
+ temp = er32(ROC);
+ temp = er32(RJC);
+ temp = er32(TORL);
+ temp = er32(TORH);
+ temp = er32(TOTL);
+ temp = er32(TOTH);
+ temp = er32(TPR);
+ temp = er32(TPT);
+
+ temp = er32(PTC64);
+ temp = er32(PTC127);
+ temp = er32(PTC255);
+ temp = er32(PTC511);
+ temp = er32(PTC1023);
+ temp = er32(PTC1522);
+
+ temp = er32(MPTC);
+ temp = er32(BPTC);
+
+ if (hw->mac_type < e1000_82543)
+ return;
+
+ temp = er32(ALGNERRC);
+ temp = er32(RXERRC);
+ temp = er32(TNCRS);
+ temp = er32(CEXTERR);
+ temp = er32(TSCTC);
+ temp = er32(TSCTFC);
+
+ if (hw->mac_type <= e1000_82544)
+ return;
+
+ temp = er32(MGTPRC);
+ temp = er32(MGTPDC);
+ temp = er32(MGTPTC);
+}
+
+/**
+ * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
+ * @hw: Struct containing variables accessed by shared code
*
* Call this after e1000_init_hw. You may override the IFS defaults by setting
* hw->ifs_params_forced to true. However, you must initialize hw->
* current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
* before calling this function.
- *****************************************************************************/
+ */
void e1000_reset_adaptive(struct e1000_hw *hw)
{
- DEBUGFUNC("e1000_reset_adaptive");
-
- if (hw->adaptive_ifs) {
- if (!hw->ifs_params_forced) {
- hw->current_ifs_val = 0;
- hw->ifs_min_val = IFS_MIN;
- hw->ifs_max_val = IFS_MAX;
- hw->ifs_step_size = IFS_STEP;
- hw->ifs_ratio = IFS_RATIO;
- }
- hw->in_ifs_mode = false;
- ew32(AIT, 0);
- } else {
- DEBUGOUT("Not in Adaptive IFS mode!\n");
- }
+ DEBUGFUNC("e1000_reset_adaptive");
+
+ if (hw->adaptive_ifs) {
+ if (!hw->ifs_params_forced) {
+ hw->current_ifs_val = 0;
+ hw->ifs_min_val = IFS_MIN;
+ hw->ifs_max_val = IFS_MAX;
+ hw->ifs_step_size = IFS_STEP;
+ hw->ifs_ratio = IFS_RATIO;
+ }
+ hw->in_ifs_mode = false;
+ ew32(AIT, 0);
+ } else {
+ DEBUGOUT("Not in Adaptive IFS mode!\n");
+ }
}
-/******************************************************************************
+/**
+ * e1000_update_adaptive - update adaptive IFS
+ * @hw: Struct containing variables accessed by shared code
+ * @tx_packets: Number of transmits since last callback
+ * @total_collisions: Number of collisions since last callback
+ *
* Called during the callback/watchdog routine to update IFS value based on
* the ratio of transmits to collisions.
- *
- * hw - Struct containing variables accessed by shared code
- * tx_packets - Number of transmits since last callback
- * total_collisions - Number of collisions since last callback
- *****************************************************************************/
+ */
void e1000_update_adaptive(struct e1000_hw *hw)
{
- DEBUGFUNC("e1000_update_adaptive");
-
- if (hw->adaptive_ifs) {
- if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
- if (hw->tx_packet_delta > MIN_NUM_XMITS) {
- hw->in_ifs_mode = true;
- if (hw->current_ifs_val < hw->ifs_max_val) {
- if (hw->current_ifs_val == 0)
- hw->current_ifs_val = hw->ifs_min_val;
- else
- hw->current_ifs_val += hw->ifs_step_size;
- ew32(AIT, hw->current_ifs_val);
- }
- }
- } else {
- if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
- hw->current_ifs_val = 0;
- hw->in_ifs_mode = false;
- ew32(AIT, 0);
- }
- }
- } else {
- DEBUGOUT("Not in Adaptive IFS mode!\n");
- }
+ DEBUGFUNC("e1000_update_adaptive");
+
+ if (hw->adaptive_ifs) {
+ if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) {
+ if (hw->tx_packet_delta > MIN_NUM_XMITS) {
+ hw->in_ifs_mode = true;
+ if (hw->current_ifs_val < hw->ifs_max_val) {
+ if (hw->current_ifs_val == 0)
+ hw->current_ifs_val =
+ hw->ifs_min_val;
+ else
+ hw->current_ifs_val +=
+ hw->ifs_step_size;
+ ew32(AIT, hw->current_ifs_val);
+ }
+ }
+ } else {
+ if (hw->in_ifs_mode
+ && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
+ hw->current_ifs_val = 0;
+ hw->in_ifs_mode = false;
+ ew32(AIT, 0);
+ }
+ }
+ } else {
+ DEBUGOUT("Not in Adaptive IFS mode!\n");
+ }
}
-/******************************************************************************
- * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
+/**
+ * e1000_tbi_adjust_stats
+ * @hw: Struct containing variables accessed by shared code
+ * @frame_len: The length of the frame in question
+ * @mac_addr: The Ethernet destination address of the frame in question
*
- * hw - Struct containing variables accessed by shared code
- * frame_len - The length of the frame in question
- * mac_addr - The Ethernet destination address of the frame in question
- *****************************************************************************/
+ * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
+ */
void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats,
u32 frame_len, u8 *mac_addr)
{
- u64 carry_bit;
-
- /* First adjust the frame length. */
- frame_len--;
- /* We need to adjust the statistics counters, since the hardware
- * counters overcount this packet as a CRC error and undercount
- * the packet as a good packet
- */
- /* This packet should not be counted as a CRC error. */
- stats->crcerrs--;
- /* This packet does count as a Good Packet Received. */
- stats->gprc++;
-
- /* Adjust the Good Octets received counters */
- carry_bit = 0x80000000 & stats->gorcl;
- stats->gorcl += frame_len;
- /* If the high bit of Gorcl (the low 32 bits of the Good Octets
- * Received Count) was one before the addition,
- * AND it is zero after, then we lost the carry out,
- * need to add one to Gorch (Good Octets Received Count High).
- * This could be simplified if all environments supported
- * 64-bit integers.
- */
- if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
- stats->gorch++;
- /* Is this a broadcast or multicast? Check broadcast first,
- * since the test for a multicast frame will test positive on
- * a broadcast frame.
- */
- if ((mac_addr[0] == (u8)0xff) && (mac_addr[1] == (u8)0xff))
- /* Broadcast packet */
- stats->bprc++;
- else if (*mac_addr & 0x01)
- /* Multicast packet */
- stats->mprc++;
-
- if (frame_len == hw->max_frame_size) {
- /* In this case, the hardware has overcounted the number of
- * oversize frames.
- */
- if (stats->roc > 0)
- stats->roc--;
- }
-
- /* Adjust the bin counters when the extra byte put the frame in the
- * wrong bin. Remember that the frame_len was adjusted above.
- */
- if (frame_len == 64) {
- stats->prc64++;
- stats->prc127--;
- } else if (frame_len == 127) {
- stats->prc127++;
- stats->prc255--;
- } else if (frame_len == 255) {
- stats->prc255++;
- stats->prc511--;
- } else if (frame_len == 511) {
- stats->prc511++;
- stats->prc1023--;
- } else if (frame_len == 1023) {
- stats->prc1023++;
- stats->prc1522--;
- } else if (frame_len == 1522) {
- stats->prc1522++;
- }
+ u64 carry_bit;
+
+ /* First adjust the frame length. */
+ frame_len--;
+ /* We need to adjust the statistics counters, since the hardware
+ * counters overcount this packet as a CRC error and undercount
+ * the packet as a good packet
+ */
+ /* This packet should not be counted as a CRC error. */
+ stats->crcerrs--;
+ /* This packet does count as a Good Packet Received. */
+ stats->gprc++;
+
+ /* Adjust the Good Octets received counters */
+ carry_bit = 0x80000000 & stats->gorcl;
+ stats->gorcl += frame_len;
+ /* If the high bit of Gorcl (the low 32 bits of the Good Octets
+ * Received Count) was one before the addition,
+ * AND it is zero after, then we lost the carry out,
+ * need to add one to Gorch (Good Octets Received Count High).
+ * This could be simplified if all environments supported
+ * 64-bit integers.
+ */
+ if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
+ stats->gorch++;
+ /* Is this a broadcast or multicast? Check broadcast first,
+ * since the test for a multicast frame will test positive on
+ * a broadcast frame.
+ */
+ if ((mac_addr[0] == (u8) 0xff) && (mac_addr[1] == (u8) 0xff))
+ /* Broadcast packet */
+ stats->bprc++;
+ else if (*mac_addr & 0x01)
+ /* Multicast packet */
+ stats->mprc++;
+
+ if (frame_len == hw->max_frame_size) {
+ /* In this case, the hardware has overcounted the number of
+ * oversize frames.
+ */
+ if (stats->roc > 0)
+ stats->roc--;
+ }
+
+ /* Adjust the bin counters when the extra byte put the frame in the
+ * wrong bin. Remember that the frame_len was adjusted above.
+ */
+ if (frame_len == 64) {
+ stats->prc64++;
+ stats->prc127--;
+ } else if (frame_len == 127) {
+ stats->prc127++;
+ stats->prc255--;
+ } else if (frame_len == 255) {
+ stats->prc255++;
+ stats->prc511--;
+ } else if (frame_len == 511) {
+ stats->prc511++;
+ stats->prc1023--;
+ } else if (frame_len == 1023) {
+ stats->prc1023++;
+ stats->prc1522--;
+ } else if (frame_len == 1522) {
+ stats->prc1522++;
+ }
}
-/******************************************************************************
- * Gets the current PCI bus type, speed, and width of the hardware
+/**
+ * e1000_get_bus_info
+ * @hw: Struct containing variables accessed by shared code
*
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
+ * Gets the current PCI bus type, speed, and width of the hardware
+ */
void e1000_get_bus_info(struct e1000_hw *hw)
{
- s32 ret_val;
- u16 pci_ex_link_status;
- u32 status;
-
- switch (hw->mac_type) {
- case e1000_82542_rev2_0:
- case e1000_82542_rev2_1:
- hw->bus_type = e1000_bus_type_pci;
- hw->bus_speed = e1000_bus_speed_unknown;
- hw->bus_width = e1000_bus_width_unknown;
- break;
- case e1000_82571:
- case e1000_82572:
- case e1000_82573:
- case e1000_80003es2lan:
- hw->bus_type = e1000_bus_type_pci_express;
- hw->bus_speed = e1000_bus_speed_2500;
- ret_val = e1000_read_pcie_cap_reg(hw,
- PCI_EX_LINK_STATUS,
- &pci_ex_link_status);
- if (ret_val)
- hw->bus_width = e1000_bus_width_unknown;
- else
- hw->bus_width = (pci_ex_link_status & PCI_EX_LINK_WIDTH_MASK) >>
- PCI_EX_LINK_WIDTH_SHIFT;
- break;
- case e1000_ich8lan:
- hw->bus_type = e1000_bus_type_pci_express;
- hw->bus_speed = e1000_bus_speed_2500;
- hw->bus_width = e1000_bus_width_pciex_1;
- break;
- default:
- status = er32(STATUS);
- hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
- e1000_bus_type_pcix : e1000_bus_type_pci;
-
- if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
- hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
- e1000_bus_speed_66 : e1000_bus_speed_120;
- } else if (hw->bus_type == e1000_bus_type_pci) {
- hw->bus_speed = (status & E1000_STATUS_PCI66) ?
- e1000_bus_speed_66 : e1000_bus_speed_33;
- } else {
- switch (status & E1000_STATUS_PCIX_SPEED) {
- case E1000_STATUS_PCIX_SPEED_66:
- hw->bus_speed = e1000_bus_speed_66;
- break;
- case E1000_STATUS_PCIX_SPEED_100:
- hw->bus_speed = e1000_bus_speed_100;
- break;
- case E1000_STATUS_PCIX_SPEED_133:
- hw->bus_speed = e1000_bus_speed_133;
- break;
- default:
- hw->bus_speed = e1000_bus_speed_reserved;
- break;
- }
- }
- hw->bus_width = (status & E1000_STATUS_BUS64) ?
- e1000_bus_width_64 : e1000_bus_width_32;
- break;
- }
+ u32 status;
+
+ switch (hw->mac_type) {
+ case e1000_82542_rev2_0:
+ case e1000_82542_rev2_1:
+ hw->bus_type = e1000_bus_type_pci;
+ hw->bus_speed = e1000_bus_speed_unknown;
+ hw->bus_width = e1000_bus_width_unknown;
+ break;
+ default:
+ status = er32(STATUS);
+ hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
+ e1000_bus_type_pcix : e1000_bus_type_pci;
+
+ if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
+ hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
+ e1000_bus_speed_66 : e1000_bus_speed_120;
+ } else if (hw->bus_type == e1000_bus_type_pci) {
+ hw->bus_speed = (status & E1000_STATUS_PCI66) ?
+ e1000_bus_speed_66 : e1000_bus_speed_33;
+ } else {
+ switch (status & E1000_STATUS_PCIX_SPEED) {
+ case E1000_STATUS_PCIX_SPEED_66:
+ hw->bus_speed = e1000_bus_speed_66;
+ break;
+ case E1000_STATUS_PCIX_SPEED_100:
+ hw->bus_speed = e1000_bus_speed_100;
+ break;
+ case E1000_STATUS_PCIX_SPEED_133:
+ hw->bus_speed = e1000_bus_speed_133;
+ break;
+ default:
+ hw->bus_speed = e1000_bus_speed_reserved;
+ break;
+ }
+ }
+ hw->bus_width = (status & E1000_STATUS_BUS64) ?
+ e1000_bus_width_64 : e1000_bus_width_32;
+ break;
+ }
}
-/******************************************************************************
+/**
+ * e1000_write_reg_io
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: offset to write to
+ * @value: value to write
+ *
* Writes a value to one of the devices registers using port I/O (as opposed to
* memory mapped I/O). Only 82544 and newer devices support port I/O.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset to write to
- * value - value to write
- *****************************************************************************/
+ */
static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
{
- unsigned long io_addr = hw->io_base;
- unsigned long io_data = hw->io_base + 4;
+ unsigned long io_addr = hw->io_base;
+ unsigned long io_data = hw->io_base + 4;
- e1000_io_write(hw, io_addr, offset);
- e1000_io_write(hw, io_data, value);
+ e1000_io_write(hw, io_addr, offset);
+ e1000_io_write(hw, io_data, value);
}
-/******************************************************************************
- * Estimates the cable length.
- *
- * hw - Struct containing variables accessed by shared code
- * min_length - The estimated minimum length
- * max_length - The estimated maximum length
+/**
+ * e1000_get_cable_length - Estimates the cable length.
+ * @hw: Struct containing variables accessed by shared code
+ * @min_length: The estimated minimum length
+ * @max_length: The estimated maximum length
*
* returns: - E1000_ERR_XXX
* E1000_SUCCESS
@@ -6528,185 +4842,115 @@ static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
* So for M88 phy's, this function interprets the one value returned from the
* register to the minimum and maximum range.
* For IGP phy's, the function calculates the range by the AGC registers.
- *****************************************************************************/
+ */
static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
u16 *max_length)
{
- s32 ret_val;
- u16 agc_value = 0;
- u16 i, phy_data;
- u16 cable_length;
-
- DEBUGFUNC("e1000_get_cable_length");
-
- *min_length = *max_length = 0;
-
- /* Use old method for Phy older than IGP */
- if (hw->phy_type == e1000_phy_m88) {
-
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
- &phy_data);
- if (ret_val)
- return ret_val;
- cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
- M88E1000_PSSR_CABLE_LENGTH_SHIFT;
-
- /* Convert the enum value to ranged values */
- switch (cable_length) {
- case e1000_cable_length_50:
- *min_length = 0;
- *max_length = e1000_igp_cable_length_50;
- break;
- case e1000_cable_length_50_80:
- *min_length = e1000_igp_cable_length_50;
- *max_length = e1000_igp_cable_length_80;
- break;
- case e1000_cable_length_80_110:
- *min_length = e1000_igp_cable_length_80;
- *max_length = e1000_igp_cable_length_110;
- break;
- case e1000_cable_length_110_140:
- *min_length = e1000_igp_cable_length_110;
- *max_length = e1000_igp_cable_length_140;
- break;
- case e1000_cable_length_140:
- *min_length = e1000_igp_cable_length_140;
- *max_length = e1000_igp_cable_length_170;
- break;
- default:
- return -E1000_ERR_PHY;
- break;
- }
- } else if (hw->phy_type == e1000_phy_gg82563) {
- ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
- &phy_data);
- if (ret_val)
- return ret_val;
- cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;
-
- switch (cable_length) {
- case e1000_gg_cable_length_60:
- *min_length = 0;
- *max_length = e1000_igp_cable_length_60;
- break;
- case e1000_gg_cable_length_60_115:
- *min_length = e1000_igp_cable_length_60;
- *max_length = e1000_igp_cable_length_115;
- break;
- case e1000_gg_cable_length_115_150:
- *min_length = e1000_igp_cable_length_115;
- *max_length = e1000_igp_cable_length_150;
- break;
- case e1000_gg_cable_length_150:
- *min_length = e1000_igp_cable_length_150;
- *max_length = e1000_igp_cable_length_180;
- break;
- default:
- return -E1000_ERR_PHY;
- break;
- }
- } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
- u16 cur_agc_value;
- u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
- u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
- {IGP01E1000_PHY_AGC_A,
- IGP01E1000_PHY_AGC_B,
- IGP01E1000_PHY_AGC_C,
- IGP01E1000_PHY_AGC_D};
- /* Read the AGC registers for all channels */
- for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
-
- ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
- if (ret_val)
- return ret_val;
-
- cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
-
- /* Value bound check. */
- if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
- (cur_agc_value == 0))
- return -E1000_ERR_PHY;
-
- agc_value += cur_agc_value;
-
- /* Update minimal AGC value. */
- if (min_agc_value > cur_agc_value)
- min_agc_value = cur_agc_value;
- }
-
- /* Remove the minimal AGC result for length < 50m */
- if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
- agc_value -= min_agc_value;
-
- /* Get the average length of the remaining 3 channels */
- agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
- } else {
- /* Get the average length of all the 4 channels. */
- agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
- }
-
- /* Set the range of the calculated length. */
- *min_length = ((e1000_igp_cable_length_table[agc_value] -
- IGP01E1000_AGC_RANGE) > 0) ?
- (e1000_igp_cable_length_table[agc_value] -
- IGP01E1000_AGC_RANGE) : 0;
- *max_length = e1000_igp_cable_length_table[agc_value] +
- IGP01E1000_AGC_RANGE;
- } else if (hw->phy_type == e1000_phy_igp_2 ||
- hw->phy_type == e1000_phy_igp_3) {
- u16 cur_agc_index, max_agc_index = 0;
- u16 min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
- u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
- {IGP02E1000_PHY_AGC_A,
- IGP02E1000_PHY_AGC_B,
- IGP02E1000_PHY_AGC_C,
- IGP02E1000_PHY_AGC_D};
- /* Read the AGC registers for all channels */
- for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
- ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
- if (ret_val)
- return ret_val;
-
- /* Getting bits 15:9, which represent the combination of course and
- * fine gain values. The result is a number that can be put into
- * the lookup table to obtain the approximate cable length. */
- cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
- IGP02E1000_AGC_LENGTH_MASK;
-
- /* Array index bound check. */
- if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) ||
- (cur_agc_index == 0))
- return -E1000_ERR_PHY;
-
- /* Remove min & max AGC values from calculation. */
- if (e1000_igp_2_cable_length_table[min_agc_index] >
- e1000_igp_2_cable_length_table[cur_agc_index])
- min_agc_index = cur_agc_index;
- if (e1000_igp_2_cable_length_table[max_agc_index] <
- e1000_igp_2_cable_length_table[cur_agc_index])
- max_agc_index = cur_agc_index;
-
- agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
- }
-
- agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
- e1000_igp_2_cable_length_table[max_agc_index]);
- agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
-
- /* Calculate cable length with the error range of +/- 10 meters. */
- *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
- (agc_value - IGP02E1000_AGC_RANGE) : 0;
- *max_length = agc_value + IGP02E1000_AGC_RANGE;
- }
-
- return E1000_SUCCESS;
+ s32 ret_val;
+ u16 agc_value = 0;
+ u16 i, phy_data;
+ u16 cable_length;
+
+ DEBUGFUNC("e1000_get_cable_length");
+
+ *min_length = *max_length = 0;
+
+ /* Use old method for Phy older than IGP */
+ if (hw->phy_type == e1000_phy_m88) {
+
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+ cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+ M88E1000_PSSR_CABLE_LENGTH_SHIFT;
+
+ /* Convert the enum value to ranged values */
+ switch (cable_length) {
+ case e1000_cable_length_50:
+ *min_length = 0;
+ *max_length = e1000_igp_cable_length_50;
+ break;
+ case e1000_cable_length_50_80:
+ *min_length = e1000_igp_cable_length_50;
+ *max_length = e1000_igp_cable_length_80;
+ break;
+ case e1000_cable_length_80_110:
+ *min_length = e1000_igp_cable_length_80;
+ *max_length = e1000_igp_cable_length_110;
+ break;
+ case e1000_cable_length_110_140:
+ *min_length = e1000_igp_cable_length_110;
+ *max_length = e1000_igp_cable_length_140;
+ break;
+ case e1000_cable_length_140:
+ *min_length = e1000_igp_cable_length_140;
+ *max_length = e1000_igp_cable_length_170;
+ break;
+ default:
+ return -E1000_ERR_PHY;
+ break;
+ }
+ } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
+ u16 cur_agc_value;
+ u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
+ u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
+ { IGP01E1000_PHY_AGC_A,
+ IGP01E1000_PHY_AGC_B,
+ IGP01E1000_PHY_AGC_C,
+ IGP01E1000_PHY_AGC_D
+ };
+ /* Read the AGC registers for all channels */
+ for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+
+ ret_val =
+ e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
+
+ /* Value bound check. */
+ if ((cur_agc_value >=
+ IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1)
+ || (cur_agc_value == 0))
+ return -E1000_ERR_PHY;
+
+ agc_value += cur_agc_value;
+
+ /* Update minimal AGC value. */
+ if (min_agc_value > cur_agc_value)
+ min_agc_value = cur_agc_value;
+ }
+
+ /* Remove the minimal AGC result for length < 50m */
+ if (agc_value <
+ IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
+ agc_value -= min_agc_value;
+
+ /* Get the average length of the remaining 3 channels */
+ agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
+ } else {
+ /* Get the average length of all the 4 channels. */
+ agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
+ }
+
+ /* Set the range of the calculated length. */
+ *min_length = ((e1000_igp_cable_length_table[agc_value] -
+ IGP01E1000_AGC_RANGE) > 0) ?
+ (e1000_igp_cable_length_table[agc_value] -
+ IGP01E1000_AGC_RANGE) : 0;
+ *max_length = e1000_igp_cable_length_table[agc_value] +
+ IGP01E1000_AGC_RANGE;
+ }
+
+ return E1000_SUCCESS;
}
-/******************************************************************************
- * Check the cable polarity
- *
- * hw - Struct containing variables accessed by shared code
- * polarity - output parameter : 0 - Polarity is not reversed
+/**
+ * e1000_check_polarity - Check the cable polarity
+ * @hw: Struct containing variables accessed by shared code
+ * @polarity: output parameter : 0 - Polarity is not reversed
* 1 - Polarity is reversed.
*
* returns: - E1000_ERR_XXX
@@ -6717,73 +4961,65 @@ static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
* 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
* return 0. If the link speed is 1000 Mbps the polarity status is in the
* IGP01E1000_PHY_PCS_INIT_REG.
- *****************************************************************************/
+ */
static s32 e1000_check_polarity(struct e1000_hw *hw,
e1000_rev_polarity *polarity)
{
- s32 ret_val;
- u16 phy_data;
-
- DEBUGFUNC("e1000_check_polarity");
-
- if ((hw->phy_type == e1000_phy_m88) ||
- (hw->phy_type == e1000_phy_gg82563)) {
- /* return the Polarity bit in the Status register. */
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
- &phy_data);
- if (ret_val)
- return ret_val;
- *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
- M88E1000_PSSR_REV_POLARITY_SHIFT) ?
- e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
-
- } else if (hw->phy_type == e1000_phy_igp ||
- hw->phy_type == e1000_phy_igp_3 ||
- hw->phy_type == e1000_phy_igp_2) {
- /* Read the Status register to check the speed */
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
- * find the polarity status */
- if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
- IGP01E1000_PSSR_SPEED_1000MBPS) {
-
- /* Read the GIG initialization PCS register (0x00B4) */
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- /* Check the polarity bits */
- *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
- e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
- } else {
- /* For 10 Mbps, read the polarity bit in the status register. (for
- * 100 Mbps this bit is always 0) */
- *polarity = (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
- e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
- }
- } else if (hw->phy_type == e1000_phy_ife) {
- ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL,
- &phy_data);
- if (ret_val)
- return ret_val;
- *polarity = ((phy_data & IFE_PESC_POLARITY_REVERSED) >>
- IFE_PESC_POLARITY_REVERSED_SHIFT) ?
- e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
- }
- return E1000_SUCCESS;
+ s32 ret_val;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_check_polarity");
+
+ if (hw->phy_type == e1000_phy_m88) {
+ /* return the Polarity bit in the Status register. */
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+ *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
+ M88E1000_PSSR_REV_POLARITY_SHIFT) ?
+ e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
+
+ } else if (hw->phy_type == e1000_phy_igp) {
+ /* Read the Status register to check the speed */
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
+ * find the polarity status */
+ if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
+ IGP01E1000_PSSR_SPEED_1000MBPS) {
+
+ /* Read the GIG initialization PCS register (0x00B4) */
+ ret_val =
+ e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* Check the polarity bits */
+ *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
+ e1000_rev_polarity_reversed :
+ e1000_rev_polarity_normal;
+ } else {
+ /* For 10 Mbps, read the polarity bit in the status register. (for
+ * 100 Mbps this bit is always 0) */
+ *polarity =
+ (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
+ e1000_rev_polarity_reversed :
+ e1000_rev_polarity_normal;
+ }
+ }
+ return E1000_SUCCESS;
}
-/******************************************************************************
- * Check if Downshift occured
- *
- * hw - Struct containing variables accessed by shared code
- * downshift - output parameter : 0 - No Downshift ocured.
- * 1 - Downshift ocured.
+/**
+ * e1000_check_downshift - Check if Downshift occurred
+ * @hw: Struct containing variables accessed by shared code
+ * @downshift: output parameter : 0 - No Downshift occurred.
+ * 1 - Downshift occurred.
*
* returns: - E1000_ERR_XXX
* E1000_SUCCESS
@@ -6792,2041 +5028,607 @@ static s32 e1000_check_polarity(struct e1000_hw *hw,
* Specific Status register. For IGP phy's, it reads the Downgrade bit in the
* Link Health register. In IGP this bit is latched high, so the driver must
* read it immediately after link is established.
- *****************************************************************************/
+ */
static s32 e1000_check_downshift(struct e1000_hw *hw)
{
- s32 ret_val;
- u16 phy_data;
-
- DEBUGFUNC("e1000_check_downshift");
-
- if (hw->phy_type == e1000_phy_igp ||
- hw->phy_type == e1000_phy_igp_3 ||
- hw->phy_type == e1000_phy_igp_2) {
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
- } else if ((hw->phy_type == e1000_phy_m88) ||
- (hw->phy_type == e1000_phy_gg82563)) {
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
- M88E1000_PSSR_DOWNSHIFT_SHIFT;
- } else if (hw->phy_type == e1000_phy_ife) {
- /* e1000_phy_ife supports 10/100 speed only */
- hw->speed_downgraded = false;
- }
-
- return E1000_SUCCESS;
-}
+ s32 ret_val;
+ u16 phy_data;
-/*****************************************************************************
- *
- * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
- * gigabit link is achieved to improve link quality.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_PHY if fail to read/write the PHY
- * E1000_SUCCESS at any other case.
- *
- ****************************************************************************/
+ DEBUGFUNC("e1000_check_downshift");
-static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
-{
- s32 ret_val;
- u16 phy_data, phy_saved_data, speed, duplex, i;
- u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
- {IGP01E1000_PHY_AGC_PARAM_A,
- IGP01E1000_PHY_AGC_PARAM_B,
- IGP01E1000_PHY_AGC_PARAM_C,
- IGP01E1000_PHY_AGC_PARAM_D};
- u16 min_length, max_length;
-
- DEBUGFUNC("e1000_config_dsp_after_link_change");
-
- if (hw->phy_type != e1000_phy_igp)
- return E1000_SUCCESS;
-
- if (link_up) {
- ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
- if (ret_val) {
- DEBUGOUT("Error getting link speed and duplex\n");
- return ret_val;
- }
-
- if (speed == SPEED_1000) {
-
- ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
- if (ret_val)
- return ret_val;
-
- if ((hw->dsp_config_state == e1000_dsp_config_enabled) &&
- min_length >= e1000_igp_cable_length_50) {
-
- for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
- ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
-
- ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
- phy_data);
- if (ret_val)
- return ret_val;
- }
- hw->dsp_config_state = e1000_dsp_config_activated;
- }
-
- if ((hw->ffe_config_state == e1000_ffe_config_enabled) &&
- (min_length < e1000_igp_cable_length_50)) {
-
- u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
- u32 idle_errs = 0;
-
- /* clear previous idle error counts */
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- for (i = 0; i < ffe_idle_err_timeout; i++) {
- udelay(1000);
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
- if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
- hw->ffe_config_state = e1000_ffe_config_active;
-
- ret_val = e1000_write_phy_reg(hw,
- IGP01E1000_PHY_DSP_FFE,
- IGP01E1000_PHY_DSP_FFE_CM_CP);
- if (ret_val)
- return ret_val;
- break;
- }
-
- if (idle_errs)
- ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
- }
- }
- }
- } else {
- if (hw->dsp_config_state == e1000_dsp_config_activated) {
- /* Save off the current value of register 0x2F5B to be restored at
- * the end of the routines. */
- ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
-
- if (ret_val)
- return ret_val;
-
- /* Disable the PHY transmitter */
- ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
-
- if (ret_val)
- return ret_val;
-
- mdelay(20);
-
- ret_val = e1000_write_phy_reg(hw, 0x0000,
- IGP01E1000_IEEE_FORCE_GIGA);
- if (ret_val)
- return ret_val;
- for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
- ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
- phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
-
- ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data);
- if (ret_val)
- return ret_val;
- }
-
- ret_val = e1000_write_phy_reg(hw, 0x0000,
- IGP01E1000_IEEE_RESTART_AUTONEG);
- if (ret_val)
- return ret_val;
-
- mdelay(20);
-
- /* Now enable the transmitter */
- ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
-
- if (ret_val)
- return ret_val;
-
- hw->dsp_config_state = e1000_dsp_config_enabled;
- }
-
- if (hw->ffe_config_state == e1000_ffe_config_active) {
- /* Save off the current value of register 0x2F5B to be restored at
- * the end of the routines. */
- ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
-
- if (ret_val)
- return ret_val;
-
- /* Disable the PHY transmitter */
- ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
-
- if (ret_val)
- return ret_val;
-
- mdelay(20);
-
- ret_val = e1000_write_phy_reg(hw, 0x0000,
- IGP01E1000_IEEE_FORCE_GIGA);
- if (ret_val)
- return ret_val;
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
- IGP01E1000_PHY_DSP_FFE_DEFAULT);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_write_phy_reg(hw, 0x0000,
- IGP01E1000_IEEE_RESTART_AUTONEG);
- if (ret_val)
- return ret_val;
-
- mdelay(20);
-
- /* Now enable the transmitter */
- ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
-
- if (ret_val)
- return ret_val;
-
- hw->ffe_config_state = e1000_ffe_config_enabled;
- }
- }
- return E1000_SUCCESS;
-}
+ if (hw->phy_type == e1000_phy_igp) {
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
-/*****************************************************************************
- * Set PHY to class A mode
- * Assumes the following operations will follow to enable the new class mode.
- * 1. Do a PHY soft reset
- * 2. Restart auto-negotiation or force link.
- *
- * hw - Struct containing variables accessed by shared code
- ****************************************************************************/
-static s32 e1000_set_phy_mode(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 eeprom_data;
-
- DEBUGFUNC("e1000_set_phy_mode");
-
- if ((hw->mac_type == e1000_82545_rev_3) &&
- (hw->media_type == e1000_media_type_copper)) {
- ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
- if (ret_val) {
- return ret_val;
- }
-
- if ((eeprom_data != EEPROM_RESERVED_WORD) &&
- (eeprom_data & EEPROM_PHY_CLASS_A)) {
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
- if (ret_val)
- return ret_val;
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
- if (ret_val)
- return ret_val;
-
- hw->phy_reset_disable = false;
- }
- }
-
- return E1000_SUCCESS;
-}
+ hw->speed_downgraded =
+ (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
+ } else if (hw->phy_type == e1000_phy_m88) {
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
-/*****************************************************************************
- *
- * This function sets the lplu state according to the active flag. When
- * activating lplu this function also disables smart speed and vise versa.
- * lplu will not be activated unless the device autonegotiation advertisment
- * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
- * hw: Struct containing variables accessed by shared code
- * active - true to enable lplu false to disable lplu.
- *
- * returns: - E1000_ERR_PHY if fail to read/write the PHY
- * E1000_SUCCESS at any other case.
- *
- ****************************************************************************/
+ hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
+ M88E1000_PSSR_DOWNSHIFT_SHIFT;
+ }
-static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
-{
- u32 phy_ctrl = 0;
- s32 ret_val;
- u16 phy_data;
- DEBUGFUNC("e1000_set_d3_lplu_state");
-
- if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
- && hw->phy_type != e1000_phy_igp_3)
- return E1000_SUCCESS;
-
- /* During driver activity LPLU should not be used or it will attain link
- * from the lowest speeds starting from 10Mbps. The capability is used for
- * Dx transitions and states */
- if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
- if (ret_val)
- return ret_val;
- } else if (hw->mac_type == e1000_ich8lan) {
- /* MAC writes into PHY register based on the state transition
- * and start auto-negotiation. SW driver can overwrite the settings
- * in CSR PHY power control E1000_PHY_CTRL register. */
- phy_ctrl = er32(PHY_CTRL);
- } else {
- ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
- if (ret_val)
- return ret_val;
- }
-
- if (!active) {
- if (hw->mac_type == e1000_82541_rev_2 ||
- hw->mac_type == e1000_82547_rev_2) {
- phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
- if (ret_val)
- return ret_val;
- } else {
- if (hw->mac_type == e1000_ich8lan) {
- phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
- ew32(PHY_CTRL, phy_ctrl);
- } else {
- phy_data &= ~IGP02E1000_PM_D3_LPLU;
- ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- phy_data);
- if (ret_val)
- return ret_val;
- }
- }
-
- /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
- * Dx states where the power conservation is most important. During
- * driver activity we should enable SmartSpeed, so performance is
- * maintained. */
- if (hw->smart_speed == e1000_smart_speed_on) {
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if (ret_val)
- return ret_val;
- } else if (hw->smart_speed == e1000_smart_speed_off) {
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if (ret_val)
- return ret_val;
- }
-
- } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
- (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
- (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
-
- if (hw->mac_type == e1000_82541_rev_2 ||
- hw->mac_type == e1000_82547_rev_2) {
- phy_data |= IGP01E1000_GMII_FLEX_SPD;
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
- if (ret_val)
- return ret_val;
- } else {
- if (hw->mac_type == e1000_ich8lan) {
- phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
- ew32(PHY_CTRL, phy_ctrl);
- } else {
- phy_data |= IGP02E1000_PM_D3_LPLU;
- ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- phy_data);
- if (ret_val)
- return ret_val;
- }
- }
-
- /* When LPLU is enabled we should disable SmartSpeed */
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
- if (ret_val)
- return ret_val;
-
- }
- return E1000_SUCCESS;
+ return E1000_SUCCESS;
}
-/*****************************************************************************
- *
- * This function sets the lplu d0 state according to the active flag. When
- * activating lplu this function also disables smart speed and vise versa.
- * lplu will not be activated unless the device autonegotiation advertisment
- * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
- * hw: Struct containing variables accessed by shared code
- * active - true to enable lplu false to disable lplu.
+/**
+ * e1000_config_dsp_after_link_change
+ * @hw: Struct containing variables accessed by shared code
+ * @link_up: was link up at the time this was called
*
* returns: - E1000_ERR_PHY if fail to read/write the PHY
* E1000_SUCCESS at any other case.
*
- ****************************************************************************/
-
-static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
-{
- u32 phy_ctrl = 0;
- s32 ret_val;
- u16 phy_data;
- DEBUGFUNC("e1000_set_d0_lplu_state");
-
- if (hw->mac_type <= e1000_82547_rev_2)
- return E1000_SUCCESS;
-
- if (hw->mac_type == e1000_ich8lan) {
- phy_ctrl = er32(PHY_CTRL);
- } else {
- ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
- if (ret_val)
- return ret_val;
- }
-
- if (!active) {
- if (hw->mac_type == e1000_ich8lan) {
- phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
- ew32(PHY_CTRL, phy_ctrl);
- } else {
- phy_data &= ~IGP02E1000_PM_D0_LPLU;
- ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
- if (ret_val)
- return ret_val;
- }
-
- /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
- * Dx states where the power conservation is most important. During
- * driver activity we should enable SmartSpeed, so performance is
- * maintained. */
- if (hw->smart_speed == e1000_smart_speed_on) {
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if (ret_val)
- return ret_val;
- } else if (hw->smart_speed == e1000_smart_speed_off) {
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if (ret_val)
- return ret_val;
- }
-
-
- } else {
-
- if (hw->mac_type == e1000_ich8lan) {
- phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
- ew32(PHY_CTRL, phy_ctrl);
- } else {
- phy_data |= IGP02E1000_PM_D0_LPLU;
- ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
- if (ret_val)
- return ret_val;
- }
-
- /* When LPLU is enabled we should disable SmartSpeed */
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
- if (ret_val)
- return ret_val;
-
- }
- return E1000_SUCCESS;
-}
+ * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
+ * gigabit link is achieved to improve link quality.
+ */
-/******************************************************************************
- * Change VCO speed register to improve Bit Error Rate performance of SERDES.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static s32 e1000_set_vco_speed(struct e1000_hw *hw)
+static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
{
- s32 ret_val;
- u16 default_page = 0;
- u16 phy_data;
-
- DEBUGFUNC("e1000_set_vco_speed");
+ s32 ret_val;
+ u16 phy_data, phy_saved_data, speed, duplex, i;
+ u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
+ { IGP01E1000_PHY_AGC_PARAM_A,
+ IGP01E1000_PHY_AGC_PARAM_B,
+ IGP01E1000_PHY_AGC_PARAM_C,
+ IGP01E1000_PHY_AGC_PARAM_D
+ };
+ u16 min_length, max_length;
+
+ DEBUGFUNC("e1000_config_dsp_after_link_change");
+
+ if (hw->phy_type != e1000_phy_igp)
+ return E1000_SUCCESS;
+
+ if (link_up) {
+ ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
+ if (ret_val) {
+ DEBUGOUT("Error getting link speed and duplex\n");
+ return ret_val;
+ }
- switch (hw->mac_type) {
- case e1000_82545_rev_3:
- case e1000_82546_rev_3:
- break;
- default:
- return E1000_SUCCESS;
- }
+ if (speed == SPEED_1000) {
+
+ ret_val =
+ e1000_get_cable_length(hw, &min_length,
+ &max_length);
+ if (ret_val)
+ return ret_val;
+
+ if ((hw->dsp_config_state == e1000_dsp_config_enabled)
+ && min_length >= e1000_igp_cable_length_50) {
+
+ for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+ ret_val =
+ e1000_read_phy_reg(hw,
+ dsp_reg_array[i],
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &=
+ ~IGP01E1000_PHY_EDAC_MU_INDEX;
+
+ ret_val =
+ e1000_write_phy_reg(hw,
+ dsp_reg_array
+ [i], phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+ hw->dsp_config_state =
+ e1000_dsp_config_activated;
+ }
+
+ if ((hw->ffe_config_state == e1000_ffe_config_enabled)
+ && (min_length < e1000_igp_cable_length_50)) {
+
+ u16 ffe_idle_err_timeout =
+ FFE_IDLE_ERR_COUNT_TIMEOUT_20;
+ u32 idle_errs = 0;
+
+ /* clear previous idle error counts */
+ ret_val =
+ e1000_read_phy_reg(hw, PHY_1000T_STATUS,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ for (i = 0; i < ffe_idle_err_timeout; i++) {
+ udelay(1000);
+ ret_val =
+ e1000_read_phy_reg(hw,
+ PHY_1000T_STATUS,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ idle_errs +=
+ (phy_data &
+ SR_1000T_IDLE_ERROR_CNT);
+ if (idle_errs >
+ SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT)
+ {
+ hw->ffe_config_state =
+ e1000_ffe_config_active;
+
+ ret_val =
+ e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_DSP_FFE,
+ IGP01E1000_PHY_DSP_FFE_CM_CP);
+ if (ret_val)
+ return ret_val;
+ break;
+ }
+
+ if (idle_errs)
+ ffe_idle_err_timeout =
+ FFE_IDLE_ERR_COUNT_TIMEOUT_100;
+ }
+ }
+ }
+ } else {
+ if (hw->dsp_config_state == e1000_dsp_config_activated) {
+ /* Save off the current value of register 0x2F5B to be restored at
+ * the end of the routines. */
+ ret_val =
+ e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+ if (ret_val)
+ return ret_val;
+
+ /* Disable the PHY transmitter */
+ ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+
+ if (ret_val)
+ return ret_val;
+
+ mdelay(20);
+
+ ret_val = e1000_write_phy_reg(hw, 0x0000,
+ IGP01E1000_IEEE_FORCE_GIGA);
+ if (ret_val)
+ return ret_val;
+ for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+ ret_val =
+ e1000_read_phy_reg(hw, dsp_reg_array[i],
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
+ phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
+
+ ret_val =
+ e1000_write_phy_reg(hw, dsp_reg_array[i],
+ phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+
+ ret_val = e1000_write_phy_reg(hw, 0x0000,
+ IGP01E1000_IEEE_RESTART_AUTONEG);
+ if (ret_val)
+ return ret_val;
+
+ mdelay(20);
+
+ /* Now enable the transmitter */
+ ret_val =
+ e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+ if (ret_val)
+ return ret_val;
+
+ hw->dsp_config_state = e1000_dsp_config_enabled;
+ }
- /* Set PHY register 30, page 5, bit 8 to 0 */
+ if (hw->ffe_config_state == e1000_ffe_config_active) {
+ /* Save off the current value of register 0x2F5B to be restored at
+ * the end of the routines. */
+ ret_val =
+ e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
- if (ret_val)
- return ret_val;
+ if (ret_val)
+ return ret_val;
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
- if (ret_val)
- return ret_val;
+ /* Disable the PHY transmitter */
+ ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
+ if (ret_val)
+ return ret_val;
- phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
- if (ret_val)
- return ret_val;
+ mdelay(20);
- /* Set PHY register 30, page 4, bit 11 to 1 */
+ ret_val = e1000_write_phy_reg(hw, 0x0000,
+ IGP01E1000_IEEE_FORCE_GIGA);
+ if (ret_val)
+ return ret_val;
+ ret_val =
+ e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
+ IGP01E1000_PHY_DSP_FFE_DEFAULT);
+ if (ret_val)
+ return ret_val;
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
- if (ret_val)
- return ret_val;
+ ret_val = e1000_write_phy_reg(hw, 0x0000,
+ IGP01E1000_IEEE_RESTART_AUTONEG);
+ if (ret_val)
+ return ret_val;
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
+ mdelay(20);
- phy_data |= M88E1000_PHY_VCO_REG_BIT11;
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
- if (ret_val)
- return ret_val;
+ /* Now enable the transmitter */
+ ret_val =
+ e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
- if (ret_val)
- return ret_val;
+ if (ret_val)
+ return ret_val;
- return E1000_SUCCESS;
+ hw->ffe_config_state = e1000_ffe_config_enabled;
+ }
+ }
+ return E1000_SUCCESS;
}
-
-/*****************************************************************************
- * This function reads the cookie from ARC ram.
+/**
+ * e1000_set_phy_mode - Set PHY to class A mode
+ * @hw: Struct containing variables accessed by shared code
*
- * returns: - E1000_SUCCESS .
- ****************************************************************************/
-static s32 e1000_host_if_read_cookie(struct e1000_hw *hw, u8 *buffer)
+ * Assumes the following operations will follow to enable the new class mode.
+ * 1. Do a PHY soft reset
+ * 2. Restart auto-negotiation or force link.
+ */
+static s32 e1000_set_phy_mode(struct e1000_hw *hw)
{
- u8 i;
- u32 offset = E1000_MNG_DHCP_COOKIE_OFFSET;
- u8 length = E1000_MNG_DHCP_COOKIE_LENGTH;
-
- length = (length >> 2);
- offset = (offset >> 2);
-
- for (i = 0; i < length; i++) {
- *((u32 *)buffer + i) =
- E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
- }
- return E1000_SUCCESS;
-}
+ s32 ret_val;
+ u16 eeprom_data;
+ DEBUGFUNC("e1000_set_phy_mode");
-/*****************************************************************************
- * This function checks whether the HOST IF is enabled for command operaton
- * and also checks whether the previous command is completed.
- * It busy waits in case of previous command is not completed.
- *
- * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
- * timeout
- * - E1000_SUCCESS for success.
- ****************************************************************************/
-static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
-{
- u32 hicr;
- u8 i;
-
- /* Check that the host interface is enabled. */
- hicr = er32(HICR);
- if ((hicr & E1000_HICR_EN) == 0) {
- DEBUGOUT("E1000_HOST_EN bit disabled.\n");
- return -E1000_ERR_HOST_INTERFACE_COMMAND;
- }
- /* check the previous command is completed */
- for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
- hicr = er32(HICR);
- if (!(hicr & E1000_HICR_C))
- break;
- mdelay(1);
- }
-
- if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
- DEBUGOUT("Previous command timeout failed .\n");
- return -E1000_ERR_HOST_INTERFACE_COMMAND;
- }
- return E1000_SUCCESS;
-}
+ if ((hw->mac_type == e1000_82545_rev_3) &&
+ (hw->media_type == e1000_media_type_copper)) {
+ ret_val =
+ e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
+ &eeprom_data);
+ if (ret_val) {
+ return ret_val;
+ }
-/*****************************************************************************
- * This function writes the buffer content at the offset given on the host if.
- * It also does alignment considerations to do the writes in most efficient way.
- * Also fills up the sum of the buffer in *buffer parameter.
- *
- * returns - E1000_SUCCESS for success.
- ****************************************************************************/
-static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
- u16 offset, u8 *sum)
-{
- u8 *tmp;
- u8 *bufptr = buffer;
- u32 data = 0;
- u16 remaining, i, j, prev_bytes;
-
- /* sum = only sum of the data and it is not checksum */
-
- if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
- return -E1000_ERR_PARAM;
- }
-
- tmp = (u8 *)&data;
- prev_bytes = offset & 0x3;
- offset &= 0xFFFC;
- offset >>= 2;
-
- if (prev_bytes) {
- data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset);
- for (j = prev_bytes; j < sizeof(u32); j++) {
- *(tmp + j) = *bufptr++;
- *sum += *(tmp + j);
- }
- E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data);
- length -= j - prev_bytes;
- offset++;
- }
-
- remaining = length & 0x3;
- length -= remaining;
-
- /* Calculate length in DWORDs */
- length >>= 2;
-
- /* The device driver writes the relevant command block into the
- * ram area. */
- for (i = 0; i < length; i++) {
- for (j = 0; j < sizeof(u32); j++) {
- *(tmp + j) = *bufptr++;
- *sum += *(tmp + j);
- }
-
- E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
- }
- if (remaining) {
- for (j = 0; j < sizeof(u32); j++) {
- if (j < remaining)
- *(tmp + j) = *bufptr++;
- else
- *(tmp + j) = 0;
-
- *sum += *(tmp + j);
- }
- E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
- }
-
- return E1000_SUCCESS;
-}
+ if ((eeprom_data != EEPROM_RESERVED_WORD) &&
+ (eeprom_data & EEPROM_PHY_CLASS_A)) {
+ ret_val =
+ e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
+ 0x000B);
+ if (ret_val)
+ return ret_val;
+ ret_val =
+ e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
+ 0x8104);
+ if (ret_val)
+ return ret_val;
+
+ hw->phy_reset_disable = false;
+ }
+ }
+ return E1000_SUCCESS;
+}
-/*****************************************************************************
- * This function writes the command header after does the checksum calculation.
+/**
+ * e1000_set_d3_lplu_state - set d3 link power state
+ * @hw: Struct containing variables accessed by shared code
+ * @active: true to enable lplu false to disable lplu.
+ *
+ * This function sets the lplu state according to the active flag. When
+ * activating lplu this function also disables smart speed and vise versa.
+ * lplu will not be activated unless the device autonegotiation advertisement
+ * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
*
- * returns - E1000_SUCCESS for success.
- ****************************************************************************/
-static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
- struct e1000_host_mng_command_header *hdr)
+ * returns: - E1000_ERR_PHY if fail to read/write the PHY
+ * E1000_SUCCESS at any other case.
+ */
+static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
{
- u16 i;
- u8 sum;
- u8 *buffer;
-
- /* Write the whole command header structure which includes sum of
- * the buffer */
-
- u16 length = sizeof(struct e1000_host_mng_command_header);
+ s32 ret_val;
+ u16 phy_data;
+ DEBUGFUNC("e1000_set_d3_lplu_state");
+
+ if (hw->phy_type != e1000_phy_igp)
+ return E1000_SUCCESS;
+
+ /* During driver activity LPLU should not be used or it will attain link
+ * from the lowest speeds starting from 10Mbps. The capability is used for
+ * Dx transitions and states */
+ if (hw->mac_type == e1000_82541_rev_2
+ || hw->mac_type == e1000_82547_rev_2) {
+ ret_val =
+ e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
+ if (ret_val)
+ return ret_val;
+ }
- sum = hdr->checksum;
- hdr->checksum = 0;
+ if (!active) {
+ if (hw->mac_type == e1000_82541_rev_2 ||
+ hw->mac_type == e1000_82547_rev_2) {
+ phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
+ ret_val =
+ e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+ }
- buffer = (u8 *)hdr;
- i = length;
- while (i--)
- sum += buffer[i];
+ /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
+ * Dx states where the power conservation is most important. During
+ * driver activity we should enable SmartSpeed, so performance is
+ * maintained. */
+ if (hw->smart_speed == e1000_smart_speed_on) {
+ ret_val =
+ e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val =
+ e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+ } else if (hw->smart_speed == e1000_smart_speed_off) {
+ ret_val =
+ e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val =
+ e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+ } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
+ || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL)
+ || (hw->autoneg_advertised ==
+ AUTONEG_ADVERTISE_10_100_ALL)) {
+
+ if (hw->mac_type == e1000_82541_rev_2 ||
+ hw->mac_type == e1000_82547_rev_2) {
+ phy_data |= IGP01E1000_GMII_FLEX_SPD;
+ ret_val =
+ e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+ }
- hdr->checksum = 0 - sum;
+ /* When LPLU is enabled we should disable SmartSpeed */
+ ret_val =
+ e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
- length >>= 2;
- /* The device driver writes the relevant command block into the ram area. */
- for (i = 0; i < length; i++) {
- E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((u32 *)hdr + i));
- E1000_WRITE_FLUSH();
- }
+ phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val =
+ e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ phy_data);
+ if (ret_val)
+ return ret_val;
- return E1000_SUCCESS;
+ }
+ return E1000_SUCCESS;
}
-
-/*****************************************************************************
- * This function indicates to ARC that a new command is pending which completes
- * one write operation by the driver.
+/**
+ * e1000_set_vco_speed
+ * @hw: Struct containing variables accessed by shared code
*
- * returns - E1000_SUCCESS for success.
- ****************************************************************************/
-static s32 e1000_mng_write_commit(struct e1000_hw *hw)
+ * Change VCO speed register to improve Bit Error Rate performance of SERDES.
+ */
+static s32 e1000_set_vco_speed(struct e1000_hw *hw)
{
- u32 hicr;
+ s32 ret_val;
+ u16 default_page = 0;
+ u16 phy_data;
- hicr = er32(HICR);
- /* Setting this bit tells the ARC that a new command is pending. */
- ew32(HICR, hicr | E1000_HICR_C);
+ DEBUGFUNC("e1000_set_vco_speed");
- return E1000_SUCCESS;
-}
+ switch (hw->mac_type) {
+ case e1000_82545_rev_3:
+ case e1000_82546_rev_3:
+ break;
+ default:
+ return E1000_SUCCESS;
+ }
+ /* Set PHY register 30, page 5, bit 8 to 0 */
-/*****************************************************************************
- * This function checks the mode of the firmware.
- *
- * returns - true when the mode is IAMT or false.
- ****************************************************************************/
-bool e1000_check_mng_mode(struct e1000_hw *hw)
-{
- u32 fwsm;
-
- fwsm = er32(FWSM);
+ ret_val =
+ e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
+ if (ret_val)
+ return ret_val;
- if (hw->mac_type == e1000_ich8lan) {
- if ((fwsm & E1000_FWSM_MODE_MASK) ==
- (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
- return true;
- } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
- (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
- return true;
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
+ if (ret_val)
+ return ret_val;
- return false;
-}
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
+ if (ret_val)
+ return ret_val;
+ phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
+ if (ret_val)
+ return ret_val;
-/*****************************************************************************
- * This function writes the dhcp info .
- ****************************************************************************/
-s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
-{
- s32 ret_val;
- struct e1000_host_mng_command_header hdr;
-
- hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
- hdr.command_length = length;
- hdr.reserved1 = 0;
- hdr.reserved2 = 0;
- hdr.checksum = 0;
-
- ret_val = e1000_mng_enable_host_if(hw);
- if (ret_val == E1000_SUCCESS) {
- ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr),
- &(hdr.checksum));
- if (ret_val == E1000_SUCCESS) {
- ret_val = e1000_mng_write_cmd_header(hw, &hdr);
- if (ret_val == E1000_SUCCESS)
- ret_val = e1000_mng_write_commit(hw);
- }
- }
- return ret_val;
-}
+ /* Set PHY register 30, page 4, bit 11 to 1 */
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
+ if (ret_val)
+ return ret_val;
-/*****************************************************************************
- * This function calculates the checksum.
- *
- * returns - checksum of buffer contents.
- ****************************************************************************/
-static u8 e1000_calculate_mng_checksum(char *buffer, u32 length)
-{
- u8 sum = 0;
- u32 i;
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
+ if (ret_val)
+ return ret_val;
- if (!buffer)
- return 0;
+ phy_data |= M88E1000_PHY_VCO_REG_BIT11;
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
+ if (ret_val)
+ return ret_val;
- for (i=0; i < length; i++)
- sum += buffer[i];
+ ret_val =
+ e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
+ if (ret_val)
+ return ret_val;
- return (u8)(0 - sum);
+ return E1000_SUCCESS;
}
-/*****************************************************************************
- * This function checks whether tx pkt filtering needs to be enabled or not.
- *
- * returns - true for packet filtering or false.
- ****************************************************************************/
-bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
-{
- /* called in init as well as watchdog timer functions */
-
- s32 ret_val, checksum;
- bool tx_filter = false;
- struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
- u8 *buffer = (u8 *) &(hw->mng_cookie);
-
- if (e1000_check_mng_mode(hw)) {
- ret_val = e1000_mng_enable_host_if(hw);
- if (ret_val == E1000_SUCCESS) {
- ret_val = e1000_host_if_read_cookie(hw, buffer);
- if (ret_val == E1000_SUCCESS) {
- checksum = hdr->checksum;
- hdr->checksum = 0;
- if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
- checksum == e1000_calculate_mng_checksum((char *)buffer,
- E1000_MNG_DHCP_COOKIE_LENGTH)) {
- if (hdr->status &
- E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
- tx_filter = true;
- } else
- tx_filter = true;
- } else
- tx_filter = true;
- }
- }
-
- hw->tx_pkt_filtering = tx_filter;
- return tx_filter;
-}
-/******************************************************************************
- * Verifies the hardware needs to allow ARPs to be processed by the host
- *
- * hw - Struct containing variables accessed by shared code
+/**
+ * e1000_enable_mng_pass_thru - check for bmc pass through
+ * @hw: Struct containing variables accessed by shared code
*
+ * Verifies the hardware needs to allow ARPs to be processed by the host
* returns: - true/false
- *
- *****************************************************************************/
+ */
u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
{
- u32 manc;
- u32 fwsm, factps;
-
- if (hw->asf_firmware_present) {
- manc = er32(MANC);
-
- if (!(manc & E1000_MANC_RCV_TCO_EN) ||
- !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
- return false;
- if (e1000_arc_subsystem_valid(hw)) {
- fwsm = er32(FWSM);
- factps = er32(FACTPS);
-
- if ((((fwsm & E1000_FWSM_MODE_MASK) >> E1000_FWSM_MODE_SHIFT) ==
- e1000_mng_mode_pt) && !(factps & E1000_FACTPS_MNGCG))
- return true;
- } else
- if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
- return true;
- }
- return false;
-}
+ u32 manc;
-static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 mii_status_reg;
- u16 i;
-
- /* Polarity reversal workaround for forced 10F/10H links. */
-
- /* Disable the transmitter on the PHY */
-
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
- if (ret_val)
- return ret_val;
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
- if (ret_val)
- return ret_val;
-
- /* This loop will early-out if the NO link condition has been met. */
- for (i = PHY_FORCE_TIME; i > 0; i--) {
- /* Read the MII Status Register and wait for Link Status bit
- * to be clear.
- */
-
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
- mdelay(100);
- }
-
- /* Recommended delay time after link has been lost */
- mdelay(1000);
-
- /* Now we will re-enable th transmitter on the PHY */
-
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
- if (ret_val)
- return ret_val;
- mdelay(50);
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
- if (ret_val)
- return ret_val;
- mdelay(50);
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
- if (ret_val)
- return ret_val;
- mdelay(50);
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
- if (ret_val)
- return ret_val;
-
- /* This loop will early-out if the link condition has been met. */
- for (i = PHY_FORCE_TIME; i > 0; i--) {
- /* Read the MII Status Register and wait for Link Status bit
- * to be set.
- */
-
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- if (mii_status_reg & MII_SR_LINK_STATUS) break;
- mdelay(100);
- }
- return E1000_SUCCESS;
+ if (hw->asf_firmware_present) {
+ manc = er32(MANC);
+
+ if (!(manc & E1000_MANC_RCV_TCO_EN) ||
+ !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
+ return false;
+ if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
+ return true;
+ }
+ return false;
}
-/***************************************************************************
- *
- * Disables PCI-Express master access.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - none.
- *
- ***************************************************************************/
-static void e1000_set_pci_express_master_disable(struct e1000_hw *hw)
+static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
{
- u32 ctrl;
+ s32 ret_val;
+ u16 mii_status_reg;
+ u16 i;
- DEBUGFUNC("e1000_set_pci_express_master_disable");
+ /* Polarity reversal workaround for forced 10F/10H links. */
- if (hw->bus_type != e1000_bus_type_pci_express)
- return;
+ /* Disable the transmitter on the PHY */
- ctrl = er32(CTRL);
- ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
- ew32(CTRL, ctrl);
-}
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
+ if (ret_val)
+ return ret_val;
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
+ if (ret_val)
+ return ret_val;
-/*******************************************************************************
- *
- * Disables PCI-Express master access and verifies there are no pending requests
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
- * caused the master requests to be disabled.
- * E1000_SUCCESS master requests disabled.
- *
- ******************************************************************************/
-s32 e1000_disable_pciex_master(struct e1000_hw *hw)
-{
- s32 timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
+ if (ret_val)
+ return ret_val;
- DEBUGFUNC("e1000_disable_pciex_master");
+ /* This loop will early-out if the NO link condition has been met. */
+ for (i = PHY_FORCE_TIME; i > 0; i--) {
+ /* Read the MII Status Register and wait for Link Status bit
+ * to be clear.
+ */
- if (hw->bus_type != e1000_bus_type_pci_express)
- return E1000_SUCCESS;
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ return ret_val;
- e1000_set_pci_express_master_disable(hw);
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ return ret_val;
- while (timeout) {
- if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
- break;
- else
- udelay(100);
- timeout--;
- }
-
- if (!timeout) {
- DEBUGOUT("Master requests are pending.\n");
- return -E1000_ERR_MASTER_REQUESTS_PENDING;
- }
+ if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
+ break;
+ mdelay(100);
+ }
- return E1000_SUCCESS;
+ /* Recommended delay time after link has been lost */
+ mdelay(1000);
+
+ /* Now we will re-enable th transmitter on the PHY */
+
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
+ if (ret_val)
+ return ret_val;
+ mdelay(50);
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
+ if (ret_val)
+ return ret_val;
+ mdelay(50);
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
+ if (ret_val)
+ return ret_val;
+ mdelay(50);
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
+ if (ret_val)
+ return ret_val;
+
+ /* This loop will early-out if the link condition has been met. */
+ for (i = PHY_FORCE_TIME; i > 0; i--) {
+ /* Read the MII Status Register and wait for Link Status bit
+ * to be set.
+ */
+
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ return ret_val;
+
+ if (mii_status_reg & MII_SR_LINK_STATUS)
+ break;
+ mdelay(100);
+ }
+ return E1000_SUCCESS;
}
-/*******************************************************************************
+/**
+ * e1000_get_auto_rd_done
+ * @hw: Struct containing variables accessed by shared code
*
* Check for EEPROM Auto Read bit done.
- *
- * hw: Struct containing variables accessed by shared code
- *
* returns: - E1000_ERR_RESET if fail to reset MAC
* E1000_SUCCESS at any other case.
- *
- ******************************************************************************/
+ */
static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
{
- s32 timeout = AUTO_READ_DONE_TIMEOUT;
-
- DEBUGFUNC("e1000_get_auto_rd_done");
-
- switch (hw->mac_type) {
- default:
- msleep(5);
- break;
- case e1000_82571:
- case e1000_82572:
- case e1000_82573:
- case e1000_80003es2lan:
- case e1000_ich8lan:
- while (timeout) {
- if (er32(EECD) & E1000_EECD_AUTO_RD)
- break;
- else msleep(1);
- timeout--;
- }
-
- if (!timeout) {
- DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
- return -E1000_ERR_RESET;
- }
- break;
- }
-
- /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high.
- * Need to wait for PHY configuration completion before accessing NVM
- * and PHY. */
- if (hw->mac_type == e1000_82573)
- msleep(25);
-
- return E1000_SUCCESS;
+ DEBUGFUNC("e1000_get_auto_rd_done");
+ msleep(5);
+ return E1000_SUCCESS;
}
-/***************************************************************************
- * Checks if the PHY configuration is done
- *
- * hw: Struct containing variables accessed by shared code
+/**
+ * e1000_get_phy_cfg_done
+ * @hw: Struct containing variables accessed by shared code
*
+ * Checks if the PHY configuration is done
* returns: - E1000_ERR_RESET if fail to reset MAC
* E1000_SUCCESS at any other case.
- *
- ***************************************************************************/
+ */
static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
{
- s32 timeout = PHY_CFG_TIMEOUT;
- u32 cfg_mask = E1000_EEPROM_CFG_DONE;
-
- DEBUGFUNC("e1000_get_phy_cfg_done");
-
- switch (hw->mac_type) {
- default:
- mdelay(10);
- break;
- case e1000_80003es2lan:
- /* Separate *_CFG_DONE_* bit for each port */
- if (er32(STATUS) & E1000_STATUS_FUNC_1)
- cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
- /* Fall Through */
- case e1000_82571:
- case e1000_82572:
- while (timeout) {
- if (er32(EEMNGCTL) & cfg_mask)
- break;
- else
- msleep(1);
- timeout--;
- }
- if (!timeout) {
- DEBUGOUT("MNG configuration cycle has not completed.\n");
- return -E1000_ERR_RESET;
- }
- break;
- }
-
- return E1000_SUCCESS;
-}
-
-/***************************************************************************
- *
- * Using the combination of SMBI and SWESMBI semaphore bits when resetting
- * adapter or Eeprom access.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
- * E1000_SUCCESS at any other case.
- *
- ***************************************************************************/
-static s32 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
-{
- s32 timeout;
- u32 swsm;
-
- DEBUGFUNC("e1000_get_hw_eeprom_semaphore");
-
- if (!hw->eeprom_semaphore_present)
- return E1000_SUCCESS;
-
- if (hw->mac_type == e1000_80003es2lan) {
- /* Get the SW semaphore. */
- if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
- return -E1000_ERR_EEPROM;
- }
-
- /* Get the FW semaphore. */
- timeout = hw->eeprom.word_size + 1;
- while (timeout) {
- swsm = er32(SWSM);
- swsm |= E1000_SWSM_SWESMBI;
- ew32(SWSM, swsm);
- /* if we managed to set the bit we got the semaphore. */
- swsm = er32(SWSM);
- if (swsm & E1000_SWSM_SWESMBI)
- break;
-
- udelay(50);
- timeout--;
- }
-
- if (!timeout) {
- /* Release semaphores */
- e1000_put_hw_eeprom_semaphore(hw);
- DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
- return -E1000_ERR_EEPROM;
- }
-
- return E1000_SUCCESS;
-}
-
-/***************************************************************************
- * This function clears HW semaphore bits.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - None.
- *
- ***************************************************************************/
-static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
-{
- u32 swsm;
-
- DEBUGFUNC("e1000_put_hw_eeprom_semaphore");
-
- if (!hw->eeprom_semaphore_present)
- return;
-
- swsm = er32(SWSM);
- if (hw->mac_type == e1000_80003es2lan) {
- /* Release both semaphores. */
- swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
- } else
- swsm &= ~(E1000_SWSM_SWESMBI);
- ew32(SWSM, swsm);
-}
-
-/***************************************************************************
- *
- * Obtaining software semaphore bit (SMBI) before resetting PHY.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_RESET if fail to obtain semaphore.
- * E1000_SUCCESS at any other case.
- *
- ***************************************************************************/
-static s32 e1000_get_software_semaphore(struct e1000_hw *hw)
-{
- s32 timeout = hw->eeprom.word_size + 1;
- u32 swsm;
-
- DEBUGFUNC("e1000_get_software_semaphore");
-
- if (hw->mac_type != e1000_80003es2lan) {
- return E1000_SUCCESS;
- }
-
- while (timeout) {
- swsm = er32(SWSM);
- /* If SMBI bit cleared, it is now set and we hold the semaphore */
- if (!(swsm & E1000_SWSM_SMBI))
- break;
- mdelay(1);
- timeout--;
- }
-
- if (!timeout) {
- DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
- return -E1000_ERR_RESET;
- }
-
- return E1000_SUCCESS;
-}
-
-/***************************************************************************
- *
- * Release semaphore bit (SMBI).
- *
- * hw: Struct containing variables accessed by shared code
- *
- ***************************************************************************/
-static void e1000_release_software_semaphore(struct e1000_hw *hw)
-{
- u32 swsm;
-
- DEBUGFUNC("e1000_release_software_semaphore");
-
- if (hw->mac_type != e1000_80003es2lan) {
- return;
- }
-
- swsm = er32(SWSM);
- /* Release the SW semaphores.*/
- swsm &= ~E1000_SWSM_SMBI;
- ew32(SWSM, swsm);
-}
-
-/******************************************************************************
- * Checks if PHY reset is blocked due to SOL/IDER session, for example.
- * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
- * the caller to figure out how to deal with it.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * returns: - E1000_BLK_PHY_RESET
- * E1000_SUCCESS
- *
- *****************************************************************************/
-s32 e1000_check_phy_reset_block(struct e1000_hw *hw)
-{
- u32 manc = 0;
- u32 fwsm = 0;
-
- if (hw->mac_type == e1000_ich8lan) {
- fwsm = er32(FWSM);
- return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
- : E1000_BLK_PHY_RESET;
- }
-
- if (hw->mac_type > e1000_82547_rev_2)
- manc = er32(MANC);
- return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
- E1000_BLK_PHY_RESET : E1000_SUCCESS;
-}
-
-static u8 e1000_arc_subsystem_valid(struct e1000_hw *hw)
-{
- u32 fwsm;
-
- /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC
- * may not be provided a DMA clock when no manageability features are
- * enabled. We do not want to perform any reads/writes to these registers
- * if this is the case. We read FWSM to determine the manageability mode.
- */
- switch (hw->mac_type) {
- case e1000_82571:
- case e1000_82572:
- case e1000_82573:
- case e1000_80003es2lan:
- fwsm = er32(FWSM);
- if ((fwsm & E1000_FWSM_MODE_MASK) != 0)
- return true;
- break;
- case e1000_ich8lan:
- return true;
- default:
- break;
- }
- return false;
-}
-
-
-/******************************************************************************
- * Configure PCI-Ex no-snoop
- *
- * hw - Struct containing variables accessed by shared code.
- * no_snoop - Bitmap of no-snoop events.
- *
- * returns: E1000_SUCCESS
- *
- *****************************************************************************/
-static s32 e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, u32 no_snoop)
-{
- u32 gcr_reg = 0;
-
- DEBUGFUNC("e1000_set_pci_ex_no_snoop");
-
- if (hw->bus_type == e1000_bus_type_unknown)
- e1000_get_bus_info(hw);
-
- if (hw->bus_type != e1000_bus_type_pci_express)
- return E1000_SUCCESS;
-
- if (no_snoop) {
- gcr_reg = er32(GCR);
- gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
- gcr_reg |= no_snoop;
- ew32(GCR, gcr_reg);
- }
- if (hw->mac_type == e1000_ich8lan) {
- u32 ctrl_ext;
-
- ew32(GCR, PCI_EX_82566_SNOOP_ALL);
-
- ctrl_ext = er32(CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
- ew32(CTRL_EXT, ctrl_ext);
- }
-
- return E1000_SUCCESS;
-}
-
-/***************************************************************************
- *
- * Get software semaphore FLAG bit (SWFLAG).
- * SWFLAG is used to synchronize the access to all shared resource between
- * SW, FW and HW.
- *
- * hw: Struct containing variables accessed by shared code
- *
- ***************************************************************************/
-static s32 e1000_get_software_flag(struct e1000_hw *hw)
-{
- s32 timeout = PHY_CFG_TIMEOUT;
- u32 extcnf_ctrl;
-
- DEBUGFUNC("e1000_get_software_flag");
-
- if (hw->mac_type == e1000_ich8lan) {
- while (timeout) {
- extcnf_ctrl = er32(EXTCNF_CTRL);
- extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
- ew32(EXTCNF_CTRL, extcnf_ctrl);
-
- extcnf_ctrl = er32(EXTCNF_CTRL);
- if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
- break;
- mdelay(1);
- timeout--;
- }
-
- if (!timeout) {
- DEBUGOUT("FW or HW locks the resource too long.\n");
- return -E1000_ERR_CONFIG;
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/***************************************************************************
- *
- * Release software semaphore FLAG bit (SWFLAG).
- * SWFLAG is used to synchronize the access to all shared resource between
- * SW, FW and HW.
- *
- * hw: Struct containing variables accessed by shared code
- *
- ***************************************************************************/
-static void e1000_release_software_flag(struct e1000_hw *hw)
-{
- u32 extcnf_ctrl;
-
- DEBUGFUNC("e1000_release_software_flag");
-
- if (hw->mac_type == e1000_ich8lan) {
- extcnf_ctrl= er32(EXTCNF_CTRL);
- extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
- ew32(EXTCNF_CTRL, extcnf_ctrl);
- }
-
- return;
-}
-
-/******************************************************************************
- * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
- * register.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-static s32 e1000_read_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
-{
- s32 error = E1000_SUCCESS;
- u32 flash_bank = 0;
- u32 act_offset = 0;
- u32 bank_offset = 0;
- u16 word = 0;
- u16 i = 0;
-
- /* We need to know which is the valid flash bank. In the event
- * that we didn't allocate eeprom_shadow_ram, we may not be
- * managing flash_bank. So it cannot be trusted and needs
- * to be updated with each read.
- */
- /* Value of bit 22 corresponds to the flash bank we're on. */
- flash_bank = (er32(EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
-
- /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
- bank_offset = flash_bank * (hw->flash_bank_size * 2);
-
- error = e1000_get_software_flag(hw);
- if (error != E1000_SUCCESS)
- return error;
-
- for (i = 0; i < words; i++) {
- if (hw->eeprom_shadow_ram != NULL &&
- hw->eeprom_shadow_ram[offset+i].modified) {
- data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
- } else {
- /* The NVM part needs a byte offset, hence * 2 */
- act_offset = bank_offset + ((offset + i) * 2);
- error = e1000_read_ich8_word(hw, act_offset, &word);
- if (error != E1000_SUCCESS)
- break;
- data[i] = word;
- }
- }
-
- e1000_release_software_flag(hw);
-
- return error;
-}
-
-/******************************************************************************
- * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
- * register. Actually, writes are written to the shadow ram cache in the hw
- * structure hw->e1000_shadow_ram. e1000_commit_shadow_ram flushes this to
- * the NVM, which occurs when the NVM checksum is updated.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to write
- * words - number of words to write
- * data - words to write to the EEPROM
- *****************************************************************************/
-static s32 e1000_write_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
-{
- u32 i = 0;
- s32 error = E1000_SUCCESS;
-
- error = e1000_get_software_flag(hw);
- if (error != E1000_SUCCESS)
- return error;
-
- /* A driver can write to the NVM only if it has eeprom_shadow_ram
- * allocated. Subsequent reads to the modified words are read from
- * this cached structure as well. Writes will only go into this
- * cached structure unless it's followed by a call to
- * e1000_update_eeprom_checksum() where it will commit the changes
- * and clear the "modified" field.
- */
- if (hw->eeprom_shadow_ram != NULL) {
- for (i = 0; i < words; i++) {
- if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
- hw->eeprom_shadow_ram[offset+i].modified = true;
- hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
- } else {
- error = -E1000_ERR_EEPROM;
- break;
- }
- }
- } else {
- /* Drivers have the option to not allocate eeprom_shadow_ram as long
- * as they don't perform any NVM writes. An attempt in doing so
- * will result in this error.
- */
- error = -E1000_ERR_EEPROM;
- }
-
- e1000_release_software_flag(hw);
-
- return error;
-}
-
-/******************************************************************************
- * This function does initial flash setup so that a new read/write/erase cycle
- * can be started.
- *
- * hw - The pointer to the hw structure
- ****************************************************************************/
-static s32 e1000_ich8_cycle_init(struct e1000_hw *hw)
-{
- union ich8_hws_flash_status hsfsts;
- s32 error = E1000_ERR_EEPROM;
- s32 i = 0;
-
- DEBUGFUNC("e1000_ich8_cycle_init");
-
- hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
-
- /* May be check the Flash Des Valid bit in Hw status */
- if (hsfsts.hsf_status.fldesvalid == 0) {
- DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.");
- return error;
- }
-
- /* Clear FCERR in Hw status by writing 1 */
- /* Clear DAEL in Hw status by writing a 1 */
- hsfsts.hsf_status.flcerr = 1;
- hsfsts.hsf_status.dael = 1;
-
- E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
-
- /* Either we should have a hardware SPI cycle in progress bit to check
- * against, in order to start a new cycle or FDONE bit should be changed
- * in the hardware so that it is 1 after harware reset, which can then be
- * used as an indication whether a cycle is in progress or has been
- * completed .. we should also have some software semaphore mechanism to
- * guard FDONE or the cycle in progress bit so that two threads access to
- * those bits can be sequentiallized or a way so that 2 threads dont
- * start the cycle at the same time */
-
- if (hsfsts.hsf_status.flcinprog == 0) {
- /* There is no cycle running at present, so we can start a cycle */
- /* Begin by setting Flash Cycle Done. */
- hsfsts.hsf_status.flcdone = 1;
- E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
- error = E1000_SUCCESS;
- } else {
- /* otherwise poll for sometime so the current cycle has a chance
- * to end before giving up. */
- for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
- hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcinprog == 0) {
- error = E1000_SUCCESS;
- break;
- }
- udelay(1);
- }
- if (error == E1000_SUCCESS) {
- /* Successful in waiting for previous cycle to timeout,
- * now set the Flash Cycle Done. */
- hsfsts.hsf_status.flcdone = 1;
- E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
- } else {
- DEBUGOUT("Flash controller busy, cannot get access");
- }
- }
- return error;
-}
-
-/******************************************************************************
- * This function starts a flash cycle and waits for its completion
- *
- * hw - The pointer to the hw structure
- ****************************************************************************/
-static s32 e1000_ich8_flash_cycle(struct e1000_hw *hw, u32 timeout)
-{
- union ich8_hws_flash_ctrl hsflctl;
- union ich8_hws_flash_status hsfsts;
- s32 error = E1000_ERR_EEPROM;
- u32 i = 0;
-
- /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
- hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
- hsflctl.hsf_ctrl.flcgo = 1;
- E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
-
- /* wait till FDONE bit is set to 1 */
- do {
- hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcdone == 1)
- break;
- udelay(1);
- i++;
- } while (i < timeout);
- if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
- error = E1000_SUCCESS;
- }
- return error;
-}
-
-/******************************************************************************
- * Reads a byte or word from the NVM using the ICH8 flash access registers.
- *
- * hw - The pointer to the hw structure
- * index - The index of the byte or word to read.
- * size - Size of data to read, 1=byte 2=word
- * data - Pointer to the word to store the value read.
- *****************************************************************************/
-static s32 e1000_read_ich8_data(struct e1000_hw *hw, u32 index, u32 size,
- u16 *data)
-{
- union ich8_hws_flash_status hsfsts;
- union ich8_hws_flash_ctrl hsflctl;
- u32 flash_linear_address;
- u32 flash_data = 0;
- s32 error = -E1000_ERR_EEPROM;
- s32 count = 0;
-
- DEBUGFUNC("e1000_read_ich8_data");
-
- if (size < 1 || size > 2 || data == NULL ||
- index > ICH_FLASH_LINEAR_ADDR_MASK)
- return error;
-
- flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
- hw->flash_base_addr;
-
- do {
- udelay(1);
- /* Steps */
- error = e1000_ich8_cycle_init(hw);
- if (error != E1000_SUCCESS)
- break;
-
- hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
- /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
- hsflctl.hsf_ctrl.fldbcount = size - 1;
- hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
- E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
-
- /* Write the last 24 bits of index into Flash Linear address field in
- * Flash Address */
- /* TODO: TBD maybe check the index against the size of flash */
-
- E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
-
- error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT);
-
- /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
- * sequence a few more times, else read in (shift in) the Flash Data0,
- * the order is least significant byte first msb to lsb */
- if (error == E1000_SUCCESS) {
- flash_data = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0);
- if (size == 1) {
- *data = (u8)(flash_data & 0x000000FF);
- } else if (size == 2) {
- *data = (u16)(flash_data & 0x0000FFFF);
- }
- break;
- } else {
- /* If we've gotten here, then things are probably completely hosed,
- * but if the error condition is detected, it won't hurt to give
- * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
- */
- hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcerr == 1) {
- /* Repeat for some time before giving up. */
- continue;
- } else if (hsfsts.hsf_status.flcdone == 0) {
- DEBUGOUT("Timeout error - flash cycle did not complete.");
- break;
- }
- }
- } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
-
- return error;
-}
-
-/******************************************************************************
- * Writes One /two bytes to the NVM using the ICH8 flash access registers.
- *
- * hw - The pointer to the hw structure
- * index - The index of the byte/word to read.
- * size - Size of data to read, 1=byte 2=word
- * data - The byte(s) to write to the NVM.
- *****************************************************************************/
-static s32 e1000_write_ich8_data(struct e1000_hw *hw, u32 index, u32 size,
- u16 data)
-{
- union ich8_hws_flash_status hsfsts;
- union ich8_hws_flash_ctrl hsflctl;
- u32 flash_linear_address;
- u32 flash_data = 0;
- s32 error = -E1000_ERR_EEPROM;
- s32 count = 0;
-
- DEBUGFUNC("e1000_write_ich8_data");
-
- if (size < 1 || size > 2 || data > size * 0xff ||
- index > ICH_FLASH_LINEAR_ADDR_MASK)
- return error;
-
- flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
- hw->flash_base_addr;
-
- do {
- udelay(1);
- /* Steps */
- error = e1000_ich8_cycle_init(hw);
- if (error != E1000_SUCCESS)
- break;
-
- hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
- /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
- hsflctl.hsf_ctrl.fldbcount = size -1;
- hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
- E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
-
- /* Write the last 24 bits of index into Flash Linear address field in
- * Flash Address */
- E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
-
- if (size == 1)
- flash_data = (u32)data & 0x00FF;
- else
- flash_data = (u32)data;
-
- E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
-
- /* check if FCERR is set to 1 , if set to 1, clear it and try the whole
- * sequence a few more times else done */
- error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT);
- if (error == E1000_SUCCESS) {
- break;
- } else {
- /* If we're here, then things are most likely completely hosed,
- * but if the error condition is detected, it won't hurt to give
- * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
- */
- hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcerr == 1) {
- /* Repeat for some time before giving up. */
- continue;
- } else if (hsfsts.hsf_status.flcdone == 0) {
- DEBUGOUT("Timeout error - flash cycle did not complete.");
- break;
- }
- }
- } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
-
- return error;
-}
-
-/******************************************************************************
- * Reads a single byte from the NVM using the ICH8 flash access registers.
- *
- * hw - pointer to e1000_hw structure
- * index - The index of the byte to read.
- * data - Pointer to a byte to store the value read.
- *****************************************************************************/
-static s32 e1000_read_ich8_byte(struct e1000_hw *hw, u32 index, u8 *data)
-{
- s32 status = E1000_SUCCESS;
- u16 word = 0;
-
- status = e1000_read_ich8_data(hw, index, 1, &word);
- if (status == E1000_SUCCESS) {
- *data = (u8)word;
- }
-
- return status;
-}
-
-/******************************************************************************
- * Writes a single byte to the NVM using the ICH8 flash access registers.
- * Performs verification by reading back the value and then going through
- * a retry algorithm before giving up.
- *
- * hw - pointer to e1000_hw structure
- * index - The index of the byte to write.
- * byte - The byte to write to the NVM.
- *****************************************************************************/
-static s32 e1000_verify_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 byte)
-{
- s32 error = E1000_SUCCESS;
- s32 program_retries = 0;
-
- DEBUGOUT2("Byte := %2.2X Offset := %d\n", byte, index);
-
- error = e1000_write_ich8_byte(hw, index, byte);
-
- if (error != E1000_SUCCESS) {
- for (program_retries = 0; program_retries < 100; program_retries++) {
- DEBUGOUT2("Retrying \t Byte := %2.2X Offset := %d\n", byte, index);
- error = e1000_write_ich8_byte(hw, index, byte);
- udelay(100);
- if (error == E1000_SUCCESS)
- break;
- }
- }
-
- if (program_retries == 100)
- error = E1000_ERR_EEPROM;
-
- return error;
-}
-
-/******************************************************************************
- * Writes a single byte to the NVM using the ICH8 flash access registers.
- *
- * hw - pointer to e1000_hw structure
- * index - The index of the byte to read.
- * data - The byte to write to the NVM.
- *****************************************************************************/
-static s32 e1000_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 data)
-{
- s32 status = E1000_SUCCESS;
- u16 word = (u16)data;
-
- status = e1000_write_ich8_data(hw, index, 1, word);
-
- return status;
-}
-
-/******************************************************************************
- * Reads a word from the NVM using the ICH8 flash access registers.
- *
- * hw - pointer to e1000_hw structure
- * index - The starting byte index of the word to read.
- * data - Pointer to a word to store the value read.
- *****************************************************************************/
-static s32 e1000_read_ich8_word(struct e1000_hw *hw, u32 index, u16 *data)
-{
- s32 status = E1000_SUCCESS;
- status = e1000_read_ich8_data(hw, index, 2, data);
- return status;
-}
-
-/******************************************************************************
- * Erases the bank specified. Each bank may be a 4, 8 or 64k block. Banks are 0
- * based.
- *
- * hw - pointer to e1000_hw structure
- * bank - 0 for first bank, 1 for second bank
- *
- * Note that this function may actually erase as much as 8 or 64 KBytes. The
- * amount of NVM used in each bank is a *minimum* of 4 KBytes, but in fact the
- * bank size may be 4, 8 or 64 KBytes
- *****************************************************************************/
-static s32 e1000_erase_ich8_4k_segment(struct e1000_hw *hw, u32 bank)
-{
- union ich8_hws_flash_status hsfsts;
- union ich8_hws_flash_ctrl hsflctl;
- u32 flash_linear_address;
- s32 count = 0;
- s32 error = E1000_ERR_EEPROM;
- s32 iteration;
- s32 sub_sector_size = 0;
- s32 bank_size;
- s32 j = 0;
- s32 error_flag = 0;
-
- hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
-
- /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
- /* 00: The Hw sector is 256 bytes, hence we need to erase 16
- * consecutive sectors. The start index for the nth Hw sector can be
- * calculated as bank * 4096 + n * 256
- * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
- * The start index for the nth Hw sector can be calculated
- * as bank * 4096
- * 10: The HW sector is 8K bytes
- * 11: The Hw sector size is 64K bytes */
- if (hsfsts.hsf_status.berasesz == 0x0) {
- /* Hw sector size 256 */
- sub_sector_size = ICH_FLASH_SEG_SIZE_256;
- bank_size = ICH_FLASH_SECTOR_SIZE;
- iteration = ICH_FLASH_SECTOR_SIZE / ICH_FLASH_SEG_SIZE_256;
- } else if (hsfsts.hsf_status.berasesz == 0x1) {
- bank_size = ICH_FLASH_SEG_SIZE_4K;
- iteration = 1;
- } else if (hsfsts.hsf_status.berasesz == 0x3) {
- bank_size = ICH_FLASH_SEG_SIZE_64K;
- iteration = 1;
- } else {
- return error;
- }
-
- for (j = 0; j < iteration ; j++) {
- do {
- count++;
- /* Steps */
- error = e1000_ich8_cycle_init(hw);
- if (error != E1000_SUCCESS) {
- error_flag = 1;
- break;
- }
-
- /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
- * Control */
- hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
- hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
- E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
-
- /* Write the last 24 bits of an index within the block into Flash
- * Linear address field in Flash Address. This probably needs to
- * be calculated here based off the on-chip erase sector size and
- * the software bank size (4, 8 or 64 KBytes) */
- flash_linear_address = bank * bank_size + j * sub_sector_size;
- flash_linear_address += hw->flash_base_addr;
- flash_linear_address &= ICH_FLASH_LINEAR_ADDR_MASK;
-
- E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
-
- error = e1000_ich8_flash_cycle(hw, ICH_FLASH_ERASE_TIMEOUT);
- /* Check if FCERR is set to 1. If 1, clear it and try the whole
- * sequence a few more times else Done */
- if (error == E1000_SUCCESS) {
- break;
- } else {
- hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcerr == 1) {
- /* repeat for some time before giving up */
- continue;
- } else if (hsfsts.hsf_status.flcdone == 0) {
- error_flag = 1;
- break;
- }
- }
- } while ((count < ICH_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
- if (error_flag == 1)
- break;
- }
- if (error_flag != 1)
- error = E1000_SUCCESS;
- return error;
-}
-
-static s32 e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
- u32 cnf_base_addr,
- u32 cnf_size)
-{
- u32 ret_val = E1000_SUCCESS;
- u16 word_addr, reg_data, reg_addr;
- u16 i;
-
- /* cnf_base_addr is in DWORD */
- word_addr = (u16)(cnf_base_addr << 1);
-
- /* cnf_size is returned in size of dwords */
- for (i = 0; i < cnf_size; i++) {
- ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, &reg_data);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, &reg_addr);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_get_software_flag(hw);
- if (ret_val != E1000_SUCCESS)
- return ret_val;
-
- ret_val = e1000_write_phy_reg_ex(hw, (u32)reg_addr, reg_data);
-
- e1000_release_software_flag(hw);
- }
-
- return ret_val;
-}
-
-
-/******************************************************************************
- * This function initializes the PHY from the NVM on ICH8 platforms. This
- * is needed due to an issue where the NVM configuration is not properly
- * autoloaded after power transitions. Therefore, after each PHY reset, we
- * will load the configuration data out of the NVM manually.
- *
- * hw: Struct containing variables accessed by shared code
- *****************************************************************************/
-static s32 e1000_init_lcd_from_nvm(struct e1000_hw *hw)
-{
- u32 reg_data, cnf_base_addr, cnf_size, ret_val, loop;
-
- if (hw->phy_type != e1000_phy_igp_3)
- return E1000_SUCCESS;
-
- /* Check if SW needs configure the PHY */
- reg_data = er32(FEXTNVM);
- if (!(reg_data & FEXTNVM_SW_CONFIG))
- return E1000_SUCCESS;
-
- /* Wait for basic configuration completes before proceeding*/
- loop = 0;
- do {
- reg_data = er32(STATUS) & E1000_STATUS_LAN_INIT_DONE;
- udelay(100);
- loop++;
- } while ((!reg_data) && (loop < 50));
-
- /* Clear the Init Done bit for the next init event */
- reg_data = er32(STATUS);
- reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
- ew32(STATUS, reg_data);
-
- /* Make sure HW does not configure LCD from PHY extended configuration
- before SW configuration */
- reg_data = er32(EXTCNF_CTRL);
- if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
- reg_data = er32(EXTCNF_SIZE);
- cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
- cnf_size >>= 16;
- if (cnf_size) {
- reg_data = er32(EXTCNF_CTRL);
- cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
- /* cnf_base_addr is in DWORD */
- cnf_base_addr >>= 16;
-
- /* Configure LCD from extended configuration region. */
- ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
- cnf_size);
- if (ret_val)
- return ret_val;
- }
- }
-
- return E1000_SUCCESS;
+ DEBUGFUNC("e1000_get_phy_cfg_done");
+ mdelay(10);
+ return E1000_SUCCESS;
}
-
diff --git a/drivers/net/e1000/e1000_hw.h b/drivers/net/e1000/e1000_hw.h
index a8866bdbb67..9acfddb0daf 100644
--- a/drivers/net/e1000/e1000_hw.h
+++ b/drivers/net/e1000/e1000_hw.h
@@ -35,7 +35,6 @@
#include "e1000_osdep.h"
-
/* Forward declarations of structures used by the shared code */
struct e1000_hw;
struct e1000_hw_stats;
@@ -43,252 +42,231 @@ struct e1000_hw_stats;
/* Enumerated types specific to the e1000 hardware */
/* Media Access Controlers */
typedef enum {
- e1000_undefined = 0,
- e1000_82542_rev2_0,
- e1000_82542_rev2_1,
- e1000_82543,
- e1000_82544,
- e1000_82540,
- e1000_82545,
- e1000_82545_rev_3,
- e1000_82546,
- e1000_82546_rev_3,
- e1000_82541,
- e1000_82541_rev_2,
- e1000_82547,
- e1000_82547_rev_2,
- e1000_82571,
- e1000_82572,
- e1000_82573,
- e1000_80003es2lan,
- e1000_ich8lan,
- e1000_num_macs
+ e1000_undefined = 0,
+ e1000_82542_rev2_0,
+ e1000_82542_rev2_1,
+ e1000_82543,
+ e1000_82544,
+ e1000_82540,
+ e1000_82545,
+ e1000_82545_rev_3,
+ e1000_82546,
+ e1000_82546_rev_3,
+ e1000_82541,
+ e1000_82541_rev_2,
+ e1000_82547,
+ e1000_82547_rev_2,
+ e1000_num_macs
} e1000_mac_type;
typedef enum {
- e1000_eeprom_uninitialized = 0,
- e1000_eeprom_spi,
- e1000_eeprom_microwire,
- e1000_eeprom_flash,
- e1000_eeprom_ich8,
- e1000_eeprom_none, /* No NVM support */
- e1000_num_eeprom_types
+ e1000_eeprom_uninitialized = 0,
+ e1000_eeprom_spi,
+ e1000_eeprom_microwire,
+ e1000_eeprom_flash,
+ e1000_eeprom_none, /* No NVM support */
+ e1000_num_eeprom_types
} e1000_eeprom_type;
/* Media Types */
typedef enum {
- e1000_media_type_copper = 0,
- e1000_media_type_fiber = 1,
- e1000_media_type_internal_serdes = 2,
- e1000_num_media_types
+ e1000_media_type_copper = 0,
+ e1000_media_type_fiber = 1,
+ e1000_media_type_internal_serdes = 2,
+ e1000_num_media_types
} e1000_media_type;
typedef enum {
- e1000_10_half = 0,
- e1000_10_full = 1,
- e1000_100_half = 2,
- e1000_100_full = 3
+ e1000_10_half = 0,
+ e1000_10_full = 1,
+ e1000_100_half = 2,
+ e1000_100_full = 3
} e1000_speed_duplex_type;
/* Flow Control Settings */
typedef enum {
- E1000_FC_NONE = 0,
- E1000_FC_RX_PAUSE = 1,
- E1000_FC_TX_PAUSE = 2,
- E1000_FC_FULL = 3,
- E1000_FC_DEFAULT = 0xFF
+ E1000_FC_NONE = 0,
+ E1000_FC_RX_PAUSE = 1,
+ E1000_FC_TX_PAUSE = 2,
+ E1000_FC_FULL = 3,
+ E1000_FC_DEFAULT = 0xFF
} e1000_fc_type;
struct e1000_shadow_ram {
- u16 eeprom_word;
- bool modified;
+ u16 eeprom_word;
+ bool modified;
};
/* PCI bus types */
typedef enum {
- e1000_bus_type_unknown = 0,
- e1000_bus_type_pci,
- e1000_bus_type_pcix,
- e1000_bus_type_pci_express,
- e1000_bus_type_reserved
+ e1000_bus_type_unknown = 0,
+ e1000_bus_type_pci,
+ e1000_bus_type_pcix,
+ e1000_bus_type_reserved
} e1000_bus_type;
/* PCI bus speeds */
typedef enum {
- e1000_bus_speed_unknown = 0,
- e1000_bus_speed_33,
- e1000_bus_speed_66,
- e1000_bus_speed_100,
- e1000_bus_speed_120,
- e1000_bus_speed_133,
- e1000_bus_speed_2500,
- e1000_bus_speed_reserved
+ e1000_bus_speed_unknown = 0,
+ e1000_bus_speed_33,
+ e1000_bus_speed_66,
+ e1000_bus_speed_100,
+ e1000_bus_speed_120,
+ e1000_bus_speed_133,
+ e1000_bus_speed_reserved
} e1000_bus_speed;
/* PCI bus widths */
typedef enum {
- e1000_bus_width_unknown = 0,
- /* These PCIe values should literally match the possible return values
- * from config space */
- e1000_bus_width_pciex_1 = 1,
- e1000_bus_width_pciex_2 = 2,
- e1000_bus_width_pciex_4 = 4,
- e1000_bus_width_32,
- e1000_bus_width_64,
- e1000_bus_width_reserved
+ e1000_bus_width_unknown = 0,
+ e1000_bus_width_32,
+ e1000_bus_width_64,
+ e1000_bus_width_reserved
} e1000_bus_width;
/* PHY status info structure and supporting enums */
typedef enum {
- e1000_cable_length_50 = 0,
- e1000_cable_length_50_80,
- e1000_cable_length_80_110,
- e1000_cable_length_110_140,
- e1000_cable_length_140,
- e1000_cable_length_undefined = 0xFF
+ e1000_cable_length_50 = 0,
+ e1000_cable_length_50_80,
+ e1000_cable_length_80_110,
+ e1000_cable_length_110_140,
+ e1000_cable_length_140,
+ e1000_cable_length_undefined = 0xFF
} e1000_cable_length;
typedef enum {
- e1000_gg_cable_length_60 = 0,
- e1000_gg_cable_length_60_115 = 1,
- e1000_gg_cable_length_115_150 = 2,
- e1000_gg_cable_length_150 = 4
+ e1000_gg_cable_length_60 = 0,
+ e1000_gg_cable_length_60_115 = 1,
+ e1000_gg_cable_length_115_150 = 2,
+ e1000_gg_cable_length_150 = 4
} e1000_gg_cable_length;
typedef enum {
- e1000_igp_cable_length_10 = 10,
- e1000_igp_cable_length_20 = 20,
- e1000_igp_cable_length_30 = 30,
- e1000_igp_cable_length_40 = 40,
- e1000_igp_cable_length_50 = 50,
- e1000_igp_cable_length_60 = 60,
- e1000_igp_cable_length_70 = 70,
- e1000_igp_cable_length_80 = 80,
- e1000_igp_cable_length_90 = 90,
- e1000_igp_cable_length_100 = 100,
- e1000_igp_cable_length_110 = 110,
- e1000_igp_cable_length_115 = 115,
- e1000_igp_cable_length_120 = 120,
- e1000_igp_cable_length_130 = 130,
- e1000_igp_cable_length_140 = 140,
- e1000_igp_cable_length_150 = 150,
- e1000_igp_cable_length_160 = 160,
- e1000_igp_cable_length_170 = 170,
- e1000_igp_cable_length_180 = 180
+ e1000_igp_cable_length_10 = 10,
+ e1000_igp_cable_length_20 = 20,
+ e1000_igp_cable_length_30 = 30,
+ e1000_igp_cable_length_40 = 40,
+ e1000_igp_cable_length_50 = 50,
+ e1000_igp_cable_length_60 = 60,
+ e1000_igp_cable_length_70 = 70,
+ e1000_igp_cable_length_80 = 80,
+ e1000_igp_cable_length_90 = 90,
+ e1000_igp_cable_length_100 = 100,
+ e1000_igp_cable_length_110 = 110,
+ e1000_igp_cable_length_115 = 115,
+ e1000_igp_cable_length_120 = 120,
+ e1000_igp_cable_length_130 = 130,
+ e1000_igp_cable_length_140 = 140,
+ e1000_igp_cable_length_150 = 150,
+ e1000_igp_cable_length_160 = 160,
+ e1000_igp_cable_length_170 = 170,
+ e1000_igp_cable_length_180 = 180
} e1000_igp_cable_length;
typedef enum {
- e1000_10bt_ext_dist_enable_normal = 0,
- e1000_10bt_ext_dist_enable_lower,
- e1000_10bt_ext_dist_enable_undefined = 0xFF
+ e1000_10bt_ext_dist_enable_normal = 0,
+ e1000_10bt_ext_dist_enable_lower,
+ e1000_10bt_ext_dist_enable_undefined = 0xFF
} e1000_10bt_ext_dist_enable;
typedef enum {
- e1000_rev_polarity_normal = 0,
- e1000_rev_polarity_reversed,
- e1000_rev_polarity_undefined = 0xFF
+ e1000_rev_polarity_normal = 0,
+ e1000_rev_polarity_reversed,
+ e1000_rev_polarity_undefined = 0xFF
} e1000_rev_polarity;
typedef enum {
- e1000_downshift_normal = 0,
- e1000_downshift_activated,
- e1000_downshift_undefined = 0xFF
+ e1000_downshift_normal = 0,
+ e1000_downshift_activated,
+ e1000_downshift_undefined = 0xFF
} e1000_downshift;
typedef enum {
- e1000_smart_speed_default = 0,
- e1000_smart_speed_on,
- e1000_smart_speed_off
+ e1000_smart_speed_default = 0,
+ e1000_smart_speed_on,
+ e1000_smart_speed_off
} e1000_smart_speed;
typedef enum {
- e1000_polarity_reversal_enabled = 0,
- e1000_polarity_reversal_disabled,
- e1000_polarity_reversal_undefined = 0xFF
+ e1000_polarity_reversal_enabled = 0,
+ e1000_polarity_reversal_disabled,
+ e1000_polarity_reversal_undefined = 0xFF
} e1000_polarity_reversal;
typedef enum {
- e1000_auto_x_mode_manual_mdi = 0,
- e1000_auto_x_mode_manual_mdix,
- e1000_auto_x_mode_auto1,
- e1000_auto_x_mode_auto2,
- e1000_auto_x_mode_undefined = 0xFF
+ e1000_auto_x_mode_manual_mdi = 0,
+ e1000_auto_x_mode_manual_mdix,
+ e1000_auto_x_mode_auto1,
+ e1000_auto_x_mode_auto2,
+ e1000_auto_x_mode_undefined = 0xFF
} e1000_auto_x_mode;
typedef enum {
- e1000_1000t_rx_status_not_ok = 0,
- e1000_1000t_rx_status_ok,
- e1000_1000t_rx_status_undefined = 0xFF
+ e1000_1000t_rx_status_not_ok = 0,
+ e1000_1000t_rx_status_ok,
+ e1000_1000t_rx_status_undefined = 0xFF
} e1000_1000t_rx_status;
typedef enum {
e1000_phy_m88 = 0,
e1000_phy_igp,
- e1000_phy_igp_2,
- e1000_phy_gg82563,
- e1000_phy_igp_3,
- e1000_phy_ife,
e1000_phy_undefined = 0xFF
} e1000_phy_type;
typedef enum {
- e1000_ms_hw_default = 0,
- e1000_ms_force_master,
- e1000_ms_force_slave,
- e1000_ms_auto
+ e1000_ms_hw_default = 0,
+ e1000_ms_force_master,
+ e1000_ms_force_slave,
+ e1000_ms_auto
} e1000_ms_type;
typedef enum {
- e1000_ffe_config_enabled = 0,
- e1000_ffe_config_active,
- e1000_ffe_config_blocked
+ e1000_ffe_config_enabled = 0,
+ e1000_ffe_config_active,
+ e1000_ffe_config_blocked
} e1000_ffe_config;
typedef enum {
- e1000_dsp_config_disabled = 0,
- e1000_dsp_config_enabled,
- e1000_dsp_config_activated,
- e1000_dsp_config_undefined = 0xFF
+ e1000_dsp_config_disabled = 0,
+ e1000_dsp_config_enabled,
+ e1000_dsp_config_activated,
+ e1000_dsp_config_undefined = 0xFF
} e1000_dsp_config;
struct e1000_phy_info {
- e1000_cable_length cable_length;
- e1000_10bt_ext_dist_enable extended_10bt_distance;
- e1000_rev_polarity cable_polarity;
- e1000_downshift downshift;
- e1000_polarity_reversal polarity_correction;
- e1000_auto_x_mode mdix_mode;
- e1000_1000t_rx_status local_rx;
- e1000_1000t_rx_status remote_rx;
+ e1000_cable_length cable_length;
+ e1000_10bt_ext_dist_enable extended_10bt_distance;
+ e1000_rev_polarity cable_polarity;
+ e1000_downshift downshift;
+ e1000_polarity_reversal polarity_correction;
+ e1000_auto_x_mode mdix_mode;
+ e1000_1000t_rx_status local_rx;
+ e1000_1000t_rx_status remote_rx;
};
struct e1000_phy_stats {
- u32 idle_errors;
- u32 receive_errors;
+ u32 idle_errors;
+ u32 receive_errors;
};
struct e1000_eeprom_info {
- e1000_eeprom_type type;
- u16 word_size;
- u16 opcode_bits;
- u16 address_bits;
- u16 delay_usec;
- u16 page_size;
- bool use_eerd;
- bool use_eewr;
+ e1000_eeprom_type type;
+ u16 word_size;
+ u16 opcode_bits;
+ u16 address_bits;
+ u16 delay_usec;
+ u16 page_size;
};
/* Flex ASF Information */
#define E1000_HOST_IF_MAX_SIZE 2048
typedef enum {
- e1000_byte_align = 0,
- e1000_word_align = 1,
- e1000_dword_align = 2
+ e1000_byte_align = 0,
+ e1000_word_align = 1,
+ e1000_dword_align = 2
} e1000_align_type;
-
-
/* Error Codes */
#define E1000_SUCCESS 0
#define E1000_ERR_EEPROM 1
@@ -301,7 +279,6 @@ typedef enum {
#define E1000_ERR_MASTER_REQUESTS_PENDING 10
#define E1000_ERR_HOST_INTERFACE_COMMAND 11
#define E1000_BLK_PHY_RESET 12
-#define E1000_ERR_SWFW_SYNC 13
#define E1000_BYTE_SWAP_WORD(_value) ((((_value) & 0x00ff) << 8) | \
(((_value) & 0xff00) >> 8))
@@ -318,19 +295,17 @@ s32 e1000_setup_link(struct e1000_hw *hw);
s32 e1000_phy_setup_autoneg(struct e1000_hw *hw);
void e1000_config_collision_dist(struct e1000_hw *hw);
s32 e1000_check_for_link(struct e1000_hw *hw);
-s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex);
+s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 * speed, u16 * duplex);
s32 e1000_force_mac_fc(struct e1000_hw *hw);
/* PHY */
-s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data);
+s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 * phy_data);
s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 data);
s32 e1000_phy_hw_reset(struct e1000_hw *hw);
s32 e1000_phy_reset(struct e1000_hw *hw);
s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
s32 e1000_validate_mdi_setting(struct e1000_hw *hw);
-void e1000_phy_powerdown_workaround(struct e1000_hw *hw);
-
/* EEPROM Functions */
s32 e1000_init_eeprom_params(struct e1000_hw *hw);
@@ -338,66 +313,63 @@ s32 e1000_init_eeprom_params(struct e1000_hw *hw);
u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw);
#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64
-#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8 /* Host Interface data length */
+#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8 /* Host Interface data length */
-#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10 /* Time in ms to process MNG command */
-#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 /* Cookie offset */
-#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 /* Cookie length */
+#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10 /* Time in ms to process MNG command */
+#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 /* Cookie offset */
+#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 /* Cookie length */
#define E1000_MNG_IAMT_MODE 0x3
#define E1000_MNG_ICH_IAMT_MODE 0x2
-#define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management Technology signature */
+#define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management Technology signature */
-#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1 /* DHCP parsing enabled */
-#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT 0x2 /* DHCP parsing enabled */
+#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1 /* DHCP parsing enabled */
+#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT 0x2 /* DHCP parsing enabled */
#define E1000_VFTA_ENTRY_SHIFT 0x5
#define E1000_VFTA_ENTRY_MASK 0x7F
#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F
struct e1000_host_mng_command_header {
- u8 command_id;
- u8 checksum;
- u16 reserved1;
- u16 reserved2;
- u16 command_length;
+ u8 command_id;
+ u8 checksum;
+ u16 reserved1;
+ u16 reserved2;
+ u16 command_length;
};
struct e1000_host_mng_command_info {
- struct e1000_host_mng_command_header command_header; /* Command Head/Command Result Head has 4 bytes */
- u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH]; /* Command data can length 0..0x658*/
+ struct e1000_host_mng_command_header command_header; /* Command Head/Command Result Head has 4 bytes */
+ u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH]; /* Command data can length 0..0x658 */
};
#ifdef __BIG_ENDIAN
-struct e1000_host_mng_dhcp_cookie{
- u32 signature;
- u16 vlan_id;
- u8 reserved0;
- u8 status;
- u32 reserved1;
- u8 checksum;
- u8 reserved3;
- u16 reserved2;
+struct e1000_host_mng_dhcp_cookie {
+ u32 signature;
+ u16 vlan_id;
+ u8 reserved0;
+ u8 status;
+ u32 reserved1;
+ u8 checksum;
+ u8 reserved3;
+ u16 reserved2;
};
#else
-struct e1000_host_mng_dhcp_cookie{
- u32 signature;
- u8 status;
- u8 reserved0;
- u16 vlan_id;
- u32 reserved1;
- u16 reserved2;
- u8 reserved3;
- u8 checksum;
+struct e1000_host_mng_dhcp_cookie {
+ u32 signature;
+ u8 status;
+ u8 reserved0;
+ u16 vlan_id;
+ u32 reserved1;
+ u16 reserved2;
+ u8 reserved3;
+ u8 checksum;
};
#endif
-s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer,
- u16 length);
bool e1000_check_mng_mode(struct e1000_hw *hw);
-bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw);
-s32 e1000_read_eeprom(struct e1000_hw *hw, u16 reg, u16 words, u16 *data);
+s32 e1000_read_eeprom(struct e1000_hw *hw, u16 reg, u16 words, u16 * data);
s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw);
s32 e1000_update_eeprom_checksum(struct e1000_hw *hw);
-s32 e1000_write_eeprom(struct e1000_hw *hw, u16 reg, u16 words, u16 *data);
-s32 e1000_read_mac_addr(struct e1000_hw * hw);
+s32 e1000_write_eeprom(struct e1000_hw *hw, u16 reg, u16 words, u16 * data);
+s32 e1000_read_mac_addr(struct e1000_hw *hw);
/* Filters (multicast, vlan, receive) */
u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 * mc_addr);
@@ -417,18 +389,15 @@ s32 e1000_blink_led_start(struct e1000_hw *hw);
/* Everything else */
void e1000_reset_adaptive(struct e1000_hw *hw);
void e1000_update_adaptive(struct e1000_hw *hw);
-void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats, u32 frame_len, u8 * mac_addr);
+void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats,
+ u32 frame_len, u8 * mac_addr);
void e1000_get_bus_info(struct e1000_hw *hw);
void e1000_pci_set_mwi(struct e1000_hw *hw);
void e1000_pci_clear_mwi(struct e1000_hw *hw);
-s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value);
void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc);
int e1000_pcix_get_mmrbc(struct e1000_hw *hw);
/* Port I/O is only supported on 82544 and newer */
void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value);
-s32 e1000_disable_pciex_master(struct e1000_hw *hw);
-s32 e1000_check_phy_reset_block(struct e1000_hw *hw);
-
#define E1000_READ_REG_IO(a, reg) \
e1000_read_reg_io((a), E1000_##reg)
@@ -471,36 +440,7 @@ s32 e1000_check_phy_reset_block(struct e1000_hw *hw);
#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099
#define E1000_DEV_ID_82547EI 0x1019
#define E1000_DEV_ID_82547EI_MOBILE 0x101A
-#define E1000_DEV_ID_82571EB_COPPER 0x105E
-#define E1000_DEV_ID_82571EB_FIBER 0x105F
-#define E1000_DEV_ID_82571EB_SERDES 0x1060
-#define E1000_DEV_ID_82571EB_QUAD_COPPER 0x10A4
-#define E1000_DEV_ID_82571PT_QUAD_COPPER 0x10D5
-#define E1000_DEV_ID_82571EB_QUAD_FIBER 0x10A5
-#define E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE 0x10BC
-#define E1000_DEV_ID_82571EB_SERDES_DUAL 0x10D9
-#define E1000_DEV_ID_82571EB_SERDES_QUAD 0x10DA
-#define E1000_DEV_ID_82572EI_COPPER 0x107D
-#define E1000_DEV_ID_82572EI_FIBER 0x107E
-#define E1000_DEV_ID_82572EI_SERDES 0x107F
-#define E1000_DEV_ID_82572EI 0x10B9
-#define E1000_DEV_ID_82573E 0x108B
-#define E1000_DEV_ID_82573E_IAMT 0x108C
-#define E1000_DEV_ID_82573L 0x109A
#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5
-#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096
-#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098
-#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA
-#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB
-
-#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049
-#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A
-#define E1000_DEV_ID_ICH8_IGP_C 0x104B
-#define E1000_DEV_ID_ICH8_IFE 0x104C
-#define E1000_DEV_ID_ICH8_IFE_GT 0x10C4
-#define E1000_DEV_ID_ICH8_IFE_G 0x10C5
-#define E1000_DEV_ID_ICH8_IGP_M 0x104D
-
#define NODE_ADDRESS_SIZE 6
#define ETH_LENGTH_OF_ADDRESS 6
@@ -523,21 +463,20 @@ s32 e1000_check_phy_reset_block(struct e1000_hw *hw);
/* The sizes (in bytes) of a ethernet packet */
#define ENET_HEADER_SIZE 14
-#define MINIMUM_ETHERNET_FRAME_SIZE 64 /* With FCS */
+#define MINIMUM_ETHERNET_FRAME_SIZE 64 /* With FCS */
#define ETHERNET_FCS_SIZE 4
#define MINIMUM_ETHERNET_PACKET_SIZE \
(MINIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE)
#define CRC_LENGTH ETHERNET_FCS_SIZE
#define MAX_JUMBO_FRAME_SIZE 0x3F00
-
/* 802.1q VLAN Packet Sizes */
-#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMAed) */
+#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMAed) */
/* Ethertype field values */
-#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */
-#define ETHERNET_IP_TYPE 0x0800 /* IP packets */
-#define ETHERNET_ARP_TYPE 0x0806 /* Address Resolution Protocol (ARP) */
+#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */
+#define ETHERNET_IP_TYPE 0x0800 /* IP packets */
+#define ETHERNET_ARP_TYPE 0x0806 /* Address Resolution Protocol (ARP) */
/* Packet Header defines */
#define IP_PROTOCOL_TCP 6
@@ -567,15 +506,6 @@ s32 e1000_check_phy_reset_block(struct e1000_hw *hw);
E1000_IMS_RXSEQ | \
E1000_IMS_LSC)
-/* Additional interrupts need to be handled for e1000_ich8lan:
- DSW = The FW changed the status of the DISSW bit in FWSM
- PHYINT = The LAN connected device generates an interrupt
- EPRST = Manageability reset event */
-#define IMS_ICH8LAN_ENABLE_MASK (\
- E1000_IMS_DSW | \
- E1000_IMS_PHYINT | \
- E1000_IMS_EPRST)
-
/* Number of high/low register pairs in the RAR. The RAR (Receive Address
* Registers) holds the directed and multicast addresses that we monitor. We
* reserve one of these spots for our directed address, allowing us room for
@@ -583,100 +513,98 @@ s32 e1000_check_phy_reset_block(struct e1000_hw *hw);
*/
#define E1000_RAR_ENTRIES 15
-#define E1000_RAR_ENTRIES_ICH8LAN 6
-
#define MIN_NUMBER_OF_DESCRIPTORS 8
#define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8
/* Receive Descriptor */
struct e1000_rx_desc {
- __le64 buffer_addr; /* Address of the descriptor's data buffer */
- __le16 length; /* Length of data DMAed into data buffer */
- __le16 csum; /* Packet checksum */
- u8 status; /* Descriptor status */
- u8 errors; /* Descriptor Errors */
- __le16 special;
+ __le64 buffer_addr; /* Address of the descriptor's data buffer */
+ __le16 length; /* Length of data DMAed into data buffer */
+ __le16 csum; /* Packet checksum */
+ u8 status; /* Descriptor status */
+ u8 errors; /* Descriptor Errors */
+ __le16 special;
};
/* Receive Descriptor - Extended */
union e1000_rx_desc_extended {
- struct {
- __le64 buffer_addr;
- __le64 reserved;
- } read;
- struct {
- struct {
- __le32 mrq; /* Multiple Rx Queues */
- union {
- __le32 rss; /* RSS Hash */
- struct {
- __le16 ip_id; /* IP id */
- __le16 csum; /* Packet Checksum */
- } csum_ip;
- } hi_dword;
- } lower;
- struct {
- __le32 status_error; /* ext status/error */
- __le16 length;
- __le16 vlan; /* VLAN tag */
- } upper;
- } wb; /* writeback */
+ struct {
+ __le64 buffer_addr;
+ __le64 reserved;
+ } read;
+ struct {
+ struct {
+ __le32 mrq; /* Multiple Rx Queues */
+ union {
+ __le32 rss; /* RSS Hash */
+ struct {
+ __le16 ip_id; /* IP id */
+ __le16 csum; /* Packet Checksum */
+ } csum_ip;
+ } hi_dword;
+ } lower;
+ struct {
+ __le32 status_error; /* ext status/error */
+ __le16 length;
+ __le16 vlan; /* VLAN tag */
+ } upper;
+ } wb; /* writeback */
};
#define MAX_PS_BUFFERS 4
/* Receive Descriptor - Packet Split */
union e1000_rx_desc_packet_split {
- struct {
- /* one buffer for protocol header(s), three data buffers */
- __le64 buffer_addr[MAX_PS_BUFFERS];
- } read;
- struct {
- struct {
- __le32 mrq; /* Multiple Rx Queues */
- union {
- __le32 rss; /* RSS Hash */
- struct {
- __le16 ip_id; /* IP id */
- __le16 csum; /* Packet Checksum */
- } csum_ip;
- } hi_dword;
- } lower;
- struct {
- __le32 status_error; /* ext status/error */
- __le16 length0; /* length of buffer 0 */
- __le16 vlan; /* VLAN tag */
- } middle;
- struct {
- __le16 header_status;
- __le16 length[3]; /* length of buffers 1-3 */
- } upper;
- __le64 reserved;
- } wb; /* writeback */
+ struct {
+ /* one buffer for protocol header(s), three data buffers */
+ __le64 buffer_addr[MAX_PS_BUFFERS];
+ } read;
+ struct {
+ struct {
+ __le32 mrq; /* Multiple Rx Queues */
+ union {
+ __le32 rss; /* RSS Hash */
+ struct {
+ __le16 ip_id; /* IP id */
+ __le16 csum; /* Packet Checksum */
+ } csum_ip;
+ } hi_dword;
+ } lower;
+ struct {
+ __le32 status_error; /* ext status/error */
+ __le16 length0; /* length of buffer 0 */
+ __le16 vlan; /* VLAN tag */
+ } middle;
+ struct {
+ __le16 header_status;
+ __le16 length[3]; /* length of buffers 1-3 */
+ } upper;
+ __le64 reserved;
+ } wb; /* writeback */
};
-/* Receive Decriptor bit definitions */
-#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */
-#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */
-#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */
-#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */
-#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum caculated */
-#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */
-#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */
-#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */
-#define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */
-#define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */
-#define E1000_RXD_STAT_ACK 0x8000 /* ACK Packet indication */
-#define E1000_RXD_ERR_CE 0x01 /* CRC Error */
-#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */
-#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */
-#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */
-#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */
-#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */
-#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */
-#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */
-#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */
+/* Receive Descriptor bit definitions */
+#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */
+#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */
+#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */
+#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */
+#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */
+#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */
+#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */
+#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */
+#define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */
+#define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */
+#define E1000_RXD_STAT_ACK 0x8000 /* ACK Packet indication */
+#define E1000_RXD_ERR_CE 0x01 /* CRC Error */
+#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */
+#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */
+#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */
+#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */
+#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */
+#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */
+#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */
+#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */
#define E1000_RXD_SPC_PRI_SHIFT 13
-#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */
+#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */
#define E1000_RXD_SPC_CFI_SHIFT 12
#define E1000_RXDEXT_STATERR_CE 0x01000000
@@ -698,7 +626,6 @@ union e1000_rx_desc_packet_split {
E1000_RXD_ERR_CXE | \
E1000_RXD_ERR_RXE)
-
/* Same mask, but for extended and packet split descriptors */
#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
E1000_RXDEXT_STATERR_CE | \
@@ -707,152 +634,145 @@ union e1000_rx_desc_packet_split {
E1000_RXDEXT_STATERR_CXE | \
E1000_RXDEXT_STATERR_RXE)
-
/* Transmit Descriptor */
struct e1000_tx_desc {
- __le64 buffer_addr; /* Address of the descriptor's data buffer */
- union {
- __le32 data;
- struct {
- __le16 length; /* Data buffer length */
- u8 cso; /* Checksum offset */
- u8 cmd; /* Descriptor control */
- } flags;
- } lower;
- union {
- __le32 data;
- struct {
- u8 status; /* Descriptor status */
- u8 css; /* Checksum start */
- __le16 special;
- } fields;
- } upper;
+ __le64 buffer_addr; /* Address of the descriptor's data buffer */
+ union {
+ __le32 data;
+ struct {
+ __le16 length; /* Data buffer length */
+ u8 cso; /* Checksum offset */
+ u8 cmd; /* Descriptor control */
+ } flags;
+ } lower;
+ union {
+ __le32 data;
+ struct {
+ u8 status; /* Descriptor status */
+ u8 css; /* Checksum start */
+ __le16 special;
+ } fields;
+ } upper;
};
/* Transmit Descriptor bit definitions */
-#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */
-#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */
-#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
-#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
-#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */
-#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
-#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */
-#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */
-#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */
-#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */
-#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */
-#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */
-#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
-#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */
-#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */
-#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */
-#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */
-#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */
-#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */
-#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
+#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */
+#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */
+#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
+#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
+#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */
+#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
+#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */
+#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */
+#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */
+#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */
+#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */
+#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */
+#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
+#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */
+#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */
+#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */
+#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */
+#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */
+#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */
+#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
/* Offload Context Descriptor */
struct e1000_context_desc {
- union {
- __le32 ip_config;
- struct {
- u8 ipcss; /* IP checksum start */
- u8 ipcso; /* IP checksum offset */
- __le16 ipcse; /* IP checksum end */
- } ip_fields;
- } lower_setup;
- union {
- __le32 tcp_config;
- struct {
- u8 tucss; /* TCP checksum start */
- u8 tucso; /* TCP checksum offset */
- __le16 tucse; /* TCP checksum end */
- } tcp_fields;
- } upper_setup;
- __le32 cmd_and_length; /* */
- union {
- __le32 data;
- struct {
- u8 status; /* Descriptor status */
- u8 hdr_len; /* Header length */
- __le16 mss; /* Maximum segment size */
- } fields;
- } tcp_seg_setup;
+ union {
+ __le32 ip_config;
+ struct {
+ u8 ipcss; /* IP checksum start */
+ u8 ipcso; /* IP checksum offset */
+ __le16 ipcse; /* IP checksum end */
+ } ip_fields;
+ } lower_setup;
+ union {
+ __le32 tcp_config;
+ struct {
+ u8 tucss; /* TCP checksum start */
+ u8 tucso; /* TCP checksum offset */
+ __le16 tucse; /* TCP checksum end */
+ } tcp_fields;
+ } upper_setup;
+ __le32 cmd_and_length; /* */
+ union {
+ __le32 data;
+ struct {
+ u8 status; /* Descriptor status */
+ u8 hdr_len; /* Header length */
+ __le16 mss; /* Maximum segment size */
+ } fields;
+ } tcp_seg_setup;
};
/* Offload data descriptor */
struct e1000_data_desc {
- __le64 buffer_addr; /* Address of the descriptor's buffer address */
- union {
- __le32 data;
- struct {
- __le16 length; /* Data buffer length */
- u8 typ_len_ext; /* */
- u8 cmd; /* */
- } flags;
- } lower;
- union {
- __le32 data;
- struct {
- u8 status; /* Descriptor status */
- u8 popts; /* Packet Options */
- __le16 special; /* */
- } fields;
- } upper;
+ __le64 buffer_addr; /* Address of the descriptor's buffer address */
+ union {
+ __le32 data;
+ struct {
+ __le16 length; /* Data buffer length */
+ u8 typ_len_ext; /* */
+ u8 cmd; /* */
+ } flags;
+ } lower;
+ union {
+ __le32 data;
+ struct {
+ u8 status; /* Descriptor status */
+ u8 popts; /* Packet Options */
+ __le16 special; /* */
+ } fields;
+ } upper;
};
/* Filters */
-#define E1000_NUM_UNICAST 16 /* Unicast filter entries */
-#define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */
-#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
-
-#define E1000_NUM_UNICAST_ICH8LAN 7
-#define E1000_MC_TBL_SIZE_ICH8LAN 32
-
+#define E1000_NUM_UNICAST 16 /* Unicast filter entries */
+#define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */
+#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
/* Receive Address Register */
struct e1000_rar {
- volatile __le32 low; /* receive address low */
- volatile __le32 high; /* receive address high */
+ volatile __le32 low; /* receive address low */
+ volatile __le32 high; /* receive address high */
};
/* Number of entries in the Multicast Table Array (MTA). */
#define E1000_NUM_MTA_REGISTERS 128
-#define E1000_NUM_MTA_REGISTERS_ICH8LAN 32
/* IPv4 Address Table Entry */
struct e1000_ipv4_at_entry {
- volatile u32 ipv4_addr; /* IP Address (RW) */
- volatile u32 reserved;
+ volatile u32 ipv4_addr; /* IP Address (RW) */
+ volatile u32 reserved;
};
/* Four wakeup IP addresses are supported */
#define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4
#define E1000_IP4AT_SIZE E1000_WAKEUP_IP_ADDRESS_COUNT_MAX
-#define E1000_IP4AT_SIZE_ICH8LAN 3
#define E1000_IP6AT_SIZE 1
/* IPv6 Address Table Entry */
struct e1000_ipv6_at_entry {
- volatile u8 ipv6_addr[16];
+ volatile u8 ipv6_addr[16];
};
/* Flexible Filter Length Table Entry */
struct e1000_fflt_entry {
- volatile u32 length; /* Flexible Filter Length (RW) */
- volatile u32 reserved;
+ volatile u32 length; /* Flexible Filter Length (RW) */
+ volatile u32 reserved;
};
/* Flexible Filter Mask Table Entry */
struct e1000_ffmt_entry {
- volatile u32 mask; /* Flexible Filter Mask (RW) */
- volatile u32 reserved;
+ volatile u32 mask; /* Flexible Filter Mask (RW) */
+ volatile u32 reserved;
};
/* Flexible Filter Value Table Entry */
struct e1000_ffvt_entry {
- volatile u32 value; /* Flexible Filter Value (RW) */
- volatile u32 reserved;
+ volatile u32 value; /* Flexible Filter Value (RW) */
+ volatile u32 reserved;
};
/* Four Flexible Filters are supported */
@@ -879,211 +799,211 @@ struct e1000_ffvt_entry {
* R/clr - register is read only and is cleared when read
* A - register array
*/
-#define E1000_CTRL 0x00000 /* Device Control - RW */
-#define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */
-#define E1000_STATUS 0x00008 /* Device Status - RO */
-#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */
-#define E1000_EERD 0x00014 /* EEPROM Read - RW */
-#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */
-#define E1000_FLA 0x0001C /* Flash Access - RW */
-#define E1000_MDIC 0x00020 /* MDI Control - RW */
-#define E1000_SCTL 0x00024 /* SerDes Control - RW */
-#define E1000_FEXTNVM 0x00028 /* Future Extended NVM register */
-#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */
-#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */
-#define E1000_FCT 0x00030 /* Flow Control Type - RW */
-#define E1000_VET 0x00038 /* VLAN Ether Type - RW */
-#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */
-#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */
-#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */
-#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */
-#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */
-#define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */
-#define E1000_RCTL 0x00100 /* RX Control - RW */
-#define E1000_RDTR1 0x02820 /* RX Delay Timer (1) - RW */
-#define E1000_RDBAL1 0x02900 /* RX Descriptor Base Address Low (1) - RW */
-#define E1000_RDBAH1 0x02904 /* RX Descriptor Base Address High (1) - RW */
-#define E1000_RDLEN1 0x02908 /* RX Descriptor Length (1) - RW */
-#define E1000_RDH1 0x02910 /* RX Descriptor Head (1) - RW */
-#define E1000_RDT1 0x02918 /* RX Descriptor Tail (1) - RW */
-#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */
-#define E1000_TXCW 0x00178 /* TX Configuration Word - RW */
-#define E1000_RXCW 0x00180 /* RX Configuration Word - RO */
-#define E1000_TCTL 0x00400 /* TX Control - RW */
-#define E1000_TCTL_EXT 0x00404 /* Extended TX Control - RW */
-#define E1000_TIPG 0x00410 /* TX Inter-packet gap -RW */
-#define E1000_TBT 0x00448 /* TX Burst Timer - RW */
-#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */
-#define E1000_LEDCTL 0x00E00 /* LED Control - RW */
-#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */
-#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */
-#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */
+#define E1000_CTRL 0x00000 /* Device Control - RW */
+#define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */
+#define E1000_STATUS 0x00008 /* Device Status - RO */
+#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */
+#define E1000_EERD 0x00014 /* EEPROM Read - RW */
+#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */
+#define E1000_FLA 0x0001C /* Flash Access - RW */
+#define E1000_MDIC 0x00020 /* MDI Control - RW */
+#define E1000_SCTL 0x00024 /* SerDes Control - RW */
+#define E1000_FEXTNVM 0x00028 /* Future Extended NVM register */
+#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */
+#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */
+#define E1000_FCT 0x00030 /* Flow Control Type - RW */
+#define E1000_VET 0x00038 /* VLAN Ether Type - RW */
+#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */
+#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */
+#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */
+#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */
+#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */
+#define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */
+#define E1000_RCTL 0x00100 /* RX Control - RW */
+#define E1000_RDTR1 0x02820 /* RX Delay Timer (1) - RW */
+#define E1000_RDBAL1 0x02900 /* RX Descriptor Base Address Low (1) - RW */
+#define E1000_RDBAH1 0x02904 /* RX Descriptor Base Address High (1) - RW */
+#define E1000_RDLEN1 0x02908 /* RX Descriptor Length (1) - RW */
+#define E1000_RDH1 0x02910 /* RX Descriptor Head (1) - RW */
+#define E1000_RDT1 0x02918 /* RX Descriptor Tail (1) - RW */
+#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */
+#define E1000_TXCW 0x00178 /* TX Configuration Word - RW */
+#define E1000_RXCW 0x00180 /* RX Configuration Word - RO */
+#define E1000_TCTL 0x00400 /* TX Control - RW */
+#define E1000_TCTL_EXT 0x00404 /* Extended TX Control - RW */
+#define E1000_TIPG 0x00410 /* TX Inter-packet gap -RW */
+#define E1000_TBT 0x00448 /* TX Burst Timer - RW */
+#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */
+#define E1000_LEDCTL 0x00E00 /* LED Control - RW */
+#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */
+#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */
+#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */
#define FEXTNVM_SW_CONFIG 0x0001
-#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */
-#define E1000_PBS 0x01008 /* Packet Buffer Size */
-#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */
+#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */
+#define E1000_PBS 0x01008 /* Packet Buffer Size */
+#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */
#define E1000_FLASH_UPDATES 1000
-#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */
-#define E1000_FLASHT 0x01028 /* FLASH Timer Register */
-#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */
-#define E1000_FLSWCTL 0x01030 /* FLASH control register */
-#define E1000_FLSWDATA 0x01034 /* FLASH data register */
-#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */
-#define E1000_FLOP 0x0103C /* FLASH Opcode Register */
-#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */
-#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */
-#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */
-#define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */
-#define E1000_RDBAL 0x02800 /* RX Descriptor Base Address Low - RW */
-#define E1000_RDBAH 0x02804 /* RX Descriptor Base Address High - RW */
-#define E1000_RDLEN 0x02808 /* RX Descriptor Length - RW */
-#define E1000_RDH 0x02810 /* RX Descriptor Head - RW */
-#define E1000_RDT 0x02818 /* RX Descriptor Tail - RW */
-#define E1000_RDTR 0x02820 /* RX Delay Timer - RW */
-#define E1000_RDBAL0 E1000_RDBAL /* RX Desc Base Address Low (0) - RW */
-#define E1000_RDBAH0 E1000_RDBAH /* RX Desc Base Address High (0) - RW */
-#define E1000_RDLEN0 E1000_RDLEN /* RX Desc Length (0) - RW */
-#define E1000_RDH0 E1000_RDH /* RX Desc Head (0) - RW */
-#define E1000_RDT0 E1000_RDT /* RX Desc Tail (0) - RW */
-#define E1000_RDTR0 E1000_RDTR /* RX Delay Timer (0) - RW */
-#define E1000_RXDCTL 0x02828 /* RX Descriptor Control queue 0 - RW */
-#define E1000_RXDCTL1 0x02928 /* RX Descriptor Control queue 1 - RW */
-#define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */
-#define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */
-#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */
-#define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */
-#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */
-#define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */
-#define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */
-#define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */
-#define E1000_TDFTS 0x03428 /* TX Data FIFO Tail Saved - RW */
-#define E1000_TDFPC 0x03430 /* TX Data FIFO Packet Count - RW */
-#define E1000_TDBAL 0x03800 /* TX Descriptor Base Address Low - RW */
-#define E1000_TDBAH 0x03804 /* TX Descriptor Base Address High - RW */
-#define E1000_TDLEN 0x03808 /* TX Descriptor Length - RW */
-#define E1000_TDH 0x03810 /* TX Descriptor Head - RW */
-#define E1000_TDT 0x03818 /* TX Descripotr Tail - RW */
-#define E1000_TIDV 0x03820 /* TX Interrupt Delay Value - RW */
-#define E1000_TXDCTL 0x03828 /* TX Descriptor Control - RW */
-#define E1000_TADV 0x0382C /* TX Interrupt Absolute Delay Val - RW */
-#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */
-#define E1000_TARC0 0x03840 /* TX Arbitration Count (0) */
-#define E1000_TDBAL1 0x03900 /* TX Desc Base Address Low (1) - RW */
-#define E1000_TDBAH1 0x03904 /* TX Desc Base Address High (1) - RW */
-#define E1000_TDLEN1 0x03908 /* TX Desc Length (1) - RW */
-#define E1000_TDH1 0x03910 /* TX Desc Head (1) - RW */
-#define E1000_TDT1 0x03918 /* TX Desc Tail (1) - RW */
-#define E1000_TXDCTL1 0x03928 /* TX Descriptor Control (1) - RW */
-#define E1000_TARC1 0x03940 /* TX Arbitration Count (1) */
-#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */
-#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */
-#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */
-#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */
-#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */
-#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */
-#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */
-#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */
-#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */
-#define E1000_COLC 0x04028 /* Collision Count - R/clr */
-#define E1000_DC 0x04030 /* Defer Count - R/clr */
-#define E1000_TNCRS 0x04034 /* TX-No CRS - R/clr */
-#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */
-#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */
-#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */
-#define E1000_XONRXC 0x04048 /* XON RX Count - R/clr */
-#define E1000_XONTXC 0x0404C /* XON TX Count - R/clr */
-#define E1000_XOFFRXC 0x04050 /* XOFF RX Count - R/clr */
-#define E1000_XOFFTXC 0x04054 /* XOFF TX Count - R/clr */
-#define E1000_FCRUC 0x04058 /* Flow Control RX Unsupported Count- R/clr */
-#define E1000_PRC64 0x0405C /* Packets RX (64 bytes) - R/clr */
-#define E1000_PRC127 0x04060 /* Packets RX (65-127 bytes) - R/clr */
-#define E1000_PRC255 0x04064 /* Packets RX (128-255 bytes) - R/clr */
-#define E1000_PRC511 0x04068 /* Packets RX (255-511 bytes) - R/clr */
-#define E1000_PRC1023 0x0406C /* Packets RX (512-1023 bytes) - R/clr */
-#define E1000_PRC1522 0x04070 /* Packets RX (1024-1522 bytes) - R/clr */
-#define E1000_GPRC 0x04074 /* Good Packets RX Count - R/clr */
-#define E1000_BPRC 0x04078 /* Broadcast Packets RX Count - R/clr */
-#define E1000_MPRC 0x0407C /* Multicast Packets RX Count - R/clr */
-#define E1000_GPTC 0x04080 /* Good Packets TX Count - R/clr */
-#define E1000_GORCL 0x04088 /* Good Octets RX Count Low - R/clr */
-#define E1000_GORCH 0x0408C /* Good Octets RX Count High - R/clr */
-#define E1000_GOTCL 0x04090 /* Good Octets TX Count Low - R/clr */
-#define E1000_GOTCH 0x04094 /* Good Octets TX Count High - R/clr */
-#define E1000_RNBC 0x040A0 /* RX No Buffers Count - R/clr */
-#define E1000_RUC 0x040A4 /* RX Undersize Count - R/clr */
-#define E1000_RFC 0x040A8 /* RX Fragment Count - R/clr */
-#define E1000_ROC 0x040AC /* RX Oversize Count - R/clr */
-#define E1000_RJC 0x040B0 /* RX Jabber Count - R/clr */
-#define E1000_MGTPRC 0x040B4 /* Management Packets RX Count - R/clr */
-#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */
-#define E1000_MGTPTC 0x040BC /* Management Packets TX Count - R/clr */
-#define E1000_TORL 0x040C0 /* Total Octets RX Low - R/clr */
-#define E1000_TORH 0x040C4 /* Total Octets RX High - R/clr */
-#define E1000_TOTL 0x040C8 /* Total Octets TX Low - R/clr */
-#define E1000_TOTH 0x040CC /* Total Octets TX High - R/clr */
-#define E1000_TPR 0x040D0 /* Total Packets RX - R/clr */
-#define E1000_TPT 0x040D4 /* Total Packets TX - R/clr */
-#define E1000_PTC64 0x040D8 /* Packets TX (64 bytes) - R/clr */
-#define E1000_PTC127 0x040DC /* Packets TX (65-127 bytes) - R/clr */
-#define E1000_PTC255 0x040E0 /* Packets TX (128-255 bytes) - R/clr */
-#define E1000_PTC511 0x040E4 /* Packets TX (256-511 bytes) - R/clr */
-#define E1000_PTC1023 0x040E8 /* Packets TX (512-1023 bytes) - R/clr */
-#define E1000_PTC1522 0x040EC /* Packets TX (1024-1522 Bytes) - R/clr */
-#define E1000_MPTC 0x040F0 /* Multicast Packets TX Count - R/clr */
-#define E1000_BPTC 0x040F4 /* Broadcast Packets TX Count - R/clr */
-#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context TX - R/clr */
-#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context TX Fail - R/clr */
-#define E1000_IAC 0x04100 /* Interrupt Assertion Count */
-#define E1000_ICRXPTC 0x04104 /* Interrupt Cause Rx Packet Timer Expire Count */
-#define E1000_ICRXATC 0x04108 /* Interrupt Cause Rx Absolute Timer Expire Count */
-#define E1000_ICTXPTC 0x0410C /* Interrupt Cause Tx Packet Timer Expire Count */
-#define E1000_ICTXATC 0x04110 /* Interrupt Cause Tx Absolute Timer Expire Count */
-#define E1000_ICTXQEC 0x04118 /* Interrupt Cause Tx Queue Empty Count */
-#define E1000_ICTXQMTC 0x0411C /* Interrupt Cause Tx Queue Minimum Threshold Count */
-#define E1000_ICRXDMTC 0x04120 /* Interrupt Cause Rx Descriptor Minimum Threshold Count */
-#define E1000_ICRXOC 0x04124 /* Interrupt Cause Receiver Overrun Count */
-#define E1000_RXCSUM 0x05000 /* RX Checksum Control - RW */
-#define E1000_RFCTL 0x05008 /* Receive Filter Control*/
-#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */
-#define E1000_RA 0x05400 /* Receive Address - RW Array */
-#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */
-#define E1000_WUC 0x05800 /* Wakeup Control - RW */
-#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */
-#define E1000_WUS 0x05810 /* Wakeup Status - RO */
-#define E1000_MANC 0x05820 /* Management Control - RW */
-#define E1000_IPAV 0x05838 /* IP Address Valid - RW */
-#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */
-#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */
-#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */
-#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */
-#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */
-#define E1000_HOST_IF 0x08800 /* Host Interface */
-#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */
-#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */
-
-#define E1000_KUMCTRLSTA 0x00034 /* MAC-PHY interface - RW */
-#define E1000_MDPHYA 0x0003C /* PHY address - RW */
-#define E1000_MANC2H 0x05860 /* Managment Control To Host - RW */
-#define E1000_SW_FW_SYNC 0x05B5C /* Software-Firmware Synchronization - RW */
-
-#define E1000_GCR 0x05B00 /* PCI-Ex Control */
-#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */
-#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */
-#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */
-#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */
-#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */
-#define E1000_SWSM 0x05B50 /* SW Semaphore */
-#define E1000_FWSM 0x05B54 /* FW Semaphore */
-#define E1000_FFLT_DBG 0x05F04 /* Debug Register */
-#define E1000_HICR 0x08F00 /* Host Inteface Control */
+#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */
+#define E1000_FLASHT 0x01028 /* FLASH Timer Register */
+#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */
+#define E1000_FLSWCTL 0x01030 /* FLASH control register */
+#define E1000_FLSWDATA 0x01034 /* FLASH data register */
+#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */
+#define E1000_FLOP 0x0103C /* FLASH Opcode Register */
+#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */
+#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */
+#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */
+#define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */
+#define E1000_RDBAL 0x02800 /* RX Descriptor Base Address Low - RW */
+#define E1000_RDBAH 0x02804 /* RX Descriptor Base Address High - RW */
+#define E1000_RDLEN 0x02808 /* RX Descriptor Length - RW */
+#define E1000_RDH 0x02810 /* RX Descriptor Head - RW */
+#define E1000_RDT 0x02818 /* RX Descriptor Tail - RW */
+#define E1000_RDTR 0x02820 /* RX Delay Timer - RW */
+#define E1000_RDBAL0 E1000_RDBAL /* RX Desc Base Address Low (0) - RW */
+#define E1000_RDBAH0 E1000_RDBAH /* RX Desc Base Address High (0) - RW */
+#define E1000_RDLEN0 E1000_RDLEN /* RX Desc Length (0) - RW */
+#define E1000_RDH0 E1000_RDH /* RX Desc Head (0) - RW */
+#define E1000_RDT0 E1000_RDT /* RX Desc Tail (0) - RW */
+#define E1000_RDTR0 E1000_RDTR /* RX Delay Timer (0) - RW */
+#define E1000_RXDCTL 0x02828 /* RX Descriptor Control queue 0 - RW */
+#define E1000_RXDCTL1 0x02928 /* RX Descriptor Control queue 1 - RW */
+#define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */
+#define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */
+#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */
+#define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */
+#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */
+#define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */
+#define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */
+#define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */
+#define E1000_TDFTS 0x03428 /* TX Data FIFO Tail Saved - RW */
+#define E1000_TDFPC 0x03430 /* TX Data FIFO Packet Count - RW */
+#define E1000_TDBAL 0x03800 /* TX Descriptor Base Address Low - RW */
+#define E1000_TDBAH 0x03804 /* TX Descriptor Base Address High - RW */
+#define E1000_TDLEN 0x03808 /* TX Descriptor Length - RW */
+#define E1000_TDH 0x03810 /* TX Descriptor Head - RW */
+#define E1000_TDT 0x03818 /* TX Descripotr Tail - RW */
+#define E1000_TIDV 0x03820 /* TX Interrupt Delay Value - RW */
+#define E1000_TXDCTL 0x03828 /* TX Descriptor Control - RW */
+#define E1000_TADV 0x0382C /* TX Interrupt Absolute Delay Val - RW */
+#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */
+#define E1000_TARC0 0x03840 /* TX Arbitration Count (0) */
+#define E1000_TDBAL1 0x03900 /* TX Desc Base Address Low (1) - RW */
+#define E1000_TDBAH1 0x03904 /* TX Desc Base Address High (1) - RW */
+#define E1000_TDLEN1 0x03908 /* TX Desc Length (1) - RW */
+#define E1000_TDH1 0x03910 /* TX Desc Head (1) - RW */
+#define E1000_TDT1 0x03918 /* TX Desc Tail (1) - RW */
+#define E1000_TXDCTL1 0x03928 /* TX Descriptor Control (1) - RW */
+#define E1000_TARC1 0x03940 /* TX Arbitration Count (1) */
+#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */
+#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */
+#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */
+#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */
+#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */
+#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */
+#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */
+#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */
+#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */
+#define E1000_COLC 0x04028 /* Collision Count - R/clr */
+#define E1000_DC 0x04030 /* Defer Count - R/clr */
+#define E1000_TNCRS 0x04034 /* TX-No CRS - R/clr */
+#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */
+#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */
+#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */
+#define E1000_XONRXC 0x04048 /* XON RX Count - R/clr */
+#define E1000_XONTXC 0x0404C /* XON TX Count - R/clr */
+#define E1000_XOFFRXC 0x04050 /* XOFF RX Count - R/clr */
+#define E1000_XOFFTXC 0x04054 /* XOFF TX Count - R/clr */
+#define E1000_FCRUC 0x04058 /* Flow Control RX Unsupported Count- R/clr */
+#define E1000_PRC64 0x0405C /* Packets RX (64 bytes) - R/clr */
+#define E1000_PRC127 0x04060 /* Packets RX (65-127 bytes) - R/clr */
+#define E1000_PRC255 0x04064 /* Packets RX (128-255 bytes) - R/clr */
+#define E1000_PRC511 0x04068 /* Packets RX (255-511 bytes) - R/clr */
+#define E1000_PRC1023 0x0406C /* Packets RX (512-1023 bytes) - R/clr */
+#define E1000_PRC1522 0x04070 /* Packets RX (1024-1522 bytes) - R/clr */
+#define E1000_GPRC 0x04074 /* Good Packets RX Count - R/clr */
+#define E1000_BPRC 0x04078 /* Broadcast Packets RX Count - R/clr */
+#define E1000_MPRC 0x0407C /* Multicast Packets RX Count - R/clr */
+#define E1000_GPTC 0x04080 /* Good Packets TX Count - R/clr */
+#define E1000_GORCL 0x04088 /* Good Octets RX Count Low - R/clr */
+#define E1000_GORCH 0x0408C /* Good Octets RX Count High - R/clr */
+#define E1000_GOTCL 0x04090 /* Good Octets TX Count Low - R/clr */
+#define E1000_GOTCH 0x04094 /* Good Octets TX Count High - R/clr */
+#define E1000_RNBC 0x040A0 /* RX No Buffers Count - R/clr */
+#define E1000_RUC 0x040A4 /* RX Undersize Count - R/clr */
+#define E1000_RFC 0x040A8 /* RX Fragment Count - R/clr */
+#define E1000_ROC 0x040AC /* RX Oversize Count - R/clr */
+#define E1000_RJC 0x040B0 /* RX Jabber Count - R/clr */
+#define E1000_MGTPRC 0x040B4 /* Management Packets RX Count - R/clr */
+#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */
+#define E1000_MGTPTC 0x040BC /* Management Packets TX Count - R/clr */
+#define E1000_TORL 0x040C0 /* Total Octets RX Low - R/clr */
+#define E1000_TORH 0x040C4 /* Total Octets RX High - R/clr */
+#define E1000_TOTL 0x040C8 /* Total Octets TX Low - R/clr */
+#define E1000_TOTH 0x040CC /* Total Octets TX High - R/clr */
+#define E1000_TPR 0x040D0 /* Total Packets RX - R/clr */
+#define E1000_TPT 0x040D4 /* Total Packets TX - R/clr */
+#define E1000_PTC64 0x040D8 /* Packets TX (64 bytes) - R/clr */
+#define E1000_PTC127 0x040DC /* Packets TX (65-127 bytes) - R/clr */
+#define E1000_PTC255 0x040E0 /* Packets TX (128-255 bytes) - R/clr */
+#define E1000_PTC511 0x040E4 /* Packets TX (256-511 bytes) - R/clr */
+#define E1000_PTC1023 0x040E8 /* Packets TX (512-1023 bytes) - R/clr */
+#define E1000_PTC1522 0x040EC /* Packets TX (1024-1522 Bytes) - R/clr */
+#define E1000_MPTC 0x040F0 /* Multicast Packets TX Count - R/clr */
+#define E1000_BPTC 0x040F4 /* Broadcast Packets TX Count - R/clr */
+#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context TX - R/clr */
+#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context TX Fail - R/clr */
+#define E1000_IAC 0x04100 /* Interrupt Assertion Count */
+#define E1000_ICRXPTC 0x04104 /* Interrupt Cause Rx Packet Timer Expire Count */
+#define E1000_ICRXATC 0x04108 /* Interrupt Cause Rx Absolute Timer Expire Count */
+#define E1000_ICTXPTC 0x0410C /* Interrupt Cause Tx Packet Timer Expire Count */
+#define E1000_ICTXATC 0x04110 /* Interrupt Cause Tx Absolute Timer Expire Count */
+#define E1000_ICTXQEC 0x04118 /* Interrupt Cause Tx Queue Empty Count */
+#define E1000_ICTXQMTC 0x0411C /* Interrupt Cause Tx Queue Minimum Threshold Count */
+#define E1000_ICRXDMTC 0x04120 /* Interrupt Cause Rx Descriptor Minimum Threshold Count */
+#define E1000_ICRXOC 0x04124 /* Interrupt Cause Receiver Overrun Count */
+#define E1000_RXCSUM 0x05000 /* RX Checksum Control - RW */
+#define E1000_RFCTL 0x05008 /* Receive Filter Control */
+#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */
+#define E1000_RA 0x05400 /* Receive Address - RW Array */
+#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */
+#define E1000_WUC 0x05800 /* Wakeup Control - RW */
+#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */
+#define E1000_WUS 0x05810 /* Wakeup Status - RO */
+#define E1000_MANC 0x05820 /* Management Control - RW */
+#define E1000_IPAV 0x05838 /* IP Address Valid - RW */
+#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */
+#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */
+#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */
+#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */
+#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */
+#define E1000_HOST_IF 0x08800 /* Host Interface */
+#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */
+#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */
+
+#define E1000_KUMCTRLSTA 0x00034 /* MAC-PHY interface - RW */
+#define E1000_MDPHYA 0x0003C /* PHY address - RW */
+#define E1000_MANC2H 0x05860 /* Managment Control To Host - RW */
+#define E1000_SW_FW_SYNC 0x05B5C /* Software-Firmware Synchronization - RW */
+
+#define E1000_GCR 0x05B00 /* PCI-Ex Control */
+#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */
+#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */
+#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */
+#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */
+#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */
+#define E1000_SWSM 0x05B50 /* SW Semaphore */
+#define E1000_FWSM 0x05B54 /* FW Semaphore */
+#define E1000_FFLT_DBG 0x05F04 /* Debug Register */
+#define E1000_HICR 0x08F00 /* Host Interface Control */
/* RSS registers */
-#define E1000_CPUVEC 0x02C10 /* CPU Vector Register - RW */
-#define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */
-#define E1000_RETA 0x05C00 /* Redirection Table - RW Array */
-#define E1000_RSSRK 0x05C80 /* RSS Random Key - RW Array */
-#define E1000_RSSIM 0x05864 /* RSS Interrupt Mask */
-#define E1000_RSSIR 0x05868 /* RSS Interrupt Request */
+#define E1000_CPUVEC 0x02C10 /* CPU Vector Register - RW */
+#define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */
+#define E1000_RETA 0x05C00 /* Redirection Table - RW Array */
+#define E1000_RSSRK 0x05C80 /* RSS Random Key - RW Array */
+#define E1000_RSSIM 0x05864 /* RSS Interrupt Mask */
+#define E1000_RSSIR 0x05868 /* RSS Interrupt Request */
/* Register Set (82542)
*
* Some of the 82542 registers are located at different offsets than they are
@@ -1123,19 +1043,19 @@ struct e1000_ffvt_entry {
#define E1000_82542_RDLEN0 E1000_82542_RDLEN
#define E1000_82542_RDH0 E1000_82542_RDH
#define E1000_82542_RDT0 E1000_82542_RDT
-#define E1000_82542_SRRCTL(_n) (0x280C + ((_n) << 8)) /* Split and Replication
- * RX Control - RW */
+#define E1000_82542_SRRCTL(_n) (0x280C + ((_n) << 8)) /* Split and Replication
+ * RX Control - RW */
#define E1000_82542_DCA_RXCTRL(_n) (0x02814 + ((_n) << 8))
-#define E1000_82542_RDBAH3 0x02B04 /* RX Desc Base High Queue 3 - RW */
-#define E1000_82542_RDBAL3 0x02B00 /* RX Desc Low Queue 3 - RW */
-#define E1000_82542_RDLEN3 0x02B08 /* RX Desc Length Queue 3 - RW */
-#define E1000_82542_RDH3 0x02B10 /* RX Desc Head Queue 3 - RW */
-#define E1000_82542_RDT3 0x02B18 /* RX Desc Tail Queue 3 - RW */
-#define E1000_82542_RDBAL2 0x02A00 /* RX Desc Base Low Queue 2 - RW */
-#define E1000_82542_RDBAH2 0x02A04 /* RX Desc Base High Queue 2 - RW */
-#define E1000_82542_RDLEN2 0x02A08 /* RX Desc Length Queue 2 - RW */
-#define E1000_82542_RDH2 0x02A10 /* RX Desc Head Queue 2 - RW */
-#define E1000_82542_RDT2 0x02A18 /* RX Desc Tail Queue 2 - RW */
+#define E1000_82542_RDBAH3 0x02B04 /* RX Desc Base High Queue 3 - RW */
+#define E1000_82542_RDBAL3 0x02B00 /* RX Desc Low Queue 3 - RW */
+#define E1000_82542_RDLEN3 0x02B08 /* RX Desc Length Queue 3 - RW */
+#define E1000_82542_RDH3 0x02B10 /* RX Desc Head Queue 3 - RW */
+#define E1000_82542_RDT3 0x02B18 /* RX Desc Tail Queue 3 - RW */
+#define E1000_82542_RDBAL2 0x02A00 /* RX Desc Base Low Queue 2 - RW */
+#define E1000_82542_RDBAH2 0x02A04 /* RX Desc Base High Queue 2 - RW */
+#define E1000_82542_RDLEN2 0x02A08 /* RX Desc Length Queue 2 - RW */
+#define E1000_82542_RDH2 0x02A10 /* RX Desc Head Queue 2 - RW */
+#define E1000_82542_RDT2 0x02A18 /* RX Desc Tail Queue 2 - RW */
#define E1000_82542_RDTR1 0x00130
#define E1000_82542_RDBAL1 0x00138
#define E1000_82542_RDBAH1 0x0013C
@@ -1302,288 +1222,281 @@ struct e1000_ffvt_entry {
#define E1000_82542_RSSIR E1000_RSSIR
#define E1000_82542_KUMCTRLSTA E1000_KUMCTRLSTA
#define E1000_82542_SW_FW_SYNC E1000_SW_FW_SYNC
-#define E1000_82542_MANC2H E1000_MANC2H
/* Statistics counters collected by the MAC */
struct e1000_hw_stats {
- u64 crcerrs;
- u64 algnerrc;
- u64 symerrs;
- u64 rxerrc;
- u64 txerrc;
- u64 mpc;
- u64 scc;
- u64 ecol;
- u64 mcc;
- u64 latecol;
- u64 colc;
- u64 dc;
- u64 tncrs;
- u64 sec;
- u64 cexterr;
- u64 rlec;
- u64 xonrxc;
- u64 xontxc;
- u64 xoffrxc;
- u64 xofftxc;
- u64 fcruc;
- u64 prc64;
- u64 prc127;
- u64 prc255;
- u64 prc511;
- u64 prc1023;
- u64 prc1522;
- u64 gprc;
- u64 bprc;
- u64 mprc;
- u64 gptc;
- u64 gorcl;
- u64 gorch;
- u64 gotcl;
- u64 gotch;
- u64 rnbc;
- u64 ruc;
- u64 rfc;
- u64 roc;
- u64 rlerrc;
- u64 rjc;
- u64 mgprc;
- u64 mgpdc;
- u64 mgptc;
- u64 torl;
- u64 torh;
- u64 totl;
- u64 toth;
- u64 tpr;
- u64 tpt;
- u64 ptc64;
- u64 ptc127;
- u64 ptc255;
- u64 ptc511;
- u64 ptc1023;
- u64 ptc1522;
- u64 mptc;
- u64 bptc;
- u64 tsctc;
- u64 tsctfc;
- u64 iac;
- u64 icrxptc;
- u64 icrxatc;
- u64 ictxptc;
- u64 ictxatc;
- u64 ictxqec;
- u64 ictxqmtc;
- u64 icrxdmtc;
- u64 icrxoc;
+ u64 crcerrs;
+ u64 algnerrc;
+ u64 symerrs;
+ u64 rxerrc;
+ u64 txerrc;
+ u64 mpc;
+ u64 scc;
+ u64 ecol;
+ u64 mcc;
+ u64 latecol;
+ u64 colc;
+ u64 dc;
+ u64 tncrs;
+ u64 sec;
+ u64 cexterr;
+ u64 rlec;
+ u64 xonrxc;
+ u64 xontxc;
+ u64 xoffrxc;
+ u64 xofftxc;
+ u64 fcruc;
+ u64 prc64;
+ u64 prc127;
+ u64 prc255;
+ u64 prc511;
+ u64 prc1023;
+ u64 prc1522;
+ u64 gprc;
+ u64 bprc;
+ u64 mprc;
+ u64 gptc;
+ u64 gorcl;
+ u64 gorch;
+ u64 gotcl;
+ u64 gotch;
+ u64 rnbc;
+ u64 ruc;
+ u64 rfc;
+ u64 roc;
+ u64 rlerrc;
+ u64 rjc;
+ u64 mgprc;
+ u64 mgpdc;
+ u64 mgptc;
+ u64 torl;
+ u64 torh;
+ u64 totl;
+ u64 toth;
+ u64 tpr;
+ u64 tpt;
+ u64 ptc64;
+ u64 ptc127;
+ u64 ptc255;
+ u64 ptc511;
+ u64 ptc1023;
+ u64 ptc1522;
+ u64 mptc;
+ u64 bptc;
+ u64 tsctc;
+ u64 tsctfc;
+ u64 iac;
+ u64 icrxptc;
+ u64 icrxatc;
+ u64 ictxptc;
+ u64 ictxatc;
+ u64 ictxqec;
+ u64 ictxqmtc;
+ u64 icrxdmtc;
+ u64 icrxoc;
};
/* Structure containing variables used by the shared code (e1000_hw.c) */
struct e1000_hw {
- u8 __iomem *hw_addr;
- u8 __iomem *flash_address;
- e1000_mac_type mac_type;
- e1000_phy_type phy_type;
- u32 phy_init_script;
- e1000_media_type media_type;
- void *back;
- struct e1000_shadow_ram *eeprom_shadow_ram;
- u32 flash_bank_size;
- u32 flash_base_addr;
- e1000_fc_type fc;
- e1000_bus_speed bus_speed;
- e1000_bus_width bus_width;
- e1000_bus_type bus_type;
+ u8 __iomem *hw_addr;
+ u8 __iomem *flash_address;
+ e1000_mac_type mac_type;
+ e1000_phy_type phy_type;
+ u32 phy_init_script;
+ e1000_media_type media_type;
+ void *back;
+ struct e1000_shadow_ram *eeprom_shadow_ram;
+ u32 flash_bank_size;
+ u32 flash_base_addr;
+ e1000_fc_type fc;
+ e1000_bus_speed bus_speed;
+ e1000_bus_width bus_width;
+ e1000_bus_type bus_type;
struct e1000_eeprom_info eeprom;
- e1000_ms_type master_slave;
- e1000_ms_type original_master_slave;
- e1000_ffe_config ffe_config_state;
- u32 asf_firmware_present;
- u32 eeprom_semaphore_present;
- u32 swfw_sync_present;
- u32 swfwhw_semaphore_present;
- unsigned long io_base;
- u32 phy_id;
- u32 phy_revision;
- u32 phy_addr;
- u32 original_fc;
- u32 txcw;
- u32 autoneg_failed;
- u32 max_frame_size;
- u32 min_frame_size;
- u32 mc_filter_type;
- u32 num_mc_addrs;
- u32 collision_delta;
- u32 tx_packet_delta;
- u32 ledctl_default;
- u32 ledctl_mode1;
- u32 ledctl_mode2;
- bool tx_pkt_filtering;
+ e1000_ms_type master_slave;
+ e1000_ms_type original_master_slave;
+ e1000_ffe_config ffe_config_state;
+ u32 asf_firmware_present;
+ u32 eeprom_semaphore_present;
+ unsigned long io_base;
+ u32 phy_id;
+ u32 phy_revision;
+ u32 phy_addr;
+ u32 original_fc;
+ u32 txcw;
+ u32 autoneg_failed;
+ u32 max_frame_size;
+ u32 min_frame_size;
+ u32 mc_filter_type;
+ u32 num_mc_addrs;
+ u32 collision_delta;
+ u32 tx_packet_delta;
+ u32 ledctl_default;
+ u32 ledctl_mode1;
+ u32 ledctl_mode2;
+ bool tx_pkt_filtering;
struct e1000_host_mng_dhcp_cookie mng_cookie;
- u16 phy_spd_default;
- u16 autoneg_advertised;
- u16 pci_cmd_word;
- u16 fc_high_water;
- u16 fc_low_water;
- u16 fc_pause_time;
- u16 current_ifs_val;
- u16 ifs_min_val;
- u16 ifs_max_val;
- u16 ifs_step_size;
- u16 ifs_ratio;
- u16 device_id;
- u16 vendor_id;
- u16 subsystem_id;
- u16 subsystem_vendor_id;
- u8 revision_id;
- u8 autoneg;
- u8 mdix;
- u8 forced_speed_duplex;
- u8 wait_autoneg_complete;
- u8 dma_fairness;
- u8 mac_addr[NODE_ADDRESS_SIZE];
- u8 perm_mac_addr[NODE_ADDRESS_SIZE];
- bool disable_polarity_correction;
- bool speed_downgraded;
- e1000_smart_speed smart_speed;
- e1000_dsp_config dsp_config_state;
- bool get_link_status;
- bool serdes_link_down;
- bool tbi_compatibility_en;
- bool tbi_compatibility_on;
- bool laa_is_present;
- bool phy_reset_disable;
- bool initialize_hw_bits_disable;
- bool fc_send_xon;
- bool fc_strict_ieee;
- bool report_tx_early;
- bool adaptive_ifs;
- bool ifs_params_forced;
- bool in_ifs_mode;
- bool mng_reg_access_disabled;
- bool leave_av_bit_off;
- bool kmrn_lock_loss_workaround_disabled;
- bool bad_tx_carr_stats_fd;
- bool has_manc2h;
- bool rx_needs_kicking;
- bool has_smbus;
+ u16 phy_spd_default;
+ u16 autoneg_advertised;
+ u16 pci_cmd_word;
+ u16 fc_high_water;
+ u16 fc_low_water;
+ u16 fc_pause_time;
+ u16 current_ifs_val;
+ u16 ifs_min_val;
+ u16 ifs_max_val;
+ u16 ifs_step_size;
+ u16 ifs_ratio;
+ u16 device_id;
+ u16 vendor_id;
+ u16 subsystem_id;
+ u16 subsystem_vendor_id;
+ u8 revision_id;
+ u8 autoneg;
+ u8 mdix;
+ u8 forced_speed_duplex;
+ u8 wait_autoneg_complete;
+ u8 dma_fairness;
+ u8 mac_addr[NODE_ADDRESS_SIZE];
+ u8 perm_mac_addr[NODE_ADDRESS_SIZE];
+ bool disable_polarity_correction;
+ bool speed_downgraded;
+ e1000_smart_speed smart_speed;
+ e1000_dsp_config dsp_config_state;
+ bool get_link_status;
+ bool serdes_has_link;
+ bool tbi_compatibility_en;
+ bool tbi_compatibility_on;
+ bool laa_is_present;
+ bool phy_reset_disable;
+ bool initialize_hw_bits_disable;
+ bool fc_send_xon;
+ bool fc_strict_ieee;
+ bool report_tx_early;
+ bool adaptive_ifs;
+ bool ifs_params_forced;
+ bool in_ifs_mode;
+ bool mng_reg_access_disabled;
+ bool leave_av_bit_off;
+ bool bad_tx_carr_stats_fd;
+ bool has_smbus;
};
-
-#define E1000_EEPROM_SWDPIN0 0x0001 /* SWDPIN 0 EEPROM Value */
-#define E1000_EEPROM_LED_LOGIC 0x0020 /* Led Logic Word */
-#define E1000_EEPROM_RW_REG_DATA 16 /* Offset to data in EEPROM read/write registers */
-#define E1000_EEPROM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */
-#define E1000_EEPROM_RW_REG_START 1 /* First bit for telling part to start operation */
-#define E1000_EEPROM_RW_ADDR_SHIFT 2 /* Shift to the address bits */
-#define E1000_EEPROM_POLL_WRITE 1 /* Flag for polling for write complete */
-#define E1000_EEPROM_POLL_READ 0 /* Flag for polling for read complete */
+#define E1000_EEPROM_SWDPIN0 0x0001 /* SWDPIN 0 EEPROM Value */
+#define E1000_EEPROM_LED_LOGIC 0x0020 /* Led Logic Word */
+#define E1000_EEPROM_RW_REG_DATA 16 /* Offset to data in EEPROM read/write registers */
+#define E1000_EEPROM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */
+#define E1000_EEPROM_RW_REG_START 1 /* First bit for telling part to start operation */
+#define E1000_EEPROM_RW_ADDR_SHIFT 2 /* Shift to the address bits */
+#define E1000_EEPROM_POLL_WRITE 1 /* Flag for polling for write complete */
+#define E1000_EEPROM_POLL_READ 0 /* Flag for polling for read complete */
/* Register Bit Masks */
/* Device Control */
-#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */
-#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */
-#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */
-#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */
-#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */
-#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */
-#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */
-#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */
-#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */
-#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */
-#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */
-#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */
-#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */
-#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */
-#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */
-#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */
-#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */
-#define E1000_CTRL_D_UD_EN 0x00002000 /* Dock/Undock enable */
-#define E1000_CTRL_D_UD_POLARITY 0x00004000 /* Defined polarity of Dock/Undock indication in SDP[0] */
-#define E1000_CTRL_FORCE_PHY_RESET 0x00008000 /* Reset both PHY ports, through PHYRST_N pin */
-#define E1000_CTRL_EXT_LINK_EN 0x00010000 /* enable link status from external LINK_0 and LINK_1 pins */
-#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */
-#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */
-#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */
-#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */
-#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */
-#define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */
-#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */
-#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */
-#define E1000_CTRL_RST 0x04000000 /* Global reset */
-#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */
-#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */
-#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */
-#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
-#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
-#define E1000_CTRL_SW2FW_INT 0x02000000 /* Initiate an interrupt to manageability engine */
+#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */
+#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */
+#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */
+#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */
+#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */
+#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */
+#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */
+#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */
+#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */
+#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */
+#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */
+#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */
+#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */
+#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */
+#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */
+#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */
+#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */
+#define E1000_CTRL_D_UD_EN 0x00002000 /* Dock/Undock enable */
+#define E1000_CTRL_D_UD_POLARITY 0x00004000 /* Defined polarity of Dock/Undock indication in SDP[0] */
+#define E1000_CTRL_FORCE_PHY_RESET 0x00008000 /* Reset both PHY ports, through PHYRST_N pin */
+#define E1000_CTRL_EXT_LINK_EN 0x00010000 /* enable link status from external LINK_0 and LINK_1 pins */
+#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */
+#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */
+#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */
+#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */
+#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */
+#define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */
+#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */
+#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */
+#define E1000_CTRL_RST 0x04000000 /* Global reset */
+#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */
+#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */
+#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */
+#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
+#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
+#define E1000_CTRL_SW2FW_INT 0x02000000 /* Initiate an interrupt to manageability engine */
/* Device Status */
-#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */
-#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */
-#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */
+#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */
+#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */
+#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */
#define E1000_STATUS_FUNC_SHIFT 2
-#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */
-#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */
-#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */
-#define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */
+#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */
+#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */
+#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */
+#define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */
#define E1000_STATUS_SPEED_MASK 0x000000C0
-#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */
-#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
-#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
-#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion
- by EEPROM/Flash */
-#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */
-#define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state. Clear on write '0'. */
-#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */
-#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */
-#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */
-#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */
-#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */
-#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */
-#define E1000_STATUS_BMC_SKU_0 0x00100000 /* BMC USB redirect disabled */
-#define E1000_STATUS_BMC_SKU_1 0x00200000 /* BMC SRAM disabled */
-#define E1000_STATUS_BMC_SKU_2 0x00400000 /* BMC SDRAM disabled */
-#define E1000_STATUS_BMC_CRYPTO 0x00800000 /* BMC crypto disabled */
-#define E1000_STATUS_BMC_LITE 0x01000000 /* BMC external code execution disabled */
-#define E1000_STATUS_RGMII_ENABLE 0x02000000 /* RGMII disabled */
+#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */
+#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
+#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
+#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion
+ by EEPROM/Flash */
+#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */
+#define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state. Clear on write '0'. */
+#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */
+#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */
+#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */
+#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */
+#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */
+#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */
+#define E1000_STATUS_BMC_SKU_0 0x00100000 /* BMC USB redirect disabled */
+#define E1000_STATUS_BMC_SKU_1 0x00200000 /* BMC SRAM disabled */
+#define E1000_STATUS_BMC_SKU_2 0x00400000 /* BMC SDRAM disabled */
+#define E1000_STATUS_BMC_CRYPTO 0x00800000 /* BMC crypto disabled */
+#define E1000_STATUS_BMC_LITE 0x01000000 /* BMC external code execution disabled */
+#define E1000_STATUS_RGMII_ENABLE 0x02000000 /* RGMII disabled */
#define E1000_STATUS_FUSE_8 0x04000000
#define E1000_STATUS_FUSE_9 0x08000000
-#define E1000_STATUS_SERDES0_DIS 0x10000000 /* SERDES disabled on port 0 */
-#define E1000_STATUS_SERDES1_DIS 0x20000000 /* SERDES disabled on port 1 */
+#define E1000_STATUS_SERDES0_DIS 0x10000000 /* SERDES disabled on port 0 */
+#define E1000_STATUS_SERDES1_DIS 0x20000000 /* SERDES disabled on port 1 */
-/* Constants used to intrepret the masked PCI-X bus speed. */
-#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus speed 50-66 MHz */
-#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed 66-100 MHz */
-#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus speed 100-133 MHz */
+/* Constants used to interpret the masked PCI-X bus speed. */
+#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus speed 50-66 MHz */
+#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed 66-100 MHz */
+#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus speed 100-133 MHz */
/* EEPROM/Flash Control */
-#define E1000_EECD_SK 0x00000001 /* EEPROM Clock */
-#define E1000_EECD_CS 0x00000002 /* EEPROM Chip Select */
-#define E1000_EECD_DI 0x00000004 /* EEPROM Data In */
-#define E1000_EECD_DO 0x00000008 /* EEPROM Data Out */
+#define E1000_EECD_SK 0x00000001 /* EEPROM Clock */
+#define E1000_EECD_CS 0x00000002 /* EEPROM Chip Select */
+#define E1000_EECD_DI 0x00000004 /* EEPROM Data In */
+#define E1000_EECD_DO 0x00000008 /* EEPROM Data Out */
#define E1000_EECD_FWE_MASK 0x00000030
-#define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */
-#define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */
+#define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */
+#define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */
#define E1000_EECD_FWE_SHIFT 4
-#define E1000_EECD_REQ 0x00000040 /* EEPROM Access Request */
-#define E1000_EECD_GNT 0x00000080 /* EEPROM Access Grant */
-#define E1000_EECD_PRES 0x00000100 /* EEPROM Present */
-#define E1000_EECD_SIZE 0x00000200 /* EEPROM Size (0=64 word 1=256 word) */
-#define E1000_EECD_ADDR_BITS 0x00000400 /* EEPROM Addressing bits based on type
- * (0-small, 1-large) */
-#define E1000_EECD_TYPE 0x00002000 /* EEPROM Type (1-SPI, 0-Microwire) */
+#define E1000_EECD_REQ 0x00000040 /* EEPROM Access Request */
+#define E1000_EECD_GNT 0x00000080 /* EEPROM Access Grant */
+#define E1000_EECD_PRES 0x00000100 /* EEPROM Present */
+#define E1000_EECD_SIZE 0x00000200 /* EEPROM Size (0=64 word 1=256 word) */
+#define E1000_EECD_ADDR_BITS 0x00000400 /* EEPROM Addressing bits based on type
+ * (0-small, 1-large) */
+#define E1000_EECD_TYPE 0x00002000 /* EEPROM Type (1-SPI, 0-Microwire) */
#ifndef E1000_EEPROM_GRANT_ATTEMPTS
-#define E1000_EEPROM_GRANT_ATTEMPTS 1000 /* EEPROM # attempts to gain grant */
+#define E1000_EEPROM_GRANT_ATTEMPTS 1000 /* EEPROM # attempts to gain grant */
#endif
-#define E1000_EECD_AUTO_RD 0x00000200 /* EEPROM Auto Read done */
-#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* EEprom Size */
+#define E1000_EECD_AUTO_RD 0x00000200 /* EEPROM Auto Read done */
+#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* EEprom Size */
#define E1000_EECD_SIZE_EX_SHIFT 11
-#define E1000_EECD_NVADDS 0x00018000 /* NVM Address Size */
-#define E1000_EECD_SELSHAD 0x00020000 /* Select Shadow RAM */
-#define E1000_EECD_INITSRAM 0x00040000 /* Initialize Shadow RAM */
-#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */
-#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */
-#define E1000_EECD_SHADV 0x00200000 /* Shadow RAM Data Valid */
-#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */
+#define E1000_EECD_NVADDS 0x00018000 /* NVM Address Size */
+#define E1000_EECD_SELSHAD 0x00020000 /* Select Shadow RAM */
+#define E1000_EECD_INITSRAM 0x00040000 /* Initialize Shadow RAM */
+#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */
+#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */
+#define E1000_EECD_SHADV 0x00200000 /* Shadow RAM Data Valid */
+#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */
#define E1000_EECD_SECVAL_SHIFT 22
#define E1000_STM_OPCODE 0xDB00
#define E1000_HICR_FW_RESET 0xC0
@@ -1593,12 +1506,12 @@ struct e1000_hw {
#define E1000_ICH_NVM_SIG_MASK 0xC0
/* EEPROM Read */
-#define E1000_EERD_START 0x00000001 /* Start Read */
-#define E1000_EERD_DONE 0x00000010 /* Read Done */
+#define E1000_EERD_START 0x00000001 /* Start Read */
+#define E1000_EERD_DONE 0x00000010 /* Read Done */
#define E1000_EERD_ADDR_SHIFT 8
-#define E1000_EERD_ADDR_MASK 0x0000FF00 /* Read Address */
+#define E1000_EERD_ADDR_MASK 0x0000FF00 /* Read Address */
#define E1000_EERD_DATA_SHIFT 16
-#define E1000_EERD_DATA_MASK 0xFFFF0000 /* Read Data */
+#define E1000_EERD_DATA_MASK 0xFFFF0000 /* Read Data */
/* SPI EEPROM Status Register */
#define EEPROM_STATUS_RDY_SPI 0x01
@@ -1608,25 +1521,25 @@ struct e1000_hw {
#define EEPROM_STATUS_WPEN_SPI 0x80
/* Extended Device Control */
-#define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */
-#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */
+#define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */
+#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */
#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN
-#define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */
-#define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */
-#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Defineable Pin 4 */
-#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Defineable Pin 5 */
+#define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */
+#define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */
+#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Defineable Pin 4 */
+#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Defineable Pin 5 */
#define E1000_CTRL_EXT_PHY_INT E1000_CTRL_EXT_SDP5_DATA
-#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Defineable Pin 6 */
-#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */
-#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */
-#define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */
-#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */
-#define E1000_CTRL_EXT_SDP7_DIR 0x00000800 /* Direction of SDP7 0=in 1=out */
-#define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */
-#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */
-#define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */
-#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */
-#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */
+#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Defineable Pin 6 */
+#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */
+#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */
+#define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */
+#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */
+#define E1000_CTRL_EXT_SDP7_DIR 0x00000800 /* Direction of SDP7 0=in 1=out */
+#define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */
+#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */
+#define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */
+#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */
+#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */
#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000
#define E1000_CTRL_EXT_LINK_MODE_TBI 0x00C00000
@@ -1638,11 +1551,11 @@ struct e1000_hw {
#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000
#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000
#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000
-#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */
-#define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */
-#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */
-#define E1000_CRTL_EXT_PB_PAREN 0x01000000 /* packet buffer parity error detection enabled */
-#define E1000_CTRL_EXT_DF_PAREN 0x02000000 /* descriptor FIFO parity error detection enable */
+#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */
+#define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */
+#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */
+#define E1000_CRTL_EXT_PB_PAREN 0x01000000 /* packet buffer parity error detection enabled */
+#define E1000_CTRL_EXT_DF_PAREN 0x02000000 /* descriptor FIFO parity error detection enable */
#define E1000_CTRL_EXT_GHOST_PAREN 0x40000000
/* MDI Control */
@@ -1742,167 +1655,167 @@ struct e1000_hw {
#define E1000_LEDCTL_MODE_LED_OFF 0xF
/* Receive Address */
-#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */
+#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */
/* Interrupt Cause Read */
-#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */
-#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */
-#define E1000_ICR_LSC 0x00000004 /* Link Status Change */
-#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */
-#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */
-#define E1000_ICR_RXO 0x00000040 /* rx overrun */
-#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */
-#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */
-#define E1000_ICR_RXCFG 0x00000400 /* RX /c/ ordered set */
-#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */
-#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */
-#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */
-#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */
+#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */
+#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */
+#define E1000_ICR_LSC 0x00000004 /* Link Status Change */
+#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */
+#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */
+#define E1000_ICR_RXO 0x00000040 /* rx overrun */
+#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */
+#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */
+#define E1000_ICR_RXCFG 0x00000400 /* RX /c/ ordered set */
+#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */
+#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */
+#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */
+#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */
#define E1000_ICR_TXD_LOW 0x00008000
#define E1000_ICR_SRPD 0x00010000
-#define E1000_ICR_ACK 0x00020000 /* Receive Ack frame */
-#define E1000_ICR_MNG 0x00040000 /* Manageability event */
-#define E1000_ICR_DOCK 0x00080000 /* Dock/Undock */
-#define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver should claim the interrupt */
-#define E1000_ICR_RXD_FIFO_PAR0 0x00100000 /* queue 0 Rx descriptor FIFO parity error */
-#define E1000_ICR_TXD_FIFO_PAR0 0x00200000 /* queue 0 Tx descriptor FIFO parity error */
-#define E1000_ICR_HOST_ARB_PAR 0x00400000 /* host arb read buffer parity error */
-#define E1000_ICR_PB_PAR 0x00800000 /* packet buffer parity error */
-#define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* queue 1 Rx descriptor FIFO parity error */
-#define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* queue 1 Tx descriptor FIFO parity error */
-#define E1000_ICR_ALL_PARITY 0x03F00000 /* all parity error bits */
-#define E1000_ICR_DSW 0x00000020 /* FW changed the status of DISSW bit in the FWSM */
-#define E1000_ICR_PHYINT 0x00001000 /* LAN connected device generates an interrupt */
-#define E1000_ICR_EPRST 0x00100000 /* ME handware reset occurs */
+#define E1000_ICR_ACK 0x00020000 /* Receive Ack frame */
+#define E1000_ICR_MNG 0x00040000 /* Manageability event */
+#define E1000_ICR_DOCK 0x00080000 /* Dock/Undock */
+#define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver should claim the interrupt */
+#define E1000_ICR_RXD_FIFO_PAR0 0x00100000 /* queue 0 Rx descriptor FIFO parity error */
+#define E1000_ICR_TXD_FIFO_PAR0 0x00200000 /* queue 0 Tx descriptor FIFO parity error */
+#define E1000_ICR_HOST_ARB_PAR 0x00400000 /* host arb read buffer parity error */
+#define E1000_ICR_PB_PAR 0x00800000 /* packet buffer parity error */
+#define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* queue 1 Rx descriptor FIFO parity error */
+#define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* queue 1 Tx descriptor FIFO parity error */
+#define E1000_ICR_ALL_PARITY 0x03F00000 /* all parity error bits */
+#define E1000_ICR_DSW 0x00000020 /* FW changed the status of DISSW bit in the FWSM */
+#define E1000_ICR_PHYINT 0x00001000 /* LAN connected device generates an interrupt */
+#define E1000_ICR_EPRST 0x00100000 /* ME hardware reset occurs */
/* Interrupt Cause Set */
-#define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
-#define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
-#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */
-#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
-#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
-#define E1000_ICS_RXO E1000_ICR_RXO /* rx overrun */
-#define E1000_ICS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
-#define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */
-#define E1000_ICS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */
-#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
-#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
-#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
-#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
+#define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
+#define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
+#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */
+#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
+#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
+#define E1000_ICS_RXO E1000_ICR_RXO /* rx overrun */
+#define E1000_ICS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
+#define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */
+#define E1000_ICS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */
+#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
+#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
+#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
+#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
#define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW
#define E1000_ICS_SRPD E1000_ICR_SRPD
-#define E1000_ICS_ACK E1000_ICR_ACK /* Receive Ack frame */
-#define E1000_ICS_MNG E1000_ICR_MNG /* Manageability event */
-#define E1000_ICS_DOCK E1000_ICR_DOCK /* Dock/Undock */
-#define E1000_ICS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */
-#define E1000_ICS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */
-#define E1000_ICS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */
-#define E1000_ICS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */
-#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
-#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
+#define E1000_ICS_ACK E1000_ICR_ACK /* Receive Ack frame */
+#define E1000_ICS_MNG E1000_ICR_MNG /* Manageability event */
+#define E1000_ICS_DOCK E1000_ICR_DOCK /* Dock/Undock */
+#define E1000_ICS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */
+#define E1000_ICS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */
+#define E1000_ICS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */
+#define E1000_ICS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */
+#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
+#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
#define E1000_ICS_DSW E1000_ICR_DSW
#define E1000_ICS_PHYINT E1000_ICR_PHYINT
#define E1000_ICS_EPRST E1000_ICR_EPRST
/* Interrupt Mask Set */
-#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
-#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
-#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */
-#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
-#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
-#define E1000_IMS_RXO E1000_ICR_RXO /* rx overrun */
-#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
-#define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */
-#define E1000_IMS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */
-#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
-#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
-#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
-#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
+#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
+#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
+#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */
+#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
+#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
+#define E1000_IMS_RXO E1000_ICR_RXO /* rx overrun */
+#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
+#define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */
+#define E1000_IMS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */
+#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
+#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
+#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
+#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW
#define E1000_IMS_SRPD E1000_ICR_SRPD
-#define E1000_IMS_ACK E1000_ICR_ACK /* Receive Ack frame */
-#define E1000_IMS_MNG E1000_ICR_MNG /* Manageability event */
-#define E1000_IMS_DOCK E1000_ICR_DOCK /* Dock/Undock */
-#define E1000_IMS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */
-#define E1000_IMS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */
-#define E1000_IMS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */
-#define E1000_IMS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */
-#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
-#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
+#define E1000_IMS_ACK E1000_ICR_ACK /* Receive Ack frame */
+#define E1000_IMS_MNG E1000_ICR_MNG /* Manageability event */
+#define E1000_IMS_DOCK E1000_ICR_DOCK /* Dock/Undock */
+#define E1000_IMS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */
+#define E1000_IMS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */
+#define E1000_IMS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */
+#define E1000_IMS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */
+#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
+#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
#define E1000_IMS_DSW E1000_ICR_DSW
#define E1000_IMS_PHYINT E1000_ICR_PHYINT
#define E1000_IMS_EPRST E1000_ICR_EPRST
/* Interrupt Mask Clear */
-#define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */
-#define E1000_IMC_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
-#define E1000_IMC_LSC E1000_ICR_LSC /* Link Status Change */
-#define E1000_IMC_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
-#define E1000_IMC_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
-#define E1000_IMC_RXO E1000_ICR_RXO /* rx overrun */
-#define E1000_IMC_RXT0 E1000_ICR_RXT0 /* rx timer intr */
-#define E1000_IMC_MDAC E1000_ICR_MDAC /* MDIO access complete */
-#define E1000_IMC_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */
-#define E1000_IMC_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
-#define E1000_IMC_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
-#define E1000_IMC_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
-#define E1000_IMC_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
+#define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */
+#define E1000_IMC_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
+#define E1000_IMC_LSC E1000_ICR_LSC /* Link Status Change */
+#define E1000_IMC_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
+#define E1000_IMC_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
+#define E1000_IMC_RXO E1000_ICR_RXO /* rx overrun */
+#define E1000_IMC_RXT0 E1000_ICR_RXT0 /* rx timer intr */
+#define E1000_IMC_MDAC E1000_ICR_MDAC /* MDIO access complete */
+#define E1000_IMC_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */
+#define E1000_IMC_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
+#define E1000_IMC_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
+#define E1000_IMC_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
+#define E1000_IMC_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
#define E1000_IMC_TXD_LOW E1000_ICR_TXD_LOW
#define E1000_IMC_SRPD E1000_ICR_SRPD
-#define E1000_IMC_ACK E1000_ICR_ACK /* Receive Ack frame */
-#define E1000_IMC_MNG E1000_ICR_MNG /* Manageability event */
-#define E1000_IMC_DOCK E1000_ICR_DOCK /* Dock/Undock */
-#define E1000_IMC_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */
-#define E1000_IMC_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */
-#define E1000_IMC_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */
-#define E1000_IMC_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */
-#define E1000_IMC_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
-#define E1000_IMC_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
+#define E1000_IMC_ACK E1000_ICR_ACK /* Receive Ack frame */
+#define E1000_IMC_MNG E1000_ICR_MNG /* Manageability event */
+#define E1000_IMC_DOCK E1000_ICR_DOCK /* Dock/Undock */
+#define E1000_IMC_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */
+#define E1000_IMC_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */
+#define E1000_IMC_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */
+#define E1000_IMC_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */
+#define E1000_IMC_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
+#define E1000_IMC_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
#define E1000_IMC_DSW E1000_ICR_DSW
#define E1000_IMC_PHYINT E1000_ICR_PHYINT
#define E1000_IMC_EPRST E1000_ICR_EPRST
/* Receive Control */
-#define E1000_RCTL_RST 0x00000001 /* Software reset */
-#define E1000_RCTL_EN 0x00000002 /* enable */
-#define E1000_RCTL_SBP 0x00000004 /* store bad packet */
-#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */
-#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */
-#define E1000_RCTL_LPE 0x00000020 /* long packet enable */
-#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */
-#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */
-#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */
-#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */
-#define E1000_RCTL_DTYP_MASK 0x00000C00 /* Descriptor type mask */
-#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */
-#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */
-#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min threshold size */
-#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min threshold size */
-#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */
-#define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */
-#define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */
-#define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */
-#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */
-#define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */
-#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */
+#define E1000_RCTL_RST 0x00000001 /* Software reset */
+#define E1000_RCTL_EN 0x00000002 /* enable */
+#define E1000_RCTL_SBP 0x00000004 /* store bad packet */
+#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */
+#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */
+#define E1000_RCTL_LPE 0x00000020 /* long packet enable */
+#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */
+#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */
+#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */
+#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */
+#define E1000_RCTL_DTYP_MASK 0x00000C00 /* Descriptor type mask */
+#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */
+#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */
+#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min threshold size */
+#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min threshold size */
+#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */
+#define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */
+#define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */
+#define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */
+#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */
+#define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */
+#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */
/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
-#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */
-#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */
-#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */
-#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */
+#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */
+#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */
+#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */
+#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */
/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
-#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */
-#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */
-#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */
-#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */
-#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */
-#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */
-#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */
-#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */
-#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */
-#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */
-#define E1000_RCTL_FLXBUF_MASK 0x78000000 /* Flexible buffer size */
-#define E1000_RCTL_FLXBUF_SHIFT 27 /* Flexible buffer shift */
+#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */
+#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */
+#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */
+#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */
+#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */
+#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */
+#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */
+#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */
+#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */
+#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */
+#define E1000_RCTL_FLXBUF_MASK 0x78000000 /* Flexible buffer size */
+#define E1000_RCTL_FLXBUF_SHIFT 27 /* Flexible buffer shift */
/* Use byte values for the following shift parameters
* Usage:
@@ -1925,10 +1838,10 @@ struct e1000_hw {
#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000
#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000
-#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */
-#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */
-#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */
-#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */
+#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */
+#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */
+#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */
+#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */
/* SW_W_SYNC definitions */
#define E1000_SWFW_EEP_SM 0x0001
@@ -1937,17 +1850,17 @@ struct e1000_hw {
#define E1000_SWFW_MAC_CSR_SM 0x0008
/* Receive Descriptor */
-#define E1000_RDT_DELAY 0x0000ffff /* Delay timer (1=1024us) */
-#define E1000_RDT_FPDB 0x80000000 /* Flush descriptor block */
-#define E1000_RDLEN_LEN 0x0007ff80 /* descriptor length */
-#define E1000_RDH_RDH 0x0000ffff /* receive descriptor head */
-#define E1000_RDT_RDT 0x0000ffff /* receive descriptor tail */
+#define E1000_RDT_DELAY 0x0000ffff /* Delay timer (1=1024us) */
+#define E1000_RDT_FPDB 0x80000000 /* Flush descriptor block */
+#define E1000_RDLEN_LEN 0x0007ff80 /* descriptor length */
+#define E1000_RDH_RDH 0x0000ffff /* receive descriptor head */
+#define E1000_RDT_RDT 0x0000ffff /* receive descriptor tail */
/* Flow Control */
-#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */
-#define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */
-#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */
-#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */
+#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */
+#define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */
+#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */
+#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */
/* Header split receive */
#define E1000_RFCTL_ISCSI_DIS 0x00000001
@@ -1967,66 +1880,64 @@ struct e1000_hw {
#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000
/* Receive Descriptor Control */
-#define E1000_RXDCTL_PTHRESH 0x0000003F /* RXDCTL Prefetch Threshold */
-#define E1000_RXDCTL_HTHRESH 0x00003F00 /* RXDCTL Host Threshold */
-#define E1000_RXDCTL_WTHRESH 0x003F0000 /* RXDCTL Writeback Threshold */
-#define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */
+#define E1000_RXDCTL_PTHRESH 0x0000003F /* RXDCTL Prefetch Threshold */
+#define E1000_RXDCTL_HTHRESH 0x00003F00 /* RXDCTL Host Threshold */
+#define E1000_RXDCTL_WTHRESH 0x003F0000 /* RXDCTL Writeback Threshold */
+#define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */
/* Transmit Descriptor Control */
-#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */
-#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */
-#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */
-#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */
-#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */
-#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
-#define E1000_TXDCTL_COUNT_DESC 0x00400000 /* Enable the counting of desc.
- still to be processed. */
+#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */
+#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */
+#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */
+#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */
+#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */
+#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
+#define E1000_TXDCTL_COUNT_DESC 0x00400000 /* Enable the counting of desc.
+ still to be processed. */
/* Transmit Configuration Word */
-#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */
-#define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */
-#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */
-#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */
-#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */
-#define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */
-#define E1000_TXCW_NP 0x00008000 /* TXCW next page */
-#define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */
-#define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */
-#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */
+#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */
+#define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */
+#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */
+#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */
+#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */
+#define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */
+#define E1000_TXCW_NP 0x00008000 /* TXCW next page */
+#define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */
+#define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */
+#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */
/* Receive Configuration Word */
-#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */
-#define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */
-#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */
-#define E1000_RXCW_CC 0x10000000 /* Receive config change */
-#define E1000_RXCW_C 0x20000000 /* Receive config */
-#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */
-#define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */
+#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */
+#define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */
+#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */
+#define E1000_RXCW_CC 0x10000000 /* Receive config change */
+#define E1000_RXCW_C 0x20000000 /* Receive config */
+#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */
+#define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */
/* Transmit Control */
-#define E1000_TCTL_RST 0x00000001 /* software reset */
-#define E1000_TCTL_EN 0x00000002 /* enable tx */
-#define E1000_TCTL_BCE 0x00000004 /* busy check enable */
-#define E1000_TCTL_PSP 0x00000008 /* pad short packets */
-#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */
-#define E1000_TCTL_COLD 0x003ff000 /* collision distance */
-#define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */
-#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */
-#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */
-#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */
-#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */
+#define E1000_TCTL_RST 0x00000001 /* software reset */
+#define E1000_TCTL_EN 0x00000002 /* enable tx */
+#define E1000_TCTL_BCE 0x00000004 /* busy check enable */
+#define E1000_TCTL_PSP 0x00000008 /* pad short packets */
+#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */
+#define E1000_TCTL_COLD 0x003ff000 /* collision distance */
+#define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */
+#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */
+#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */
+#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */
+#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */
/* Extended Transmit Control */
-#define E1000_TCTL_EXT_BST_MASK 0x000003FF /* Backoff Slot Time */
-#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
-
-#define DEFAULT_80003ES2LAN_TCTL_EXT_GCEX 0x00010000
+#define E1000_TCTL_EXT_BST_MASK 0x000003FF /* Backoff Slot Time */
+#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
/* Receive Checksum Control */
-#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */
-#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */
-#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */
-#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */
-#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */
-#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */
+#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */
+#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */
+#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */
+#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */
+#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */
+#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */
/* Multiple Receive Queue Control */
#define E1000_MRQC_ENABLE_MASK 0x00000003
@@ -2042,141 +1953,141 @@ struct e1000_hw {
/* Definitions for power management and wakeup registers */
/* Wake Up Control */
-#define E1000_WUC_APME 0x00000001 /* APM Enable */
-#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */
-#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */
-#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */
-#define E1000_WUC_SPM 0x80000000 /* Enable SPM */
+#define E1000_WUC_APME 0x00000001 /* APM Enable */
+#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */
+#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */
+#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */
+#define E1000_WUC_SPM 0x80000000 /* Enable SPM */
/* Wake Up Filter Control */
-#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
-#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */
-#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */
-#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */
-#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */
-#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */
-#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */
-#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */
-#define E1000_WUFC_IGNORE_TCO 0x00008000 /* Ignore WakeOn TCO packets */
-#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */
-#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */
-#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */
-#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */
-#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */
-#define E1000_WUFC_FLX_OFFSET 16 /* Offset to the Flexible Filters bits */
-#define E1000_WUFC_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */
+#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
+#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */
+#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */
+#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */
+#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */
+#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */
+#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */
+#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */
+#define E1000_WUFC_IGNORE_TCO 0x00008000 /* Ignore WakeOn TCO packets */
+#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */
+#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */
+#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */
+#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */
+#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */
+#define E1000_WUFC_FLX_OFFSET 16 /* Offset to the Flexible Filters bits */
+#define E1000_WUFC_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */
/* Wake Up Status */
-#define E1000_WUS_LNKC 0x00000001 /* Link Status Changed */
-#define E1000_WUS_MAG 0x00000002 /* Magic Packet Received */
-#define E1000_WUS_EX 0x00000004 /* Directed Exact Received */
-#define E1000_WUS_MC 0x00000008 /* Directed Multicast Received */
-#define E1000_WUS_BC 0x00000010 /* Broadcast Received */
-#define E1000_WUS_ARP 0x00000020 /* ARP Request Packet Received */
-#define E1000_WUS_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Received */
-#define E1000_WUS_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Received */
-#define E1000_WUS_FLX0 0x00010000 /* Flexible Filter 0 Match */
-#define E1000_WUS_FLX1 0x00020000 /* Flexible Filter 1 Match */
-#define E1000_WUS_FLX2 0x00040000 /* Flexible Filter 2 Match */
-#define E1000_WUS_FLX3 0x00080000 /* Flexible Filter 3 Match */
-#define E1000_WUS_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */
+#define E1000_WUS_LNKC 0x00000001 /* Link Status Changed */
+#define E1000_WUS_MAG 0x00000002 /* Magic Packet Received */
+#define E1000_WUS_EX 0x00000004 /* Directed Exact Received */
+#define E1000_WUS_MC 0x00000008 /* Directed Multicast Received */
+#define E1000_WUS_BC 0x00000010 /* Broadcast Received */
+#define E1000_WUS_ARP 0x00000020 /* ARP Request Packet Received */
+#define E1000_WUS_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Received */
+#define E1000_WUS_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Received */
+#define E1000_WUS_FLX0 0x00010000 /* Flexible Filter 0 Match */
+#define E1000_WUS_FLX1 0x00020000 /* Flexible Filter 1 Match */
+#define E1000_WUS_FLX2 0x00040000 /* Flexible Filter 2 Match */
+#define E1000_WUS_FLX3 0x00080000 /* Flexible Filter 3 Match */
+#define E1000_WUS_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */
/* Management Control */
-#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */
-#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */
-#define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */
-#define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */
-#define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */
-#define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */
-#define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */
-#define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */
-#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */
-#define E1000_MANC_NEIGHBOR_EN 0x00004000 /* Enable Neighbor Discovery
- * Filtering */
-#define E1000_MANC_ARP_RES_EN 0x00008000 /* Enable ARP response Filtering */
-#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */
-#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */
-#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */
-#define E1000_MANC_RCV_ALL 0x00080000 /* Receive All Enabled */
-#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */
-#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 /* Enable MAC address
- * filtering */
-#define E1000_MANC_EN_MNG2HOST 0x00200000 /* Enable MNG packets to host
- * memory */
-#define E1000_MANC_EN_IP_ADDR_FILTER 0x00400000 /* Enable IP address
- * filtering */
-#define E1000_MANC_EN_XSUM_FILTER 0x00800000 /* Enable checksum filtering */
-#define E1000_MANC_BR_EN 0x01000000 /* Enable broadcast filtering */
-#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */
-#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */
-#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */
-#define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */
-#define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */
-#define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */
-
-#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */
-#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */
+#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */
+#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */
+#define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */
+#define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */
+#define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */
+#define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */
+#define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */
+#define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */
+#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */
+#define E1000_MANC_NEIGHBOR_EN 0x00004000 /* Enable Neighbor Discovery
+ * Filtering */
+#define E1000_MANC_ARP_RES_EN 0x00008000 /* Enable ARP response Filtering */
+#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */
+#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */
+#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */
+#define E1000_MANC_RCV_ALL 0x00080000 /* Receive All Enabled */
+#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */
+#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 /* Enable MAC address
+ * filtering */
+#define E1000_MANC_EN_MNG2HOST 0x00200000 /* Enable MNG packets to host
+ * memory */
+#define E1000_MANC_EN_IP_ADDR_FILTER 0x00400000 /* Enable IP address
+ * filtering */
+#define E1000_MANC_EN_XSUM_FILTER 0x00800000 /* Enable checksum filtering */
+#define E1000_MANC_BR_EN 0x01000000 /* Enable broadcast filtering */
+#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */
+#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */
+#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */
+#define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */
+#define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */
+#define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */
+
+#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */
+#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */
/* SW Semaphore Register */
-#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */
-#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */
-#define E1000_SWSM_WMNG 0x00000004 /* Wake MNG Clock */
-#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */
+#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */
+#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */
+#define E1000_SWSM_WMNG 0x00000004 /* Wake MNG Clock */
+#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */
/* FW Semaphore Register */
-#define E1000_FWSM_MODE_MASK 0x0000000E /* FW mode */
+#define E1000_FWSM_MODE_MASK 0x0000000E /* FW mode */
#define E1000_FWSM_MODE_SHIFT 1
-#define E1000_FWSM_FW_VALID 0x00008000 /* FW established a valid mode */
+#define E1000_FWSM_FW_VALID 0x00008000 /* FW established a valid mode */
-#define E1000_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI reset */
-#define E1000_FWSM_DISSW 0x10000000 /* FW disable SW Write Access */
-#define E1000_FWSM_SKUSEL_MASK 0x60000000 /* LAN SKU select */
+#define E1000_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI reset */
+#define E1000_FWSM_DISSW 0x10000000 /* FW disable SW Write Access */
+#define E1000_FWSM_SKUSEL_MASK 0x60000000 /* LAN SKU select */
#define E1000_FWSM_SKUEL_SHIFT 29
-#define E1000_FWSM_SKUSEL_EMB 0x0 /* Embedded SKU */
-#define E1000_FWSM_SKUSEL_CONS 0x1 /* Consumer SKU */
-#define E1000_FWSM_SKUSEL_PERF_100 0x2 /* Perf & Corp 10/100 SKU */
-#define E1000_FWSM_SKUSEL_PERF_GBE 0x3 /* Perf & Copr GbE SKU */
+#define E1000_FWSM_SKUSEL_EMB 0x0 /* Embedded SKU */
+#define E1000_FWSM_SKUSEL_CONS 0x1 /* Consumer SKU */
+#define E1000_FWSM_SKUSEL_PERF_100 0x2 /* Perf & Corp 10/100 SKU */
+#define E1000_FWSM_SKUSEL_PERF_GBE 0x3 /* Perf & Copr GbE SKU */
/* FFLT Debug Register */
-#define E1000_FFLT_DBG_INVC 0x00100000 /* Invalid /C/ code handling */
+#define E1000_FFLT_DBG_INVC 0x00100000 /* Invalid /C/ code handling */
typedef enum {
- e1000_mng_mode_none = 0,
- e1000_mng_mode_asf,
- e1000_mng_mode_pt,
- e1000_mng_mode_ipmi,
- e1000_mng_mode_host_interface_only
+ e1000_mng_mode_none = 0,
+ e1000_mng_mode_asf,
+ e1000_mng_mode_pt,
+ e1000_mng_mode_ipmi,
+ e1000_mng_mode_host_interface_only
} e1000_mng_mode;
-/* Host Inteface Control Register */
-#define E1000_HICR_EN 0x00000001 /* Enable Bit - RO */
-#define E1000_HICR_C 0x00000002 /* Driver sets this bit when done
- * to put command in RAM */
-#define E1000_HICR_SV 0x00000004 /* Status Validity */
-#define E1000_HICR_FWR 0x00000080 /* FW reset. Set by the Host */
+/* Host Interface Control Register */
+#define E1000_HICR_EN 0x00000001 /* Enable Bit - RO */
+#define E1000_HICR_C 0x00000002 /* Driver sets this bit when done
+ * to put command in RAM */
+#define E1000_HICR_SV 0x00000004 /* Status Validity */
+#define E1000_HICR_FWR 0x00000080 /* FW reset. Set by the Host */
/* Host Interface Command Interface - Address range 0x8800-0x8EFF */
-#define E1000_HI_MAX_DATA_LENGTH 252 /* Host Interface data length */
-#define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Number of bytes in range */
-#define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Number of dwords in range */
-#define E1000_HI_COMMAND_TIMEOUT 500 /* Time in ms to process HI command */
+#define E1000_HI_MAX_DATA_LENGTH 252 /* Host Interface data length */
+#define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Number of bytes in range */
+#define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Number of dwords in range */
+#define E1000_HI_COMMAND_TIMEOUT 500 /* Time in ms to process HI command */
struct e1000_host_command_header {
- u8 command_id;
- u8 command_length;
- u8 command_options; /* I/F bits for command, status for return */
- u8 checksum;
+ u8 command_id;
+ u8 command_length;
+ u8 command_options; /* I/F bits for command, status for return */
+ u8 checksum;
};
struct e1000_host_command_info {
- struct e1000_host_command_header command_header; /* Command Head/Command Result Head has 4 bytes */
- u8 command_data[E1000_HI_MAX_DATA_LENGTH]; /* Command data can length 0..252 */
+ struct e1000_host_command_header command_header; /* Command Head/Command Result Head has 4 bytes */
+ u8 command_data[E1000_HI_MAX_DATA_LENGTH]; /* Command data can length 0..252 */
};
/* Host SMB register #0 */
-#define E1000_HSMC0R_CLKIN 0x00000001 /* SMB Clock in */
-#define E1000_HSMC0R_DATAIN 0x00000002 /* SMB Data in */
-#define E1000_HSMC0R_DATAOUT 0x00000004 /* SMB Data out */
-#define E1000_HSMC0R_CLKOUT 0x00000008 /* SMB Clock out */
+#define E1000_HSMC0R_CLKIN 0x00000001 /* SMB Clock in */
+#define E1000_HSMC0R_DATAIN 0x00000002 /* SMB Data in */
+#define E1000_HSMC0R_DATAOUT 0x00000004 /* SMB Data out */
+#define E1000_HSMC0R_CLKOUT 0x00000008 /* SMB Clock out */
/* Host SMB register #1 */
#define E1000_HSMC1R_CLKIN E1000_HSMC0R_CLKIN
@@ -2185,10 +2096,10 @@ struct e1000_host_command_info {
#define E1000_HSMC1R_CLKOUT E1000_HSMC0R_CLKOUT
/* FW Status Register */
-#define E1000_FWSTS_FWS_MASK 0x000000FF /* FW Status */
+#define E1000_FWSTS_FWS_MASK 0x000000FF /* FW Status */
/* Wake Up Packet Length */
-#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */
+#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */
#define E1000_MDALIGN 4096
@@ -2242,24 +2153,24 @@ struct e1000_host_command_info {
#define PCI_EX_LINK_WIDTH_SHIFT 4
/* EEPROM Commands - Microwire */
-#define EEPROM_READ_OPCODE_MICROWIRE 0x6 /* EEPROM read opcode */
-#define EEPROM_WRITE_OPCODE_MICROWIRE 0x5 /* EEPROM write opcode */
-#define EEPROM_ERASE_OPCODE_MICROWIRE 0x7 /* EEPROM erase opcode */
-#define EEPROM_EWEN_OPCODE_MICROWIRE 0x13 /* EEPROM erase/write enable */
-#define EEPROM_EWDS_OPCODE_MICROWIRE 0x10 /* EEPROM erast/write disable */
+#define EEPROM_READ_OPCODE_MICROWIRE 0x6 /* EEPROM read opcode */
+#define EEPROM_WRITE_OPCODE_MICROWIRE 0x5 /* EEPROM write opcode */
+#define EEPROM_ERASE_OPCODE_MICROWIRE 0x7 /* EEPROM erase opcode */
+#define EEPROM_EWEN_OPCODE_MICROWIRE 0x13 /* EEPROM erase/write enable */
+#define EEPROM_EWDS_OPCODE_MICROWIRE 0x10 /* EEPROM erase/write disable */
/* EEPROM Commands - SPI */
-#define EEPROM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */
-#define EEPROM_READ_OPCODE_SPI 0x03 /* EEPROM read opcode */
-#define EEPROM_WRITE_OPCODE_SPI 0x02 /* EEPROM write opcode */
-#define EEPROM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */
-#define EEPROM_WREN_OPCODE_SPI 0x06 /* EEPROM set Write Enable latch */
-#define EEPROM_WRDI_OPCODE_SPI 0x04 /* EEPROM reset Write Enable latch */
-#define EEPROM_RDSR_OPCODE_SPI 0x05 /* EEPROM read Status register */
-#define EEPROM_WRSR_OPCODE_SPI 0x01 /* EEPROM write Status register */
-#define EEPROM_ERASE4K_OPCODE_SPI 0x20 /* EEPROM ERASE 4KB */
-#define EEPROM_ERASE64K_OPCODE_SPI 0xD8 /* EEPROM ERASE 64KB */
-#define EEPROM_ERASE256_OPCODE_SPI 0xDB /* EEPROM ERASE 256B */
+#define EEPROM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */
+#define EEPROM_READ_OPCODE_SPI 0x03 /* EEPROM read opcode */
+#define EEPROM_WRITE_OPCODE_SPI 0x02 /* EEPROM write opcode */
+#define EEPROM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */
+#define EEPROM_WREN_OPCODE_SPI 0x06 /* EEPROM set Write Enable latch */
+#define EEPROM_WRDI_OPCODE_SPI 0x04 /* EEPROM reset Write Enable latch */
+#define EEPROM_RDSR_OPCODE_SPI 0x05 /* EEPROM read Status register */
+#define EEPROM_WRSR_OPCODE_SPI 0x01 /* EEPROM write Status register */
+#define EEPROM_ERASE4K_OPCODE_SPI 0x20 /* EEPROM ERASE 4KB */
+#define EEPROM_ERASE64K_OPCODE_SPI 0xD8 /* EEPROM ERASE 64KB */
+#define EEPROM_ERASE256_OPCODE_SPI 0xDB /* EEPROM ERASE 256B */
/* EEPROM Size definitions */
#define EEPROM_WORD_SIZE_SHIFT 6
@@ -2270,7 +2181,7 @@ struct e1000_host_command_info {
#define EEPROM_COMPAT 0x0003
#define EEPROM_ID_LED_SETTINGS 0x0004
#define EEPROM_VERSION 0x0005
-#define EEPROM_SERDES_AMPLITUDE 0x0006 /* For SERDES output amplitude adjustment. */
+#define EEPROM_SERDES_AMPLITUDE 0x0006 /* For SERDES output amplitude adjustment. */
#define EEPROM_PHY_CLASS_WORD 0x0007
#define EEPROM_INIT_CONTROL1_REG 0x000A
#define EEPROM_INIT_CONTROL2_REG 0x000F
@@ -2283,22 +2194,16 @@ struct e1000_host_command_info {
#define EEPROM_FLASH_VERSION 0x0032
#define EEPROM_CHECKSUM_REG 0x003F
-#define E1000_EEPROM_CFG_DONE 0x00040000 /* MNG config cycle done */
-#define E1000_EEPROM_CFG_DONE_PORT_1 0x00080000 /* ...for second port */
+#define E1000_EEPROM_CFG_DONE 0x00040000 /* MNG config cycle done */
+#define E1000_EEPROM_CFG_DONE_PORT_1 0x00080000 /* ...for second port */
/* Word definitions for ID LED Settings */
#define ID_LED_RESERVED_0000 0x0000
#define ID_LED_RESERVED_FFFF 0xFFFF
-#define ID_LED_RESERVED_82573 0xF746
-#define ID_LED_DEFAULT_82573 0x1811
#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \
(ID_LED_OFF1_OFF2 << 8) | \
(ID_LED_DEF1_DEF2 << 4) | \
(ID_LED_DEF1_DEF2))
-#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
- (ID_LED_DEF1_OFF2 << 8) | \
- (ID_LED_DEF1_ON2 << 4) | \
- (ID_LED_DEF1_DEF2))
#define ID_LED_DEF1_DEF2 0x1
#define ID_LED_DEF1_ON2 0x2
#define ID_LED_DEF1_OFF2 0x3
@@ -2313,7 +2218,6 @@ struct e1000_host_command_info {
#define IGP_ACTIVITY_LED_ENABLE 0x0300
#define IGP_LED3_MODE 0x07000000
-
/* Mask bits for SERDES amplitude adjustment in Word 6 of the EEPROM */
#define EEPROM_SERDES_AMPLITUDE_MASK 0x000F
@@ -2384,11 +2288,8 @@ struct e1000_host_command_info {
#define DEFAULT_82542_TIPG_IPGR2 10
#define DEFAULT_82543_TIPG_IPGR2 6
-#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7
#define E1000_TIPG_IPGR2_SHIFT 20
-#define DEFAULT_80003ES2LAN_TIPG_IPGT_10_100 0x00000009
-#define DEFAULT_80003ES2LAN_TIPG_IPGT_1000 0x00000008
#define E1000_TXDMAC_DPP 0x00000001
/* Adaptive IFS defines */
@@ -2421,9 +2322,9 @@ struct e1000_host_command_info {
#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020
/* PBA constants */
-#define E1000_PBA_8K 0x0008 /* 8KB, default Rx allocation */
-#define E1000_PBA_12K 0x000C /* 12KB, default Rx allocation */
-#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */
+#define E1000_PBA_8K 0x0008 /* 8KB, default Rx allocation */
+#define E1000_PBA_12K 0x000C /* 12KB, default Rx allocation */
+#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */
#define E1000_PBA_20K 0x0014
#define E1000_PBA_22K 0x0016
#define E1000_PBA_24K 0x0018
@@ -2432,7 +2333,7 @@ struct e1000_host_command_info {
#define E1000_PBA_34K 0x0022
#define E1000_PBA_38K 0x0026
#define E1000_PBA_40K 0x0028
-#define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */
+#define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */
#define E1000_PBS_16K E1000_PBA_16K
@@ -2442,9 +2343,9 @@ struct e1000_host_command_info {
#define FLOW_CONTROL_TYPE 0x8808
/* The historical defaults for the flow control values are given below. */
-#define FC_DEFAULT_HI_THRESH (0x8000) /* 32KB */
-#define FC_DEFAULT_LO_THRESH (0x4000) /* 16KB */
-#define FC_DEFAULT_TX_TIMER (0x100) /* ~130 us */
+#define FC_DEFAULT_HI_THRESH (0x8000) /* 32KB */
+#define FC_DEFAULT_LO_THRESH (0x4000) /* 16KB */
+#define FC_DEFAULT_TX_TIMER (0x100) /* ~130 us */
/* PCIX Config space */
#define PCIX_COMMAND_REGISTER 0xE6
@@ -2458,7 +2359,6 @@ struct e1000_host_command_info {
#define PCIX_STATUS_HI_MMRBC_4K 0x3
#define PCIX_STATUS_HI_MMRBC_2K 0x2
-
/* Number of bits required to shift right the "pause" bits from the
* EEPROM (bits 13:12) to the "pause" (bits 8:7) field in the TXCW register.
*/
@@ -2479,14 +2379,11 @@ struct e1000_host_command_info {
*/
#define ILOS_SHIFT 3
-
#define RECEIVE_BUFFER_ALIGN_SIZE (256)
/* Number of milliseconds we wait for auto-negotiation to complete */
#define LINK_UP_TIMEOUT 500
-/* Number of 100 microseconds we wait for PCI Express master disable */
-#define MASTER_DISABLE_TIMEOUT 800
/* Number of milliseconds we wait for Eeprom auto read bit done after MAC reset */
#define AUTO_READ_DONE_TIMEOUT 10
/* Number of milliseconds we wait for PHY configuration done after MAC reset */
@@ -2534,7 +2431,6 @@ struct e1000_host_command_info {
(((length) > (adapter)->min_frame_size) && \
((length) <= ((adapter)->max_frame_size + VLAN_TAG_SIZE + 1)))))
-
/* Structures, enums, and macros for the PHY */
/* Bit definitions for the Management Data IO (MDIO) and Management Data
@@ -2551,49 +2447,49 @@ struct e1000_host_command_info {
/* PHY 1000 MII Register/Bit Definitions */
/* PHY Registers defined by IEEE */
-#define PHY_CTRL 0x00 /* Control Register */
-#define PHY_STATUS 0x01 /* Status Regiser */
-#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */
-#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */
-#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */
-#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */
-#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */
-#define PHY_NEXT_PAGE_TX 0x07 /* Next Page TX */
-#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */
-#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */
-#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
-#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */
-
-#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */
-#define MAX_PHY_MULTI_PAGE_REG 0xF /* Registers equal on all pages */
+#define PHY_CTRL 0x00 /* Control Register */
+#define PHY_STATUS 0x01 /* Status Register */
+#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */
+#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */
+#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */
+#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */
+#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */
+#define PHY_NEXT_PAGE_TX 0x07 /* Next Page TX */
+#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */
+#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */
+#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
+#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */
+
+#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */
+#define MAX_PHY_MULTI_PAGE_REG 0xF /* Registers equal on all pages */
/* M88E1000 Specific Registers */
-#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */
-#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */
-#define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */
-#define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */
-#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */
-#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */
-
-#define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */
-#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */
-#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */
-#define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */
-#define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */
+#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */
+#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */
+#define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */
+#define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */
+#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */
+#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */
+
+#define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */
+#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */
+#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */
+#define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */
+#define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */
#define IGP01E1000_IEEE_REGS_PAGE 0x0000
#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300
#define IGP01E1000_IEEE_FORCE_GIGA 0x0140
/* IGP01E1000 Specific Registers */
-#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* PHY Specific Port Config Register */
-#define IGP01E1000_PHY_PORT_STATUS 0x11 /* PHY Specific Status Register */
-#define IGP01E1000_PHY_PORT_CTRL 0x12 /* PHY Specific Control Register */
-#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health Register */
-#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO Register */
-#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality Register */
+#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* PHY Specific Port Config Register */
+#define IGP01E1000_PHY_PORT_STATUS 0x11 /* PHY Specific Status Register */
+#define IGP01E1000_PHY_PORT_CTRL 0x12 /* PHY Specific Control Register */
+#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health Register */
+#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO Register */
+#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality Register */
#define IGP02E1000_PHY_POWER_MGMT 0x19
-#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* PHY Page Select Core Register */
+#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* PHY Page Select Core Register */
/* IGP01E1000 AGC Registers - stores the cable length values*/
#define IGP01E1000_PHY_AGC_A 0x1172
@@ -2636,192 +2532,119 @@ struct e1000_host_command_info {
#define IGP01E1000_ANALOG_REGS_PAGE 0x20C0
-/* Bits...
- * 15-5: page
- * 4-0: register offset
- */
-#define GG82563_PAGE_SHIFT 5
-#define GG82563_REG(page, reg) \
- (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
-#define GG82563_MIN_ALT_REG 30
-
-/* GG82563 Specific Registers */
-#define GG82563_PHY_SPEC_CTRL \
- GG82563_REG(0, 16) /* PHY Specific Control */
-#define GG82563_PHY_SPEC_STATUS \
- GG82563_REG(0, 17) /* PHY Specific Status */
-#define GG82563_PHY_INT_ENABLE \
- GG82563_REG(0, 18) /* Interrupt Enable */
-#define GG82563_PHY_SPEC_STATUS_2 \
- GG82563_REG(0, 19) /* PHY Specific Status 2 */
-#define GG82563_PHY_RX_ERR_CNTR \
- GG82563_REG(0, 21) /* Receive Error Counter */
-#define GG82563_PHY_PAGE_SELECT \
- GG82563_REG(0, 22) /* Page Select */
-#define GG82563_PHY_SPEC_CTRL_2 \
- GG82563_REG(0, 26) /* PHY Specific Control 2 */
-#define GG82563_PHY_PAGE_SELECT_ALT \
- GG82563_REG(0, 29) /* Alternate Page Select */
-#define GG82563_PHY_TEST_CLK_CTRL \
- GG82563_REG(0, 30) /* Test Clock Control (use reg. 29 to select) */
-
-#define GG82563_PHY_MAC_SPEC_CTRL \
- GG82563_REG(2, 21) /* MAC Specific Control Register */
-#define GG82563_PHY_MAC_SPEC_CTRL_2 \
- GG82563_REG(2, 26) /* MAC Specific Control 2 */
-
-#define GG82563_PHY_DSP_DISTANCE \
- GG82563_REG(5, 26) /* DSP Distance */
-
-/* Page 193 - Port Control Registers */
-#define GG82563_PHY_KMRN_MODE_CTRL \
- GG82563_REG(193, 16) /* Kumeran Mode Control */
-#define GG82563_PHY_PORT_RESET \
- GG82563_REG(193, 17) /* Port Reset */
-#define GG82563_PHY_REVISION_ID \
- GG82563_REG(193, 18) /* Revision ID */
-#define GG82563_PHY_DEVICE_ID \
- GG82563_REG(193, 19) /* Device ID */
-#define GG82563_PHY_PWR_MGMT_CTRL \
- GG82563_REG(193, 20) /* Power Management Control */
-#define GG82563_PHY_RATE_ADAPT_CTRL \
- GG82563_REG(193, 25) /* Rate Adaptation Control */
-
-/* Page 194 - KMRN Registers */
-#define GG82563_PHY_KMRN_FIFO_CTRL_STAT \
- GG82563_REG(194, 16) /* FIFO's Control/Status */
-#define GG82563_PHY_KMRN_CTRL \
- GG82563_REG(194, 17) /* Control */
-#define GG82563_PHY_INBAND_CTRL \
- GG82563_REG(194, 18) /* Inband Control */
-#define GG82563_PHY_KMRN_DIAGNOSTIC \
- GG82563_REG(194, 19) /* Diagnostic */
-#define GG82563_PHY_ACK_TIMEOUTS \
- GG82563_REG(194, 20) /* Acknowledge Timeouts */
-#define GG82563_PHY_ADV_ABILITY \
- GG82563_REG(194, 21) /* Advertised Ability */
-#define GG82563_PHY_LINK_PARTNER_ADV_ABILITY \
- GG82563_REG(194, 23) /* Link Partner Advertised Ability */
-#define GG82563_PHY_ADV_NEXT_PAGE \
- GG82563_REG(194, 24) /* Advertised Next Page */
-#define GG82563_PHY_LINK_PARTNER_ADV_NEXT_PAGE \
- GG82563_REG(194, 25) /* Link Partner Advertised Next page */
-#define GG82563_PHY_KMRN_MISC \
- GG82563_REG(194, 26) /* Misc. */
-
/* PHY Control Register */
-#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */
-#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */
-#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */
-#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */
-#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */
-#define MII_CR_POWER_DOWN 0x0800 /* Power down */
-#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */
-#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */
-#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */
-#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */
+#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */
+#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */
+#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */
+#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */
+#define MII_CR_POWER_DOWN 0x0800 /* Power down */
+#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */
+#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */
+#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */
/* PHY Status Register */
-#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */
-#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */
-#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */
-#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */
-#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */
-#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */
-#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */
-#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */
-#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */
-#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */
-#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */
-#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */
-#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */
-#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */
-#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */
+#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */
+#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */
+#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */
+#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */
+#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */
+#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */
+#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */
+#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */
+#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */
+#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */
+#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */
+#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */
+#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */
+#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */
+#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */
/* Autoneg Advertisement Register */
-#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */
-#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */
-#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */
-#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */
-#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */
-#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */
-#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */
-#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */
-#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */
-#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */
+#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */
+#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */
+#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */
+#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */
+#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */
+#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */
+#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */
+#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */
+#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */
+#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */
/* Link Partner Ability Register (Base Page) */
-#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */
-#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */
-#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */
-#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */
-#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */
-#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */
-#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */
-#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */
-#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */
-#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */
-#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */
+#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */
+#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */
+#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */
+#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */
+#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */
+#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */
+#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */
+#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */
+#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */
+#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */
+#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */
/* Autoneg Expansion Register */
-#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */
-#define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */
-#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */
-#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */
-#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP is 100TX Full Duplex Capable */
+#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */
+#define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */
+#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */
+#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */
+#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP is 100TX Full Duplex Capable */
/* Next Page TX Register */
-#define NPTX_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */
-#define NPTX_TOGGLE 0x0800 /* Toggles between exchanges
- * of different NP
- */
-#define NPTX_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg
- * 0 = cannot comply with msg
- */
-#define NPTX_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */
-#define NPTX_NEXT_PAGE 0x8000 /* 1 = addition NP will follow
- * 0 = sending last NP
- */
+#define NPTX_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */
+#define NPTX_TOGGLE 0x0800 /* Toggles between exchanges
+ * of different NP
+ */
+#define NPTX_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg
+ * 0 = cannot comply with msg
+ */
+#define NPTX_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */
+#define NPTX_NEXT_PAGE 0x8000 /* 1 = addition NP will follow
+ * 0 = sending last NP
+ */
/* Link Partner Next Page Register */
-#define LP_RNPR_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */
-#define LP_RNPR_TOGGLE 0x0800 /* Toggles between exchanges
- * of different NP
- */
-#define LP_RNPR_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg
- * 0 = cannot comply with msg
- */
-#define LP_RNPR_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */
-#define LP_RNPR_ACKNOWLDGE 0x4000 /* 1 = ACK / 0 = NO ACK */
-#define LP_RNPR_NEXT_PAGE 0x8000 /* 1 = addition NP will follow
- * 0 = sending last NP
- */
+#define LP_RNPR_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */
+#define LP_RNPR_TOGGLE 0x0800 /* Toggles between exchanges
+ * of different NP
+ */
+#define LP_RNPR_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg
+ * 0 = cannot comply with msg
+ */
+#define LP_RNPR_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */
+#define LP_RNPR_ACKNOWLDGE 0x4000 /* 1 = ACK / 0 = NO ACK */
+#define LP_RNPR_NEXT_PAGE 0x8000 /* 1 = addition NP will follow
+ * 0 = sending last NP
+ */
/* 1000BASE-T Control Register */
-#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */
-#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */
-#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */
-#define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */
- /* 0=DTE device */
-#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */
- /* 0=Configure PHY as Slave */
-#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */
- /* 0=Automatic Master/Slave config */
-#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */
-#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */
-#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */
-#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */
-#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */
+#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */
+#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */
+#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */
+#define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */
+ /* 0=DTE device */
+#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */
+ /* 0=Configure PHY as Slave */
+#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */
+ /* 0=Automatic Master/Slave config */
+#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */
+#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */
+#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */
+#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */
+#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */
/* 1000BASE-T Status Register */
-#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */
-#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */
-#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */
-#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */
-#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
-#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */
-#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local TX is Master, 0=Slave */
-#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */
+#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */
+#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */
+#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */
+#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */
+#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
+#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */
+#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local TX is Master, 0=Slave */
+#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */
#define SR_1000T_REMOTE_RX_STATUS_SHIFT 12
#define SR_1000T_LOCAL_RX_STATUS_SHIFT 13
#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5
@@ -2829,64 +2652,64 @@ struct e1000_host_command_info {
#define FFE_IDLE_ERR_COUNT_TIMEOUT_100 100
/* Extended Status Register */
-#define IEEE_ESR_1000T_HD_CAPS 0x1000 /* 1000T HD capable */
-#define IEEE_ESR_1000T_FD_CAPS 0x2000 /* 1000T FD capable */
-#define IEEE_ESR_1000X_HD_CAPS 0x4000 /* 1000X HD capable */
-#define IEEE_ESR_1000X_FD_CAPS 0x8000 /* 1000X FD capable */
+#define IEEE_ESR_1000T_HD_CAPS 0x1000 /* 1000T HD capable */
+#define IEEE_ESR_1000T_FD_CAPS 0x2000 /* 1000T FD capable */
+#define IEEE_ESR_1000X_HD_CAPS 0x4000 /* 1000X HD capable */
+#define IEEE_ESR_1000X_FD_CAPS 0x8000 /* 1000X FD capable */
-#define PHY_TX_POLARITY_MASK 0x0100 /* register 10h bit 8 (polarity bit) */
-#define PHY_TX_NORMAL_POLARITY 0 /* register 10h bit 8 (normal polarity) */
+#define PHY_TX_POLARITY_MASK 0x0100 /* register 10h bit 8 (polarity bit) */
+#define PHY_TX_NORMAL_POLARITY 0 /* register 10h bit 8 (normal polarity) */
-#define AUTO_POLARITY_DISABLE 0x0010 /* register 11h bit 4 */
- /* (0=enable, 1=disable) */
+#define AUTO_POLARITY_DISABLE 0x0010 /* register 11h bit 4 */
+ /* (0=enable, 1=disable) */
/* M88E1000 PHY Specific Control Register */
-#define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */
-#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */
-#define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */
-#define M88E1000_PSCR_CLK125_DISABLE 0x0010 /* 1=CLK125 low,
- * 0=CLK125 toggling
- */
-#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */
- /* Manual MDI configuration */
-#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */
-#define M88E1000_PSCR_AUTO_X_1000T 0x0040 /* 1000BASE-T: Auto crossover,
- * 100BASE-TX/10BASE-T:
- * MDI Mode
- */
-#define M88E1000_PSCR_AUTO_X_MODE 0x0060 /* Auto crossover enabled
- * all speeds.
- */
+#define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */
+#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */
+#define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */
+#define M88E1000_PSCR_CLK125_DISABLE 0x0010 /* 1=CLK125 low,
+ * 0=CLK125 toggling
+ */
+#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */
+ /* Manual MDI configuration */
+#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */
+#define M88E1000_PSCR_AUTO_X_1000T 0x0040 /* 1000BASE-T: Auto crossover,
+ * 100BASE-TX/10BASE-T:
+ * MDI Mode
+ */
+#define M88E1000_PSCR_AUTO_X_MODE 0x0060 /* Auto crossover enabled
+ * all speeds.
+ */
#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE 0x0080
- /* 1=Enable Extended 10BASE-T distance
- * (Lower 10BASE-T RX Threshold)
- * 0=Normal 10BASE-T RX Threshold */
+ /* 1=Enable Extended 10BASE-T distance
+ * (Lower 10BASE-T RX Threshold)
+ * 0=Normal 10BASE-T RX Threshold */
#define M88E1000_PSCR_MII_5BIT_ENABLE 0x0100
- /* 1=5-Bit interface in 100BASE-TX
- * 0=MII interface in 100BASE-TX */
-#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */
-#define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */
-#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */
+ /* 1=5-Bit interface in 100BASE-TX
+ * 0=MII interface in 100BASE-TX */
+#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */
+#define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */
+#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */
#define M88E1000_PSCR_POLARITY_REVERSAL_SHIFT 1
#define M88E1000_PSCR_AUTO_X_MODE_SHIFT 5
#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT 7
/* M88E1000 PHY Specific Status Register */
-#define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */
-#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */
-#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */
-#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */
-#define M88E1000_PSSR_CABLE_LENGTH 0x0380 /* 0=<50M;1=50-80M;2=80-110M;
- * 3=110-140M;4=>140M */
-#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */
-#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */
-#define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */
-#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */
-#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */
-#define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */
-#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */
-#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */
+#define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */
+#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */
+#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */
+#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */
+#define M88E1000_PSSR_CABLE_LENGTH 0x0380 /* 0=<50M;1=50-80M;2=80-110M;
+ * 3=110-140M;4=>140M */
+#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */
+#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */
+#define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */
+#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */
+#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */
+#define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */
+#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */
+#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */
#define M88E1000_PSSR_REV_POLARITY_SHIFT 1
#define M88E1000_PSSR_DOWNSHIFT_SHIFT 5
@@ -2894,12 +2717,12 @@ struct e1000_host_command_info {
#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
/* M88E1000 Extended PHY Specific Control Register */
-#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */
-#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000 /* 1=Lost lock detect enabled.
- * Will assert lost lock and bring
- * link down if idle not seen
- * within 1ms in 1000BASE-T
- */
+#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */
+#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000 /* 1=Lost lock detect enabled.
+ * Will assert lost lock and bring
+ * link down if idle not seen
+ * within 1ms in 1000BASE-T
+ */
/* Number of times we will attempt to autonegotiate before downshifting if we
* are the master */
#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
@@ -2914,9 +2737,9 @@ struct e1000_host_command_info {
#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100
#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X 0x0200
#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X 0x0300
-#define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */
-#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */
-#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */
+#define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */
+#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */
+#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */
/* M88EC018 Rev 2 specific DownShift settings */
#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00
@@ -2938,18 +2761,18 @@ struct e1000_host_command_info {
#define IGP01E1000_PSCFR_DISABLE_TRANSMIT 0x2000
/* IGP01E1000 Specific Port Status Register - R/O */
-#define IGP01E1000_PSSR_AUTONEG_FAILED 0x0001 /* RO LH SC */
+#define IGP01E1000_PSSR_AUTONEG_FAILED 0x0001 /* RO LH SC */
#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002
#define IGP01E1000_PSSR_CABLE_LENGTH 0x007C
#define IGP01E1000_PSSR_FULL_DUPLEX 0x0200
#define IGP01E1000_PSSR_LINK_UP 0x0400
#define IGP01E1000_PSSR_MDIX 0x0800
-#define IGP01E1000_PSSR_SPEED_MASK 0xC000 /* speed bits mask */
+#define IGP01E1000_PSSR_SPEED_MASK 0xC000 /* speed bits mask */
#define IGP01E1000_PSSR_SPEED_10MBPS 0x4000
#define IGP01E1000_PSSR_SPEED_100MBPS 0x8000
#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000
-#define IGP01E1000_PSSR_CABLE_LENGTH_SHIFT 0x0002 /* shift right 2 */
-#define IGP01E1000_PSSR_MDIX_SHIFT 0x000B /* shift right 11 */
+#define IGP01E1000_PSSR_CABLE_LENGTH_SHIFT 0x0002 /* shift right 2 */
+#define IGP01E1000_PSSR_MDIX_SHIFT 0x000B /* shift right 11 */
/* IGP01E1000 Specific Port Control Register - R/W */
#define IGP01E1000_PSCR_TP_LOOPBACK 0x0010
@@ -2957,16 +2780,16 @@ struct e1000_host_command_info {
#define IGP01E1000_PSCR_TEN_CRS_SELECT 0x0400
#define IGP01E1000_PSCR_FLIP_CHIP 0x0800
#define IGP01E1000_PSCR_AUTO_MDIX 0x1000
-#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0-MDI, 1-MDIX */
+#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0-MDI, 1-MDIX */
/* IGP01E1000 Specific Port Link Health Register */
#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000
#define IGP01E1000_PLHR_GIG_SCRAMBLER_ERROR 0x4000
#define IGP01E1000_PLHR_MASTER_FAULT 0x2000
#define IGP01E1000_PLHR_MASTER_RESOLUTION 0x1000
-#define IGP01E1000_PLHR_GIG_REM_RCVR_NOK 0x0800 /* LH */
-#define IGP01E1000_PLHR_IDLE_ERROR_CNT_OFLOW 0x0400 /* LH */
-#define IGP01E1000_PLHR_DATA_ERR_1 0x0200 /* LH */
+#define IGP01E1000_PLHR_GIG_REM_RCVR_NOK 0x0800 /* LH */
+#define IGP01E1000_PLHR_IDLE_ERROR_CNT_OFLOW 0x0400 /* LH */
+#define IGP01E1000_PLHR_DATA_ERR_1 0x0200 /* LH */
#define IGP01E1000_PLHR_DATA_ERR_0 0x0100
#define IGP01E1000_PLHR_AUTONEG_FAULT 0x0040
#define IGP01E1000_PLHR_AUTONEG_ACTIVE 0x0010
@@ -2981,9 +2804,9 @@ struct e1000_host_command_info {
#define IGP01E1000_MSE_CHANNEL_B 0x0F00
#define IGP01E1000_MSE_CHANNEL_A 0xF000
-#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */
-#define IGP02E1000_PM_D3_LPLU 0x0004 /* Enable LPLU in non-D0a modes */
-#define IGP02E1000_PM_D0_LPLU 0x0002 /* Enable LPLU in D0a mode */
+#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */
+#define IGP02E1000_PM_D3_LPLU 0x0004 /* Enable LPLU in non-D0a modes */
+#define IGP02E1000_PM_D0_LPLU 0x0002 /* Enable LPLU in D0a mode */
/* IGP01E1000 DSP reset macros */
#define DSP_RESET_ENABLE 0x0
@@ -2992,8 +2815,8 @@ struct e1000_host_command_info {
/* IGP01E1000 & IGP02E1000 AGC Registers */
-#define IGP01E1000_AGC_LENGTH_SHIFT 7 /* Coarse - 13:11, Fine - 10:7 */
-#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Coarse - 15:13, Fine - 12:9 */
+#define IGP01E1000_AGC_LENGTH_SHIFT 7 /* Coarse - 13:11, Fine - 10:7 */
+#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Coarse - 15:13, Fine - 12:9 */
/* IGP02E1000 AGC Register Length 9-bit mask */
#define IGP02E1000_AGC_LENGTH_MASK 0x7F
@@ -3011,9 +2834,9 @@ struct e1000_host_command_info {
#define IGP01E1000_PHY_POLARITY_MASK 0x0078
/* IGP01E1000 GMII FIFO Register */
-#define IGP01E1000_GMII_FLEX_SPD 0x10 /* Enable flexible speed
- * on Link-Up */
-#define IGP01E1000_GMII_SPD 0x20 /* Enable SPD */
+#define IGP01E1000_GMII_FLEX_SPD 0x10 /* Enable flexible speed
+ * on Link-Up */
+#define IGP01E1000_GMII_SPD 0x20 /* Enable SPD */
/* IGP01E1000 Analog Register */
#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS 0x20D1
@@ -3032,114 +2855,6 @@ struct e1000_host_command_info {
#define IGP01E1000_ANALOG_FUSE_FINE_1 0x0080
#define IGP01E1000_ANALOG_FUSE_FINE_10 0x0500
-/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
-#define GG82563_PSCR_DISABLE_JABBER 0x0001 /* 1=Disable Jabber */
-#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Polarity Reversal Disabled */
-#define GG82563_PSCR_POWER_DOWN 0x0004 /* 1=Power Down */
-#define GG82563_PSCR_COPPER_TRANSMITER_DISABLE 0x0008 /* 1=Transmitter Disabled */
-#define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060
-#define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI configuration */
-#define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX configuration */
-#define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Automatic crossover */
-#define GG82563_PSCR_ENALBE_EXTENDED_DISTANCE 0x0080 /* 1=Enable Extended Distance */
-#define GG82563_PSCR_ENERGY_DETECT_MASK 0x0300
-#define GG82563_PSCR_ENERGY_DETECT_OFF 0x0000 /* 00,01=Off */
-#define GG82563_PSCR_ENERGY_DETECT_RX 0x0200 /* 10=Sense on Rx only (Energy Detect) */
-#define GG82563_PSCR_ENERGY_DETECT_RX_TM 0x0300 /* 11=Sense and Tx NLP */
-#define GG82563_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force Link Good */
-#define GG82563_PSCR_DOWNSHIFT_ENABLE 0x0800 /* 1=Enable Downshift */
-#define GG82563_PSCR_DOWNSHIFT_COUNTER_MASK 0x7000
-#define GG82563_PSCR_DOWNSHIFT_COUNTER_SHIFT 12
-
-/* PHY Specific Status Register (Page 0, Register 17) */
-#define GG82563_PSSR_JABBER 0x0001 /* 1=Jabber */
-#define GG82563_PSSR_POLARITY 0x0002 /* 1=Polarity Reversed */
-#define GG82563_PSSR_LINK 0x0008 /* 1=Link is Up */
-#define GG82563_PSSR_ENERGY_DETECT 0x0010 /* 1=Sleep, 0=Active */
-#define GG82563_PSSR_DOWNSHIFT 0x0020 /* 1=Downshift */
-#define GG82563_PSSR_CROSSOVER_STATUS 0x0040 /* 1=MDIX, 0=MDI */
-#define GG82563_PSSR_RX_PAUSE_ENABLED 0x0100 /* 1=Receive Pause Enabled */
-#define GG82563_PSSR_TX_PAUSE_ENABLED 0x0200 /* 1=Transmit Pause Enabled */
-#define GG82563_PSSR_LINK_UP 0x0400 /* 1=Link Up */
-#define GG82563_PSSR_SPEED_DUPLEX_RESOLVED 0x0800 /* 1=Resolved */
-#define GG82563_PSSR_PAGE_RECEIVED 0x1000 /* 1=Page Received */
-#define GG82563_PSSR_DUPLEX 0x2000 /* 1-Full-Duplex */
-#define GG82563_PSSR_SPEED_MASK 0xC000
-#define GG82563_PSSR_SPEED_10MBPS 0x0000 /* 00=10Mbps */
-#define GG82563_PSSR_SPEED_100MBPS 0x4000 /* 01=100Mbps */
-#define GG82563_PSSR_SPEED_1000MBPS 0x8000 /* 10=1000Mbps */
-
-/* PHY Specific Status Register 2 (Page 0, Register 19) */
-#define GG82563_PSSR2_JABBER 0x0001 /* 1=Jabber */
-#define GG82563_PSSR2_POLARITY_CHANGED 0x0002 /* 1=Polarity Changed */
-#define GG82563_PSSR2_ENERGY_DETECT_CHANGED 0x0010 /* 1=Energy Detect Changed */
-#define GG82563_PSSR2_DOWNSHIFT_INTERRUPT 0x0020 /* 1=Downshift Detected */
-#define GG82563_PSSR2_MDI_CROSSOVER_CHANGE 0x0040 /* 1=Crossover Changed */
-#define GG82563_PSSR2_FALSE_CARRIER 0x0100 /* 1=False Carrier */
-#define GG82563_PSSR2_SYMBOL_ERROR 0x0200 /* 1=Symbol Error */
-#define GG82563_PSSR2_LINK_STATUS_CHANGED 0x0400 /* 1=Link Status Changed */
-#define GG82563_PSSR2_AUTO_NEG_COMPLETED 0x0800 /* 1=Auto-Neg Completed */
-#define GG82563_PSSR2_PAGE_RECEIVED 0x1000 /* 1=Page Received */
-#define GG82563_PSSR2_DUPLEX_CHANGED 0x2000 /* 1=Duplex Changed */
-#define GG82563_PSSR2_SPEED_CHANGED 0x4000 /* 1=Speed Changed */
-#define GG82563_PSSR2_AUTO_NEG_ERROR 0x8000 /* 1=Auto-Neg Error */
-
-/* PHY Specific Control Register 2 (Page 0, Register 26) */
-#define GG82563_PSCR2_10BT_POLARITY_FORCE 0x0002 /* 1=Force Negative Polarity */
-#define GG82563_PSCR2_1000MB_TEST_SELECT_MASK 0x000C
-#define GG82563_PSCR2_1000MB_TEST_SELECT_NORMAL 0x0000 /* 00,01=Normal Operation */
-#define GG82563_PSCR2_1000MB_TEST_SELECT_112NS 0x0008 /* 10=Select 112ns Sequence */
-#define GG82563_PSCR2_1000MB_TEST_SELECT_16NS 0x000C /* 11=Select 16ns Sequence */
-#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000 /* 1=Reverse Auto-Negotiation */
-#define GG82563_PSCR2_1000BT_DISABLE 0x4000 /* 1=Disable 1000BASE-T */
-#define GG82563_PSCR2_TRANSMITER_TYPE_MASK 0x8000
-#define GG82563_PSCR2_TRANSMITTER_TYPE_CLASS_B 0x0000 /* 0=Class B */
-#define GG82563_PSCR2_TRANSMITTER_TYPE_CLASS_A 0x8000 /* 1=Class A */
-
-/* MAC Specific Control Register (Page 2, Register 21) */
-/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
-#define GG82563_MSCR_TX_CLK_MASK 0x0007
-#define GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ 0x0004
-#define GG82563_MSCR_TX_CLK_100MBPS_25MHZ 0x0005
-#define GG82563_MSCR_TX_CLK_1000MBPS_2_5MHZ 0x0006
-#define GG82563_MSCR_TX_CLK_1000MBPS_25MHZ 0x0007
-
-#define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */
-
-/* DSP Distance Register (Page 5, Register 26) */
-#define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M;
- 1 = 50-80M;
- 2 = 80-110M;
- 3 = 110-140M;
- 4 = >140M */
-
-/* Kumeran Mode Control Register (Page 193, Register 16) */
-#define GG82563_KMCR_PHY_LEDS_EN 0x0020 /* 1=PHY LEDs, 0=Kumeran Inband LEDs */
-#define GG82563_KMCR_FORCE_LINK_UP 0x0040 /* 1=Force Link Up */
-#define GG82563_KMCR_SUPPRESS_SGMII_EPD_EXT 0x0080
-#define GG82563_KMCR_MDIO_BUS_SPEED_SELECT_MASK 0x0400
-#define GG82563_KMCR_MDIO_BUS_SPEED_SELECT 0x0400 /* 1=6.25MHz, 0=0.8MHz */
-#define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800
-
-/* Power Management Control Register (Page 193, Register 20) */
-#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001 /* 1=Enalbe SERDES Electrical Idle */
-#define GG82563_PMCR_DISABLE_PORT 0x0002 /* 1=Disable Port */
-#define GG82563_PMCR_DISABLE_SERDES 0x0004 /* 1=Disable SERDES */
-#define GG82563_PMCR_REVERSE_AUTO_NEG 0x0008 /* 1=Enable Reverse Auto-Negotiation */
-#define GG82563_PMCR_DISABLE_1000_NON_D0 0x0010 /* 1=Disable 1000Mbps Auto-Neg in non D0 */
-#define GG82563_PMCR_DISABLE_1000 0x0020 /* 1=Disable 1000Mbps Auto-Neg Always */
-#define GG82563_PMCR_REVERSE_AUTO_NEG_D0A 0x0040 /* 1=Enable D0a Reverse Auto-Negotiation */
-#define GG82563_PMCR_FORCE_POWER_STATE 0x0080 /* 1=Force Power State */
-#define GG82563_PMCR_PROGRAMMED_POWER_STATE_MASK 0x0300
-#define GG82563_PMCR_PROGRAMMED_POWER_STATE_DR 0x0000 /* 00=Dr */
-#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D0U 0x0100 /* 01=D0u */
-#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D0A 0x0200 /* 10=D0a */
-#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D3 0x0300 /* 11=D3 */
-
-/* In-Band Control Register (Page 194, Register 18) */
-#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding Use */
-
-
/* Bit definitions for valid PHY IDs. */
/* I = Integrated
* E = External
@@ -3154,8 +2869,6 @@ struct e1000_host_command_info {
#define M88E1011_I_REV_4 0x04
#define M88E1111_I_PHY_ID 0x01410CC0
#define L1LXT971A_PHY_ID 0x001378E0
-#define GG82563_E_PHY_ID 0x01410CA0
-
/* Bits...
* 15-5: page
@@ -3166,41 +2879,41 @@ struct e1000_host_command_info {
(((page) << PHY_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
#define IGP3_PHY_PORT_CTRL \
- PHY_REG(769, 17) /* Port General Configuration */
+ PHY_REG(769, 17) /* Port General Configuration */
#define IGP3_PHY_RATE_ADAPT_CTRL \
- PHY_REG(769, 25) /* Rate Adapter Control Register */
+ PHY_REG(769, 25) /* Rate Adapter Control Register */
#define IGP3_KMRN_FIFO_CTRL_STATS \
- PHY_REG(770, 16) /* KMRN FIFO's control/status register */
+ PHY_REG(770, 16) /* KMRN FIFO's control/status register */
#define IGP3_KMRN_POWER_MNG_CTRL \
- PHY_REG(770, 17) /* KMRN Power Management Control Register */
+ PHY_REG(770, 17) /* KMRN Power Management Control Register */
#define IGP3_KMRN_INBAND_CTRL \
- PHY_REG(770, 18) /* KMRN Inband Control Register */
+ PHY_REG(770, 18) /* KMRN Inband Control Register */
#define IGP3_KMRN_DIAG \
- PHY_REG(770, 19) /* KMRN Diagnostic register */
-#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 /* RX PCS is not synced */
+ PHY_REG(770, 19) /* KMRN Diagnostic register */
+#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 /* RX PCS is not synced */
#define IGP3_KMRN_ACK_TIMEOUT \
- PHY_REG(770, 20) /* KMRN Acknowledge Timeouts register */
+ PHY_REG(770, 20) /* KMRN Acknowledge Timeouts register */
#define IGP3_VR_CTRL \
- PHY_REG(776, 18) /* Voltage regulator control register */
-#define IGP3_VR_CTRL_MODE_SHUT 0x0200 /* Enter powerdown, shutdown VRs */
-#define IGP3_VR_CTRL_MODE_MASK 0x0300 /* Shutdown VR Mask */
+ PHY_REG(776, 18) /* Voltage regulator control register */
+#define IGP3_VR_CTRL_MODE_SHUT 0x0200 /* Enter powerdown, shutdown VRs */
+#define IGP3_VR_CTRL_MODE_MASK 0x0300 /* Shutdown VR Mask */
#define IGP3_CAPABILITY \
- PHY_REG(776, 19) /* IGP3 Capability Register */
+ PHY_REG(776, 19) /* IGP3 Capability Register */
/* Capabilities for SKU Control */
-#define IGP3_CAP_INITIATE_TEAM 0x0001 /* Able to initiate a team */
-#define IGP3_CAP_WFM 0x0002 /* Support WoL and PXE */
-#define IGP3_CAP_ASF 0x0004 /* Support ASF */
-#define IGP3_CAP_LPLU 0x0008 /* Support Low Power Link Up */
-#define IGP3_CAP_DC_AUTO_SPEED 0x0010 /* Support AC/DC Auto Link Speed */
-#define IGP3_CAP_SPD 0x0020 /* Support Smart Power Down */
-#define IGP3_CAP_MULT_QUEUE 0x0040 /* Support 2 tx & 2 rx queues */
-#define IGP3_CAP_RSS 0x0080 /* Support RSS */
-#define IGP3_CAP_8021PQ 0x0100 /* Support 802.1Q & 802.1p */
-#define IGP3_CAP_AMT_CB 0x0200 /* Support active manageability and circuit breaker */
+#define IGP3_CAP_INITIATE_TEAM 0x0001 /* Able to initiate a team */
+#define IGP3_CAP_WFM 0x0002 /* Support WoL and PXE */
+#define IGP3_CAP_ASF 0x0004 /* Support ASF */
+#define IGP3_CAP_LPLU 0x0008 /* Support Low Power Link Up */
+#define IGP3_CAP_DC_AUTO_SPEED 0x0010 /* Support AC/DC Auto Link Speed */
+#define IGP3_CAP_SPD 0x0020 /* Support Smart Power Down */
+#define IGP3_CAP_MULT_QUEUE 0x0040 /* Support 2 tx & 2 rx queues */
+#define IGP3_CAP_RSS 0x0080 /* Support RSS */
+#define IGP3_CAP_8021PQ 0x0100 /* Support 802.1Q & 802.1p */
+#define IGP3_CAP_AMT_CB 0x0200 /* Support active manageability and circuit breaker */
#define IGP3_PPC_JORDAN_EN 0x0001
#define IGP3_PPC_JORDAN_GIGA_SPEED 0x0002
@@ -3210,69 +2923,69 @@ struct e1000_host_command_info {
#define IGP3_KMRN_PMC_K0S_MODE1_EN_GIGA 0x0020
#define IGP3_KMRN_PMC_K0S_MODE1_EN_100 0x0040
-#define IGP3E1000_PHY_MISC_CTRL 0x1B /* Misc. Ctrl register */
-#define IGP3_PHY_MISC_DUPLEX_MANUAL_SET 0x1000 /* Duplex Manual Set */
+#define IGP3E1000_PHY_MISC_CTRL 0x1B /* Misc. Ctrl register */
+#define IGP3_PHY_MISC_DUPLEX_MANUAL_SET 0x1000 /* Duplex Manual Set */
#define IGP3_KMRN_EXT_CTRL PHY_REG(770, 18)
#define IGP3_KMRN_EC_DIS_INBAND 0x0080
#define IGP03E1000_E_PHY_ID 0x02A80390
-#define IFE_E_PHY_ID 0x02A80330 /* 10/100 PHY */
+#define IFE_E_PHY_ID 0x02A80330 /* 10/100 PHY */
#define IFE_PLUS_E_PHY_ID 0x02A80320
#define IFE_C_E_PHY_ID 0x02A80310
-#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 /* 100BaseTx Extended Status, Control and Address */
-#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY special control register */
-#define IFE_PHY_RCV_FALSE_CARRIER 0x13 /* 100BaseTx Receive False Carrier Counter */
-#define IFE_PHY_RCV_DISCONNECT 0x14 /* 100BaseTx Receive Disconnet Counter */
-#define IFE_PHY_RCV_ERROT_FRAME 0x15 /* 100BaseTx Receive Error Frame Counter */
-#define IFE_PHY_RCV_SYMBOL_ERR 0x16 /* Receive Symbol Error Counter */
-#define IFE_PHY_PREM_EOF_ERR 0x17 /* 100BaseTx Receive Premature End Of Frame Error Counter */
-#define IFE_PHY_RCV_EOF_ERR 0x18 /* 10BaseT Receive End Of Frame Error Counter */
-#define IFE_PHY_TX_JABBER_DETECT 0x19 /* 10BaseT Transmit Jabber Detect Counter */
-#define IFE_PHY_EQUALIZER 0x1A /* PHY Equalizer Control and Status */
-#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY special control and LED configuration */
-#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control register */
-#define IFE_PHY_HWI_CONTROL 0x1D /* Hardware Integrity Control (HWI) */
-
-#define IFE_PESC_REDUCED_POWER_DOWN_DISABLE 0x2000 /* Defaut 1 = Disable auto reduced power down */
-#define IFE_PESC_100BTX_POWER_DOWN 0x0400 /* Indicates the power state of 100BASE-TX */
-#define IFE_PESC_10BTX_POWER_DOWN 0x0200 /* Indicates the power state of 10BASE-T */
-#define IFE_PESC_POLARITY_REVERSED 0x0100 /* Indicates 10BASE-T polarity */
-#define IFE_PESC_PHY_ADDR_MASK 0x007C /* Bit 6:2 for sampled PHY address */
-#define IFE_PESC_SPEED 0x0002 /* Auto-negotiation speed result 1=100Mbs, 0=10Mbs */
-#define IFE_PESC_DUPLEX 0x0001 /* Auto-negotiation duplex result 1=Full, 0=Half */
+#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 /* 100BaseTx Extended Status, Control and Address */
+#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY special control register */
+#define IFE_PHY_RCV_FALSE_CARRIER 0x13 /* 100BaseTx Receive False Carrier Counter */
+#define IFE_PHY_RCV_DISCONNECT 0x14 /* 100BaseTx Receive Disconnect Counter */
+#define IFE_PHY_RCV_ERROT_FRAME 0x15 /* 100BaseTx Receive Error Frame Counter */
+#define IFE_PHY_RCV_SYMBOL_ERR 0x16 /* Receive Symbol Error Counter */
+#define IFE_PHY_PREM_EOF_ERR 0x17 /* 100BaseTx Receive Premature End Of Frame Error Counter */
+#define IFE_PHY_RCV_EOF_ERR 0x18 /* 10BaseT Receive End Of Frame Error Counter */
+#define IFE_PHY_TX_JABBER_DETECT 0x19 /* 10BaseT Transmit Jabber Detect Counter */
+#define IFE_PHY_EQUALIZER 0x1A /* PHY Equalizer Control and Status */
+#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY special control and LED configuration */
+#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control register */
+#define IFE_PHY_HWI_CONTROL 0x1D /* Hardware Integrity Control (HWI) */
+
+#define IFE_PESC_REDUCED_POWER_DOWN_DISABLE 0x2000 /* Default 1 = Disable auto reduced power down */
+#define IFE_PESC_100BTX_POWER_DOWN 0x0400 /* Indicates the power state of 100BASE-TX */
+#define IFE_PESC_10BTX_POWER_DOWN 0x0200 /* Indicates the power state of 10BASE-T */
+#define IFE_PESC_POLARITY_REVERSED 0x0100 /* Indicates 10BASE-T polarity */
+#define IFE_PESC_PHY_ADDR_MASK 0x007C /* Bit 6:2 for sampled PHY address */
+#define IFE_PESC_SPEED 0x0002 /* Auto-negotiation speed result 1=100Mbs, 0=10Mbs */
+#define IFE_PESC_DUPLEX 0x0001 /* Auto-negotiation duplex result 1=Full, 0=Half */
#define IFE_PESC_POLARITY_REVERSED_SHIFT 8
-#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100 /* 1 = Dyanmic Power Down disabled */
-#define IFE_PSC_FORCE_POLARITY 0x0020 /* 1=Reversed Polarity, 0=Normal */
-#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010 /* 1=Auto Polarity Disabled, 0=Enabled */
-#define IFE_PSC_JABBER_FUNC_DISABLE 0x0001 /* 1=Jabber Disabled, 0=Normal Jabber Operation */
+#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100 /* 1 = Dynamic Power Down disabled */
+#define IFE_PSC_FORCE_POLARITY 0x0020 /* 1=Reversed Polarity, 0=Normal */
+#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010 /* 1=Auto Polarity Disabled, 0=Enabled */
+#define IFE_PSC_JABBER_FUNC_DISABLE 0x0001 /* 1=Jabber Disabled, 0=Normal Jabber Operation */
#define IFE_PSC_FORCE_POLARITY_SHIFT 5
#define IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT 4
-#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable MDI/MDI-X feature, default 0=disabled */
-#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDIX-X, 0=force MDI */
-#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */
-#define IFE_PMC_AUTO_MDIX_COMPLETE 0x0010 /* Resolution algorithm is completed */
+#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable MDI/MDI-X feature, default 0=disabled */
+#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDIX-X, 0=force MDI */
+#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */
+#define IFE_PMC_AUTO_MDIX_COMPLETE 0x0010 /* Resolution algorithm is completed */
#define IFE_PMC_MDIX_MODE_SHIFT 6
-#define IFE_PHC_MDIX_RESET_ALL_MASK 0x0000 /* Disable auto MDI-X */
-
-#define IFE_PHC_HWI_ENABLE 0x8000 /* Enable the HWI feature */
-#define IFE_PHC_ABILITY_CHECK 0x4000 /* 1= Test Passed, 0=failed */
-#define IFE_PHC_TEST_EXEC 0x2000 /* PHY launch test pulses on the wire */
-#define IFE_PHC_HIGHZ 0x0200 /* 1 = Open Circuit */
-#define IFE_PHC_LOWZ 0x0400 /* 1 = Short Circuit */
-#define IFE_PHC_LOW_HIGH_Z_MASK 0x0600 /* Mask for indication type of problem on the line */
-#define IFE_PHC_DISTANCE_MASK 0x01FF /* Mask for distance to the cable problem, in 80cm granularity */
-#define IFE_PHC_RESET_ALL_MASK 0x0000 /* Disable HWI */
-#define IFE_PSCL_PROBE_MODE 0x0020 /* LED Probe mode */
-#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */
-#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */
-
-#define ICH_FLASH_COMMAND_TIMEOUT 5000 /* 5000 uSecs - adjusted */
-#define ICH_FLASH_ERASE_TIMEOUT 3000000 /* Up to 3 seconds - worst case */
-#define ICH_FLASH_CYCLE_REPEAT_COUNT 10 /* 10 cycles */
+#define IFE_PHC_MDIX_RESET_ALL_MASK 0x0000 /* Disable auto MDI-X */
+
+#define IFE_PHC_HWI_ENABLE 0x8000 /* Enable the HWI feature */
+#define IFE_PHC_ABILITY_CHECK 0x4000 /* 1= Test Passed, 0=failed */
+#define IFE_PHC_TEST_EXEC 0x2000 /* PHY launch test pulses on the wire */
+#define IFE_PHC_HIGHZ 0x0200 /* 1 = Open Circuit */
+#define IFE_PHC_LOWZ 0x0400 /* 1 = Short Circuit */
+#define IFE_PHC_LOW_HIGH_Z_MASK 0x0600 /* Mask for indication type of problem on the line */
+#define IFE_PHC_DISTANCE_MASK 0x01FF /* Mask for distance to the cable problem, in 80cm granularity */
+#define IFE_PHC_RESET_ALL_MASK 0x0000 /* Disable HWI */
+#define IFE_PSCL_PROBE_MODE 0x0020 /* LED Probe mode */
+#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */
+#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */
+
+#define ICH_FLASH_COMMAND_TIMEOUT 5000 /* 5000 uSecs - adjusted */
+#define ICH_FLASH_ERASE_TIMEOUT 3000000 /* Up to 3 seconds - worst case */
+#define ICH_FLASH_CYCLE_REPEAT_COUNT 10 /* 10 cycles */
#define ICH_FLASH_SEG_SIZE_256 256
#define ICH_FLASH_SEG_SIZE_4K 4096
#define ICH_FLASH_SEG_SIZE_64K 65536
@@ -3305,74 +3018,6 @@ struct e1000_host_command_info {
#define ICH_GFPREG_BASE_MASK 0x1FFF
#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
-/* ICH8 GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
-/* Offset 04h HSFSTS */
-union ich8_hws_flash_status {
- struct ich8_hsfsts {
-#ifdef __BIG_ENDIAN
- u16 reserved2 :6;
- u16 fldesvalid :1;
- u16 flockdn :1;
- u16 flcdone :1;
- u16 flcerr :1;
- u16 dael :1;
- u16 berasesz :2;
- u16 flcinprog :1;
- u16 reserved1 :2;
-#else
- u16 flcdone :1; /* bit 0 Flash Cycle Done */
- u16 flcerr :1; /* bit 1 Flash Cycle Error */
- u16 dael :1; /* bit 2 Direct Access error Log */
- u16 berasesz :2; /* bit 4:3 Block/Sector Erase Size */
- u16 flcinprog :1; /* bit 5 flash SPI cycle in Progress */
- u16 reserved1 :2; /* bit 13:6 Reserved */
- u16 reserved2 :6; /* bit 13:6 Reserved */
- u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
- u16 flockdn :1; /* bit 15 Flash Configuration Lock-Down */
-#endif
- } hsf_status;
- u16 regval;
-};
-
-/* ICH8 GbE Flash Hardware Sequencing Flash control Register bit breakdown */
-/* Offset 06h FLCTL */
-union ich8_hws_flash_ctrl {
- struct ich8_hsflctl {
-#ifdef __BIG_ENDIAN
- u16 fldbcount :2;
- u16 flockdn :6;
- u16 flcgo :1;
- u16 flcycle :2;
- u16 reserved :5;
-#else
- u16 flcgo :1; /* 0 Flash Cycle Go */
- u16 flcycle :2; /* 2:1 Flash Cycle */
- u16 reserved :5; /* 7:3 Reserved */
- u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
- u16 flockdn :6; /* 15:10 Reserved */
-#endif
- } hsf_ctrl;
- u16 regval;
-};
-
-/* ICH8 Flash Region Access Permissions */
-union ich8_hws_flash_regacc {
- struct ich8_flracc {
-#ifdef __BIG_ENDIAN
- u32 gmwag :8;
- u32 gmrag :8;
- u32 grwa :8;
- u32 grra :8;
-#else
- u32 grra :8; /* 0:7 GbE region Read Access */
- u32 grwa :8; /* 8:15 GbE region Write Access */
- u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
- u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
-#endif
- } hsf_flregacc;
- u16 regval;
-};
-
/* Miscellaneous PHY bit definitions. */
#define PHY_PREAMBLE 0xFFFFFFFF
#define PHY_SOF 0x01
@@ -3384,10 +3029,10 @@ union ich8_hws_flash_regacc {
#define MII_CR_SPEED_100 0x2000
#define MII_CR_SPEED_10 0x0000
#define E1000_PHY_ADDRESS 0x01
-#define PHY_AUTO_NEG_TIME 45 /* 4.5 Seconds */
-#define PHY_FORCE_TIME 20 /* 2.0 Seconds */
+#define PHY_AUTO_NEG_TIME 45 /* 4.5 Seconds */
+#define PHY_FORCE_TIME 20 /* 2.0 Seconds */
#define PHY_REVISION_MASK 0xFFFFFFF0
-#define DEVICE_SPEED_MASK 0x00000300 /* Device Ctrl Reg Speed Mask */
+#define DEVICE_SPEED_MASK 0x00000300 /* Device Ctrl Reg Speed Mask */
#define REG4_SPEED_MASK 0x01E0
#define REG9_SPEED_MASK 0x0300
#define ADVERTISE_10_HALF 0x0001
@@ -3396,8 +3041,8 @@ union ich8_hws_flash_regacc {
#define ADVERTISE_100_FULL 0x0008
#define ADVERTISE_1000_HALF 0x0010
#define ADVERTISE_1000_FULL 0x0020
-#define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x002F /* Everything but 1000-Half */
-#define AUTONEG_ADVERTISE_10_100_ALL 0x000F /* All 10/100 speeds*/
-#define AUTONEG_ADVERTISE_10_ALL 0x0003 /* 10Mbps Full & Half speeds*/
+#define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x002F /* Everything but 1000-Half */
+#define AUTONEG_ADVERTISE_10_100_ALL 0x000F /* All 10/100 speeds */
+#define AUTONEG_ADVERTISE_10_ALL 0x0003 /* 10Mbps Full & Half speeds */
#endif /* _E1000_HW_H_ */
diff --git a/drivers/net/e1000/e1000_main.c b/drivers/net/e1000/e1000_main.c
index c66dd4f9437..bcd192ca47b 100644
--- a/drivers/net/e1000/e1000_main.c
+++ b/drivers/net/e1000/e1000_main.c
@@ -31,7 +31,7 @@
char e1000_driver_name[] = "e1000";
static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
-#define DRV_VERSION "7.3.21-k3-NAPI"
+#define DRV_VERSION "7.3.21-k5-NAPI"
const char e1000_driver_version[] = DRV_VERSION;
static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
@@ -131,7 +131,6 @@ static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
static int e1000_set_mac(struct net_device *netdev, void *p);
static irqreturn_t e1000_intr(int irq, void *data);
-static irqreturn_t e1000_intr_msi(int irq, void *data);
static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
struct e1000_tx_ring *tx_ring);
static int e1000_clean(struct napi_struct *napi, int budget);
@@ -258,25 +257,14 @@ module_exit(e1000_exit_module);
static int e1000_request_irq(struct e1000_adapter *adapter)
{
- struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
irq_handler_t handler = e1000_intr;
int irq_flags = IRQF_SHARED;
int err;
- if (hw->mac_type >= e1000_82571) {
- adapter->have_msi = !pci_enable_msi(adapter->pdev);
- if (adapter->have_msi) {
- handler = e1000_intr_msi;
- irq_flags = 0;
- }
- }
-
err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
netdev);
if (err) {
- if (adapter->have_msi)
- pci_disable_msi(adapter->pdev);
DPRINTK(PROBE, ERR,
"Unable to allocate interrupt Error: %d\n", err);
}
@@ -289,9 +277,6 @@ static void e1000_free_irq(struct e1000_adapter *adapter)
struct net_device *netdev = adapter->netdev;
free_irq(adapter->pdev->irq, netdev);
-
- if (adapter->have_msi)
- pci_disable_msi(adapter->pdev);
}
/**
@@ -345,76 +330,6 @@ static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
}
}
-/**
- * e1000_release_hw_control - release control of the h/w to f/w
- * @adapter: address of board private structure
- *
- * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
- * For ASF and Pass Through versions of f/w this means that the
- * driver is no longer loaded. For AMT version (only with 82573) i
- * of the f/w this means that the network i/f is closed.
- *
- **/
-
-static void e1000_release_hw_control(struct e1000_adapter *adapter)
-{
- u32 ctrl_ext;
- u32 swsm;
- struct e1000_hw *hw = &adapter->hw;
-
- /* Let firmware taken over control of h/w */
- switch (hw->mac_type) {
- case e1000_82573:
- swsm = er32(SWSM);
- ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
- break;
- case e1000_82571:
- case e1000_82572:
- case e1000_80003es2lan:
- case e1000_ich8lan:
- ctrl_ext = er32(CTRL_EXT);
- ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
- break;
- default:
- break;
- }
-}
-
-/**
- * e1000_get_hw_control - get control of the h/w from f/w
- * @adapter: address of board private structure
- *
- * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
- * For ASF and Pass Through versions of f/w this means that
- * the driver is loaded. For AMT version (only with 82573)
- * of the f/w this means that the network i/f is open.
- *
- **/
-
-static void e1000_get_hw_control(struct e1000_adapter *adapter)
-{
- u32 ctrl_ext;
- u32 swsm;
- struct e1000_hw *hw = &adapter->hw;
-
- /* Let firmware know the driver has taken over */
- switch (hw->mac_type) {
- case e1000_82573:
- swsm = er32(SWSM);
- ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
- break;
- case e1000_82571:
- case e1000_82572:
- case e1000_80003es2lan:
- case e1000_ich8lan:
- ctrl_ext = er32(CTRL_EXT);
- ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
- break;
- default:
- break;
- }
-}
-
static void e1000_init_manageability(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
@@ -425,20 +340,6 @@ static void e1000_init_manageability(struct e1000_adapter *adapter)
/* disable hardware interception of ARP */
manc &= ~(E1000_MANC_ARP_EN);
- /* enable receiving management packets to the host */
- /* this will probably generate destination unreachable messages
- * from the host OS, but the packets will be handled on SMBUS */
- if (hw->has_manc2h) {
- u32 manc2h = er32(MANC2H);
-
- manc |= E1000_MANC_EN_MNG2HOST;
-#define E1000_MNG2HOST_PORT_623 (1 << 5)
-#define E1000_MNG2HOST_PORT_664 (1 << 6)
- manc2h |= E1000_MNG2HOST_PORT_623;
- manc2h |= E1000_MNG2HOST_PORT_664;
- ew32(MANC2H, manc2h);
- }
-
ew32(MANC, manc);
}
}
@@ -453,12 +354,6 @@ static void e1000_release_manageability(struct e1000_adapter *adapter)
/* re-enable hardware interception of ARP */
manc |= E1000_MANC_ARP_EN;
- if (hw->has_manc2h)
- manc &= ~E1000_MANC_EN_MNG2HOST;
-
- /* don't explicitly have to mess with MANC2H since
- * MANC has an enable disable that gates MANC2H */
-
ew32(MANC, manc);
}
}
@@ -563,15 +458,6 @@ static void e1000_power_down_phy(struct e1000_adapter *adapter)
if (er32(MANC) & E1000_MANC_SMBUS_EN)
goto out;
break;
- case e1000_82571:
- case e1000_82572:
- case e1000_82573:
- case e1000_80003es2lan:
- case e1000_ich8lan:
- if (e1000_check_mng_mode(hw) ||
- e1000_check_phy_reset_block(hw))
- goto out;
- break;
default:
goto out;
}
@@ -599,8 +485,7 @@ void e1000_down(struct e1000_adapter *adapter)
ew32(RCTL, rctl & ~E1000_RCTL_EN);
/* flush and sleep below */
- /* can be netif_tx_disable when NETIF_F_LLTX is removed */
- netif_stop_queue(netdev);
+ netif_tx_disable(netdev);
/* disable transmits in the hardware */
tctl = er32(TCTL);
@@ -671,16 +556,6 @@ void e1000_reset(struct e1000_adapter *adapter)
legacy_pba_adjust = true;
pba = E1000_PBA_30K;
break;
- case e1000_82571:
- case e1000_82572:
- case e1000_80003es2lan:
- pba = E1000_PBA_38K;
- break;
- case e1000_82573:
- pba = E1000_PBA_20K;
- break;
- case e1000_ich8lan:
- pba = E1000_PBA_8K;
case e1000_undefined:
case e1000_num_macs:
break;
@@ -744,16 +619,8 @@ void e1000_reset(struct e1000_adapter *adapter)
/* if short on rx space, rx wins and must trump tx
* adjustment or use Early Receive if available */
- if (pba < min_rx_space) {
- switch (hw->mac_type) {
- case e1000_82573:
- /* ERT enabled in e1000_configure_rx */
- break;
- default:
- pba = min_rx_space;
- break;
- }
- }
+ if (pba < min_rx_space)
+ pba = min_rx_space;
}
}
@@ -789,7 +656,6 @@ void e1000_reset(struct e1000_adapter *adapter)
/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
if (hw->mac_type >= e1000_82544 &&
- hw->mac_type <= e1000_82547_rev_2 &&
hw->autoneg == 1 &&
hw->autoneg_advertised == ADVERTISE_1000_FULL) {
u32 ctrl = er32(CTRL);
@@ -806,20 +672,6 @@ void e1000_reset(struct e1000_adapter *adapter)
e1000_reset_adaptive(hw);
e1000_phy_get_info(hw, &adapter->phy_info);
- if (!adapter->smart_power_down &&
- (hw->mac_type == e1000_82571 ||
- hw->mac_type == e1000_82572)) {
- u16 phy_data = 0;
- /* speed up time to link by disabling smart power down, ignore
- * the return value of this function because there is nothing
- * different we would do if it failed */
- e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- &phy_data);
- phy_data &= ~IGP02E1000_PM_SPD;
- e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
- phy_data);
- }
-
e1000_release_manageability(adapter);
}
@@ -1046,17 +898,6 @@ static int __devinit e1000_probe(struct pci_dev *pdev,
goto err_sw_init;
err = -EIO;
- /* Flash BAR mapping must happen after e1000_sw_init
- * because it depends on mac_type */
- if ((hw->mac_type == e1000_ich8lan) &&
- (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
- hw->flash_address = pci_ioremap_bar(pdev, 1);
- if (!hw->flash_address)
- goto err_flashmap;
- }
-
- if (e1000_check_phy_reset_block(hw))
- DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
if (hw->mac_type >= e1000_82543) {
netdev->features = NETIF_F_SG |
@@ -1064,21 +905,16 @@ static int __devinit e1000_probe(struct pci_dev *pdev,
NETIF_F_HW_VLAN_TX |
NETIF_F_HW_VLAN_RX |
NETIF_F_HW_VLAN_FILTER;
- if (hw->mac_type == e1000_ich8lan)
- netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
}
if ((hw->mac_type >= e1000_82544) &&
(hw->mac_type != e1000_82547))
netdev->features |= NETIF_F_TSO;
- if (hw->mac_type > e1000_82547_rev_2)
- netdev->features |= NETIF_F_TSO6;
if (pci_using_dac)
netdev->features |= NETIF_F_HIGHDMA;
netdev->vlan_features |= NETIF_F_TSO;
- netdev->vlan_features |= NETIF_F_TSO6;
netdev->vlan_features |= NETIF_F_HW_CSUM;
netdev->vlan_features |= NETIF_F_SG;
@@ -1153,15 +989,8 @@ static int __devinit e1000_probe(struct pci_dev *pdev,
EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
eeprom_apme_mask = E1000_EEPROM_82544_APM;
break;
- case e1000_ich8lan:
- e1000_read_eeprom(hw,
- EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
- eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
- break;
case e1000_82546:
case e1000_82546_rev_3:
- case e1000_82571:
- case e1000_80003es2lan:
if (er32(STATUS) & E1000_STATUS_FUNC_1){
e1000_read_eeprom(hw,
EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
@@ -1185,17 +1014,12 @@ static int __devinit e1000_probe(struct pci_dev *pdev,
break;
case E1000_DEV_ID_82546EB_FIBER:
case E1000_DEV_ID_82546GB_FIBER:
- case E1000_DEV_ID_82571EB_FIBER:
/* Wake events only supported on port A for dual fiber
* regardless of eeprom setting */
if (er32(STATUS) & E1000_STATUS_FUNC_1)
adapter->eeprom_wol = 0;
break;
case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
- case E1000_DEV_ID_82571EB_QUAD_COPPER:
- case E1000_DEV_ID_82571EB_QUAD_FIBER:
- case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
- case E1000_DEV_ID_82571PT_QUAD_COPPER:
/* if quad port adapter, disable WoL on all but port A */
if (global_quad_port_a != 0)
adapter->eeprom_wol = 0;
@@ -1213,39 +1037,18 @@ static int __devinit e1000_probe(struct pci_dev *pdev,
/* print bus type/speed/width info */
DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
- ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
- (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
- ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
- (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
+ ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
+ ((hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
(hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
(hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
(hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
- ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
- (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
- (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
- "32-bit"));
+ ((hw->bus_width == e1000_bus_width_64) ? "64-bit" : "32-bit"));
printk("%pM\n", netdev->dev_addr);
- if (hw->bus_type == e1000_bus_type_pci_express) {
- DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
- "longer be supported by this driver in the future.\n",
- pdev->vendor, pdev->device);
- DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
- "driver instead.\n");
- }
-
/* reset the hardware with the new settings */
e1000_reset(adapter);
- /* If the controller is 82573 and f/w is AMT, do not set
- * DRV_LOAD until the interface is up. For all other cases,
- * let the f/w know that the h/w is now under the control
- * of the driver. */
- if (hw->mac_type != e1000_82573 ||
- !e1000_check_mng_mode(hw))
- e1000_get_hw_control(adapter);
-
strcpy(netdev->name, "eth%d");
err = register_netdev(netdev);
if (err)
@@ -1260,14 +1063,11 @@ static int __devinit e1000_probe(struct pci_dev *pdev,
return 0;
err_register:
- e1000_release_hw_control(adapter);
err_eeprom:
- if (!e1000_check_phy_reset_block(hw))
- e1000_phy_hw_reset(hw);
+ e1000_phy_hw_reset(hw);
if (hw->flash_address)
iounmap(hw->flash_address);
-err_flashmap:
kfree(adapter->tx_ring);
kfree(adapter->rx_ring);
err_sw_init:
@@ -1298,18 +1098,18 @@ static void __devexit e1000_remove(struct pci_dev *pdev)
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
+ set_bit(__E1000_DOWN, &adapter->flags);
+ del_timer_sync(&adapter->tx_fifo_stall_timer);
+ del_timer_sync(&adapter->watchdog_timer);
+ del_timer_sync(&adapter->phy_info_timer);
+
cancel_work_sync(&adapter->reset_task);
e1000_release_manageability(adapter);
- /* Release control of h/w to f/w. If f/w is AMT enabled, this
- * would have already happened in close and is redundant. */
- e1000_release_hw_control(adapter);
-
unregister_netdev(netdev);
- if (!e1000_check_phy_reset_block(hw))
- e1000_phy_hw_reset(hw);
+ e1000_phy_hw_reset(hw);
kfree(adapter->tx_ring);
kfree(adapter->rx_ring);
@@ -1472,12 +1272,6 @@ static int e1000_open(struct net_device *netdev)
e1000_update_mng_vlan(adapter);
}
- /* If AMT is enabled, let the firmware know that the network
- * interface is now open */
- if (hw->mac_type == e1000_82573 &&
- e1000_check_mng_mode(hw))
- e1000_get_hw_control(adapter);
-
/* before we allocate an interrupt, we must be ready to handle it.
* Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
* as soon as we call pci_request_irq, so we have to setup our
@@ -1503,7 +1297,6 @@ static int e1000_open(struct net_device *netdev)
return E1000_SUCCESS;
err_req_irq:
- e1000_release_hw_control(adapter);
e1000_power_down_phy(adapter);
e1000_free_all_rx_resources(adapter);
err_setup_rx:
@@ -1548,12 +1341,6 @@ static int e1000_close(struct net_device *netdev)
e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
}
- /* If AMT is enabled, let the firmware know that the network
- * interface is now closed */
- if (hw->mac_type == e1000_82573 &&
- e1000_check_mng_mode(hw))
- e1000_release_hw_control(adapter);
-
return 0;
}
@@ -1692,7 +1479,7 @@ static void e1000_configure_tx(struct e1000_adapter *adapter)
{
u64 tdba;
struct e1000_hw *hw = &adapter->hw;
- u32 tdlen, tctl, tipg, tarc;
+ u32 tdlen, tctl, tipg;
u32 ipgr1, ipgr2;
/* Setup the HW Tx Head and Tail descriptor pointers */
@@ -1714,8 +1501,7 @@ static void e1000_configure_tx(struct e1000_adapter *adapter)
}
/* Set the default values for the Tx Inter Packet Gap timer */
- if (hw->mac_type <= e1000_82547_rev_2 &&
- (hw->media_type == e1000_media_type_fiber ||
+ if ((hw->media_type == e1000_media_type_fiber ||
hw->media_type == e1000_media_type_internal_serdes))
tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
else
@@ -1728,10 +1514,6 @@ static void e1000_configure_tx(struct e1000_adapter *adapter)
ipgr1 = DEFAULT_82542_TIPG_IPGR1;
ipgr2 = DEFAULT_82542_TIPG_IPGR2;
break;
- case e1000_80003es2lan:
- ipgr1 = DEFAULT_82543_TIPG_IPGR1;
- ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
- break;
default:
ipgr1 = DEFAULT_82543_TIPG_IPGR1;
ipgr2 = DEFAULT_82543_TIPG_IPGR2;
@@ -1754,21 +1536,6 @@ static void e1000_configure_tx(struct e1000_adapter *adapter)
tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
- if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
- tarc = er32(TARC0);
- /* set the speed mode bit, we'll clear it if we're not at
- * gigabit link later */
- tarc |= (1 << 21);
- ew32(TARC0, tarc);
- } else if (hw->mac_type == e1000_80003es2lan) {
- tarc = er32(TARC0);
- tarc |= 1;
- ew32(TARC0, tarc);
- tarc = er32(TARC1);
- tarc |= 1;
- ew32(TARC1, tarc);
- }
-
e1000_config_collision_dist(hw);
/* Setup Transmit Descriptor Settings for eop descriptor */
@@ -1804,7 +1571,6 @@ static void e1000_configure_tx(struct e1000_adapter *adapter)
static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
struct e1000_rx_ring *rxdr)
{
- struct e1000_hw *hw = &adapter->hw;
struct pci_dev *pdev = adapter->pdev;
int size, desc_len;
@@ -1817,10 +1583,7 @@ static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
}
memset(rxdr->buffer_info, 0, size);
- if (hw->mac_type <= e1000_82547_rev_2)
- desc_len = sizeof(struct e1000_rx_desc);
- else
- desc_len = sizeof(union e1000_rx_desc_packet_split);
+ desc_len = sizeof(struct e1000_rx_desc);
/* Round up to nearest 4K */
@@ -1977,7 +1740,7 @@ static void e1000_configure_rx(struct e1000_adapter *adapter)
{
u64 rdba;
struct e1000_hw *hw = &adapter->hw;
- u32 rdlen, rctl, rxcsum, ctrl_ext;
+ u32 rdlen, rctl, rxcsum;
if (adapter->netdev->mtu > ETH_DATA_LEN) {
rdlen = adapter->rx_ring[0].count *
@@ -2004,17 +1767,6 @@ static void e1000_configure_rx(struct e1000_adapter *adapter)
ew32(ITR, 1000000000 / (adapter->itr * 256));
}
- if (hw->mac_type >= e1000_82571) {
- ctrl_ext = er32(CTRL_EXT);
- /* Reset delay timers after every interrupt */
- ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
- /* Auto-Mask interrupts upon ICR access */
- ctrl_ext |= E1000_CTRL_EXT_IAME;
- ew32(IAM, 0xffffffff);
- ew32(CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH();
- }
-
/* Setup the HW Rx Head and Tail Descriptor Pointers and
* the Base and Length of the Rx Descriptor Ring */
switch (adapter->num_rx_queues) {
@@ -2329,22 +2081,6 @@ static int e1000_set_mac(struct net_device *netdev, void *p)
e1000_rar_set(hw, hw->mac_addr, 0);
- /* With 82571 controllers, LAA may be overwritten (with the default)
- * due to controller reset from the other port. */
- if (hw->mac_type == e1000_82571) {
- /* activate the work around */
- hw->laa_is_present = 1;
-
- /* Hold a copy of the LAA in RAR[14] This is done so that
- * between the time RAR[0] gets clobbered and the time it
- * gets fixed (in e1000_watchdog), the actual LAA is in one
- * of the RARs and no incoming packets directed to this port
- * are dropped. Eventaully the LAA will be in RAR[0] and
- * RAR[14] */
- e1000_rar_set(hw, hw->mac_addr,
- E1000_RAR_ENTRIES - 1);
- }
-
if (hw->mac_type == e1000_82542_rev2_0)
e1000_leave_82542_rst(adapter);
@@ -2371,9 +2107,7 @@ static void e1000_set_rx_mode(struct net_device *netdev)
u32 rctl;
u32 hash_value;
int i, rar_entries = E1000_RAR_ENTRIES;
- int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
- E1000_NUM_MTA_REGISTERS_ICH8LAN :
- E1000_NUM_MTA_REGISTERS;
+ int mta_reg_count = E1000_NUM_MTA_REGISTERS;
u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
if (!mcarray) {
@@ -2381,13 +2115,6 @@ static void e1000_set_rx_mode(struct net_device *netdev)
return;
}
- if (hw->mac_type == e1000_ich8lan)
- rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
-
- /* reserve RAR[14] for LAA over-write work-around */
- if (hw->mac_type == e1000_82571)
- rar_entries--;
-
/* Check for Promiscuous and All Multicast modes */
rctl = er32(RCTL);
@@ -2396,15 +2123,13 @@ static void e1000_set_rx_mode(struct net_device *netdev)
rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
rctl &= ~E1000_RCTL_VFE;
} else {
- if (netdev->flags & IFF_ALLMULTI) {
+ if (netdev->flags & IFF_ALLMULTI)
rctl |= E1000_RCTL_MPE;
- } else {
+ else
rctl &= ~E1000_RCTL_MPE;
- }
- if (adapter->hw.mac_type != e1000_ich8lan)
- /* Enable VLAN filter if there is a VLAN */
- if (adapter->vlgrp)
- rctl |= E1000_RCTL_VFE;
+ /* Enable VLAN filter if there is a VLAN */
+ if (adapter->vlgrp)
+ rctl |= E1000_RCTL_VFE;
}
if (netdev->uc.count > rar_entries - 1) {
@@ -2427,7 +2152,6 @@ static void e1000_set_rx_mode(struct net_device *netdev)
*
* RAR 0 is used for the station MAC adddress
* if there are not 14 addresses, go ahead and clear the filters
- * -- with 82571 controllers only 0-13 entries are filled here
*/
i = 1;
if (use_uc)
@@ -2521,12 +2245,46 @@ static void e1000_82547_tx_fifo_stall(unsigned long data)
adapter->tx_fifo_head = 0;
atomic_set(&adapter->tx_fifo_stall, 0);
netif_wake_queue(netdev);
- } else {
+ } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
}
}
}
+static bool e1000_has_link(struct e1000_adapter *adapter)
+{
+ struct e1000_hw *hw = &adapter->hw;
+ bool link_active = false;
+
+ /* get_link_status is set on LSC (link status) interrupt or
+ * rx sequence error interrupt. get_link_status will stay
+ * false until the e1000_check_for_link establishes link
+ * for copper adapters ONLY
+ */
+ switch (hw->media_type) {
+ case e1000_media_type_copper:
+ if (hw->get_link_status) {
+ e1000_check_for_link(hw);
+ link_active = !hw->get_link_status;
+ } else {
+ link_active = true;
+ }
+ break;
+ case e1000_media_type_fiber:
+ e1000_check_for_link(hw);
+ link_active = !!(er32(STATUS) & E1000_STATUS_LU);
+ break;
+ case e1000_media_type_internal_serdes:
+ e1000_check_for_link(hw);
+ link_active = hw->serdes_has_link;
+ break;
+ default:
+ break;
+ }
+
+ return link_active;
+}
+
/**
* e1000_watchdog - Timer Call-back
* @data: pointer to adapter cast into an unsigned long
@@ -2538,33 +2296,16 @@ static void e1000_watchdog(unsigned long data)
struct net_device *netdev = adapter->netdev;
struct e1000_tx_ring *txdr = adapter->tx_ring;
u32 link, tctl;
- s32 ret_val;
-
- ret_val = e1000_check_for_link(hw);
- if ((ret_val == E1000_ERR_PHY) &&
- (hw->phy_type == e1000_phy_igp_3) &&
- (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
- /* See e1000_kumeran_lock_loss_workaround() */
- DPRINTK(LINK, INFO,
- "Gigabit has been disabled, downgrading speed\n");
- }
- if (hw->mac_type == e1000_82573) {
- e1000_enable_tx_pkt_filtering(hw);
- if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id)
- e1000_update_mng_vlan(adapter);
- }
-
- if ((hw->media_type == e1000_media_type_internal_serdes) &&
- !(er32(TXCW) & E1000_TXCW_ANE))
- link = !hw->serdes_link_down;
- else
- link = er32(STATUS) & E1000_STATUS_LU;
+ link = e1000_has_link(adapter);
+ if ((netif_carrier_ok(netdev)) && link)
+ goto link_up;
if (link) {
if (!netif_carrier_ok(netdev)) {
u32 ctrl;
bool txb2b = true;
+ /* update snapshot of PHY registers on LSC */
e1000_get_speed_and_duplex(hw,
&adapter->link_speed,
&adapter->link_duplex);
@@ -2589,7 +2330,7 @@ static void e1000_watchdog(unsigned long data)
case SPEED_10:
txb2b = false;
netdev->tx_queue_len = 10;
- adapter->tx_timeout_factor = 8;
+ adapter->tx_timeout_factor = 16;
break;
case SPEED_100:
txb2b = false;
@@ -2598,52 +2339,16 @@ static void e1000_watchdog(unsigned long data)
break;
}
- if ((hw->mac_type == e1000_82571 ||
- hw->mac_type == e1000_82572) &&
- !txb2b) {
- u32 tarc0;
- tarc0 = er32(TARC0);
- tarc0 &= ~(1 << 21);
- ew32(TARC0, tarc0);
- }
-
- /* disable TSO for pcie and 10/100 speeds, to avoid
- * some hardware issues */
- if (!adapter->tso_force &&
- hw->bus_type == e1000_bus_type_pci_express){
- switch (adapter->link_speed) {
- case SPEED_10:
- case SPEED_100:
- DPRINTK(PROBE,INFO,
- "10/100 speed: disabling TSO\n");
- netdev->features &= ~NETIF_F_TSO;
- netdev->features &= ~NETIF_F_TSO6;
- break;
- case SPEED_1000:
- netdev->features |= NETIF_F_TSO;
- netdev->features |= NETIF_F_TSO6;
- break;
- default:
- /* oops */
- break;
- }
- }
-
- /* enable transmits in the hardware, need to do this
- * after setting TARC0 */
+ /* enable transmits in the hardware */
tctl = er32(TCTL);
tctl |= E1000_TCTL_EN;
ew32(TCTL, tctl);
netif_carrier_on(netdev);
- mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
+ if (!test_bit(__E1000_DOWN, &adapter->flags))
+ mod_timer(&adapter->phy_info_timer,
+ round_jiffies(jiffies + 2 * HZ));
adapter->smartspeed = 0;
- } else {
- /* make sure the receive unit is started */
- if (hw->rx_needs_kicking) {
- u32 rctl = er32(RCTL);
- ew32(RCTL, rctl | E1000_RCTL_EN);
- }
}
} else {
if (netif_carrier_ok(netdev)) {
@@ -2652,21 +2357,16 @@ static void e1000_watchdog(unsigned long data)
printk(KERN_INFO "e1000: %s NIC Link is Down\n",
netdev->name);
netif_carrier_off(netdev);
- mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
-
- /* 80003ES2LAN workaround--
- * For packet buffer work-around on link down event;
- * disable receives in the ISR and
- * reset device here in the watchdog
- */
- if (hw->mac_type == e1000_80003es2lan)
- /* reset device */
- schedule_work(&adapter->reset_task);
+
+ if (!test_bit(__E1000_DOWN, &adapter->flags))
+ mod_timer(&adapter->phy_info_timer,
+ round_jiffies(jiffies + 2 * HZ));
}
e1000_smartspeed(adapter);
}
+link_up:
e1000_update_stats(adapter);
hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
@@ -2700,13 +2400,10 @@ static void e1000_watchdog(unsigned long data)
/* Force detection of hung controller every watchdog period */
adapter->detect_tx_hung = true;
- /* With 82571 controllers, LAA may be overwritten due to controller
- * reset from the other port. Set the appropriate LAA in RAR[0] */
- if (hw->mac_type == e1000_82571 && hw->laa_is_present)
- e1000_rar_set(hw, hw->mac_addr, 0);
-
/* Reset the timer */
- mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
+ if (!test_bit(__E1000_DOWN, &adapter->flags))
+ mod_timer(&adapter->watchdog_timer,
+ round_jiffies(jiffies + 2 * HZ));
}
enum latency_range {
@@ -2718,6 +2415,11 @@ enum latency_range {
/**
* e1000_update_itr - update the dynamic ITR value based on statistics
+ * @adapter: pointer to adapter
+ * @itr_setting: current adapter->itr
+ * @packets: the number of packets during this measurement interval
+ * @bytes: the number of bytes during this measurement interval
+ *
* Stores a new ITR value based on packets and byte
* counts during the last interrupt. The advantage of per interrupt
* computation is faster updates and more accurate ITR for the current
@@ -2727,10 +2429,6 @@ enum latency_range {
* while increasing bulk throughput.
* this functionality is controlled by the InterruptThrottleRate module
* parameter (see e1000_param.c)
- * @adapter: pointer to adapter
- * @itr_setting: current adapter->itr
- * @packets: the number of packets during this measurement interval
- * @bytes: the number of bytes during this measurement interval
**/
static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
u16 itr_setting, int packets, int bytes)
@@ -3035,8 +2733,9 @@ static int e1000_tx_map(struct e1000_adapter *adapter,
size -= 4;
buffer_info->length = size;
- buffer_info->dma = skb_shinfo(skb)->dma_head + offset;
+ /* set time_stamp *before* dma to help avoid a possible race */
buffer_info->time_stamp = jiffies;
+ buffer_info->dma = skb_shinfo(skb)->dma_head + offset;
buffer_info->next_to_watch = i;
len -= size;
@@ -3071,13 +2770,14 @@ static int e1000_tx_map(struct e1000_adapter *adapter,
* Avoid terminating buffers within evenly-aligned
* dwords. */
if (unlikely(adapter->pcix_82544 &&
- !((unsigned long)(frag->page+offset+size-1) & 4) &&
- size > 4))
+ !((unsigned long)(page_to_phys(frag->page) + offset
+ + size - 1) & 4) &&
+ size > 4))
size -= 4;
buffer_info->length = size;
- buffer_info->dma = map[f] + offset;
buffer_info->time_stamp = jiffies;
+ buffer_info->dma = map[f] + offset;
buffer_info->next_to_watch = i;
len -= size;
@@ -3186,41 +2886,6 @@ no_fifo_stall_required:
return 0;
}
-#define MINIMUM_DHCP_PACKET_SIZE 282
-static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
- struct sk_buff *skb)
-{
- struct e1000_hw *hw = &adapter->hw;
- u16 length, offset;
- if (vlan_tx_tag_present(skb)) {
- if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) &&
- ( hw->mng_cookie.status &
- E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
- return 0;
- }
- if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
- struct ethhdr *eth = (struct ethhdr *)skb->data;
- if ((htons(ETH_P_IP) == eth->h_proto)) {
- const struct iphdr *ip =
- (struct iphdr *)((u8 *)skb->data+14);
- if (IPPROTO_UDP == ip->protocol) {
- struct udphdr *udp =
- (struct udphdr *)((u8 *)ip +
- (ip->ihl << 2));
- if (ntohs(udp->dest) == 67) {
- offset = (u8 *)udp + 8 - skb->data;
- length = skb->len - offset;
-
- return e1000_mng_write_dhcp_info(hw,
- (u8 *)udp + 8,
- length);
- }
- }
- }
- }
- return 0;
-}
-
static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
@@ -3279,11 +2944,6 @@ static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
return NETDEV_TX_OK;
}
- /* 82571 and newer doesn't need the workaround that limited descriptor
- * length to 4kB */
- if (hw->mac_type >= e1000_82571)
- max_per_txd = 8192;
-
mss = skb_shinfo(skb)->gso_size;
/* The controller does a simple calculation to
* make sure there is enough room in the FIFO before
@@ -3296,9 +2956,6 @@ static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
max_per_txd = min(mss << 2, max_per_txd);
max_txd_pwr = fls(max_per_txd) - 1;
- /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
- * points to just header, pull a few bytes of payload from
- * frags into skb->data */
hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
if (skb->data_len && hdr_len == len) {
switch (hw->mac_type) {
@@ -3313,10 +2970,6 @@ static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
break;
/* fall through */
- case e1000_82571:
- case e1000_82572:
- case e1000_82573:
- case e1000_ich8lan:
pull_size = min((unsigned int)4, skb->data_len);
if (!__pskb_pull_tail(skb, pull_size)) {
DPRINTK(DRV, ERR,
@@ -3361,11 +3014,6 @@ static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
if (adapter->pcix_82544)
count += nr_frags;
-
- if (hw->tx_pkt_filtering &&
- (hw->mac_type == e1000_82573))
- e1000_transfer_dhcp_info(adapter, skb);
-
/* need: count + 2 desc gap to keep tail from touching
* head, otherwise try next time */
if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
@@ -3374,7 +3022,9 @@ static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
if (unlikely(hw->mac_type == e1000_82547)) {
if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
netif_stop_queue(netdev);
- mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
+ if (!test_bit(__E1000_DOWN, &adapter->flags))
+ mod_timer(&adapter->tx_fifo_stall_timer,
+ jiffies + 1);
return NETDEV_TX_BUSY;
}
}
@@ -3393,14 +3043,12 @@ static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
}
if (likely(tso)) {
- tx_ring->last_tx_tso = 1;
+ if (likely(hw->mac_type != e1000_82544))
+ tx_ring->last_tx_tso = 1;
tx_flags |= E1000_TX_FLAGS_TSO;
} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
tx_flags |= E1000_TX_FLAGS_CSUM;
- /* Old method was to assume IPv4 packet by default if TSO was enabled.
- * 82571 hardware supports TSO capabilities for IPv6 as well...
- * no longer assume, we must. */
if (likely(skb->protocol == htons(ETH_P_IP)))
tx_flags |= E1000_TX_FLAGS_IPV4;
@@ -3472,7 +3120,6 @@ static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
- u16 eeprom_data = 0;
if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
(max_frame > MAX_JUMBO_FRAME_SIZE)) {
@@ -3483,44 +3130,23 @@ static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
/* Adapter-specific max frame size limits. */
switch (hw->mac_type) {
case e1000_undefined ... e1000_82542_rev2_1:
- case e1000_ich8lan:
if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
return -EINVAL;
}
break;
- case e1000_82573:
- /* Jumbo Frames not supported if:
- * - this is not an 82573L device
- * - ASPM is enabled in any way (0x1A bits 3:2) */
- e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1,
- &eeprom_data);
- if ((hw->device_id != E1000_DEV_ID_82573L) ||
- (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
- if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
- DPRINTK(PROBE, ERR,
- "Jumbo Frames not supported.\n");
- return -EINVAL;
- }
- break;
- }
- /* ERT will be enabled later to enable wire speed receives */
-
- /* fall through to get support */
- case e1000_82571:
- case e1000_82572:
- case e1000_80003es2lan:
-#define MAX_STD_JUMBO_FRAME_SIZE 9234
- if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
- DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
- return -EINVAL;
- }
- break;
default:
/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
break;
}
+ while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
+ msleep(1);
+ /* e1000_down has a dependency on max_frame_size */
+ hw->max_frame_size = max_frame;
+ if (netif_running(netdev))
+ e1000_down(adapter);
+
/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
* means we reserve 2 more, this pushes us to allocate from the next
* larger slab size.
@@ -3549,11 +3175,16 @@ static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
(max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
+ printk(KERN_INFO "e1000: %s changing MTU from %d to %d\n",
+ netdev->name, netdev->mtu, new_mtu);
netdev->mtu = new_mtu;
- hw->max_frame_size = max_frame;
if (netif_running(netdev))
- e1000_reinit_locked(adapter);
+ e1000_up(adapter);
+ else
+ e1000_reset(adapter);
+
+ clear_bit(__E1000_RESETTING, &adapter->flags);
return 0;
}
@@ -3596,14 +3227,12 @@ void e1000_update_stats(struct e1000_adapter *adapter)
adapter->stats.mprc += er32(MPRC);
adapter->stats.roc += er32(ROC);
- if (hw->mac_type != e1000_ich8lan) {
- adapter->stats.prc64 += er32(PRC64);
- adapter->stats.prc127 += er32(PRC127);
- adapter->stats.prc255 += er32(PRC255);
- adapter->stats.prc511 += er32(PRC511);
- adapter->stats.prc1023 += er32(PRC1023);
- adapter->stats.prc1522 += er32(PRC1522);
- }
+ adapter->stats.prc64 += er32(PRC64);
+ adapter->stats.prc127 += er32(PRC127);
+ adapter->stats.prc255 += er32(PRC255);
+ adapter->stats.prc511 += er32(PRC511);
+ adapter->stats.prc1023 += er32(PRC1023);
+ adapter->stats.prc1522 += er32(PRC1522);
adapter->stats.symerrs += er32(SYMERRS);
adapter->stats.mpc += er32(MPC);
@@ -3632,14 +3261,12 @@ void e1000_update_stats(struct e1000_adapter *adapter)
adapter->stats.toth += er32(TOTH);
adapter->stats.tpr += er32(TPR);
- if (hw->mac_type != e1000_ich8lan) {
- adapter->stats.ptc64 += er32(PTC64);
- adapter->stats.ptc127 += er32(PTC127);
- adapter->stats.ptc255 += er32(PTC255);
- adapter->stats.ptc511 += er32(PTC511);
- adapter->stats.ptc1023 += er32(PTC1023);
- adapter->stats.ptc1522 += er32(PTC1522);
- }
+ adapter->stats.ptc64 += er32(PTC64);
+ adapter->stats.ptc127 += er32(PTC127);
+ adapter->stats.ptc255 += er32(PTC255);
+ adapter->stats.ptc511 += er32(PTC511);
+ adapter->stats.ptc1023 += er32(PTC1023);
+ adapter->stats.ptc1522 += er32(PTC1522);
adapter->stats.mptc += er32(MPTC);
adapter->stats.bptc += er32(BPTC);
@@ -3659,20 +3286,6 @@ void e1000_update_stats(struct e1000_adapter *adapter)
adapter->stats.tsctc += er32(TSCTC);
adapter->stats.tsctfc += er32(TSCTFC);
}
- if (hw->mac_type > e1000_82547_rev_2) {
- adapter->stats.iac += er32(IAC);
- adapter->stats.icrxoc += er32(ICRXOC);
-
- if (hw->mac_type != e1000_ich8lan) {
- adapter->stats.icrxptc += er32(ICRXPTC);
- adapter->stats.icrxatc += er32(ICRXATC);
- adapter->stats.ictxptc += er32(ICTXPTC);
- adapter->stats.ictxatc += er32(ICTXATC);
- adapter->stats.ictxqec += er32(ICTXQEC);
- adapter->stats.ictxqmtc += er32(ICTXQMTC);
- adapter->stats.icrxdmtc += er32(ICRXDMTC);
- }
- }
/* Fill out the OS statistics structure */
adapter->net_stats.multicast = adapter->stats.mprc;
@@ -3731,49 +3344,6 @@ void e1000_update_stats(struct e1000_adapter *adapter)
}
/**
- * e1000_intr_msi - Interrupt Handler
- * @irq: interrupt number
- * @data: pointer to a network interface device structure
- **/
-
-static irqreturn_t e1000_intr_msi(int irq, void *data)
-{
- struct net_device *netdev = data;
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u32 icr = er32(ICR);
-
- /* in NAPI mode read ICR disables interrupts using IAM */
-
- if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
- hw->get_link_status = 1;
- /* 80003ES2LAN workaround-- For packet buffer work-around on
- * link down event; disable receives here in the ISR and reset
- * adapter in watchdog */
- if (netif_carrier_ok(netdev) &&
- (hw->mac_type == e1000_80003es2lan)) {
- /* disable receives */
- u32 rctl = er32(RCTL);
- ew32(RCTL, rctl & ~E1000_RCTL_EN);
- }
- /* guard against interrupt when we're going down */
- if (!test_bit(__E1000_DOWN, &adapter->flags))
- mod_timer(&adapter->watchdog_timer, jiffies + 1);
- }
-
- if (likely(napi_schedule_prep(&adapter->napi))) {
- adapter->total_tx_bytes = 0;
- adapter->total_tx_packets = 0;
- adapter->total_rx_bytes = 0;
- adapter->total_rx_packets = 0;
- __napi_schedule(&adapter->napi);
- } else
- e1000_irq_enable(adapter);
-
- return IRQ_HANDLED;
-}
-
-/**
* e1000_intr - Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
@@ -3784,43 +3354,22 @@ static irqreturn_t e1000_intr(int irq, void *data)
struct net_device *netdev = data;
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
- u32 rctl, icr = er32(ICR);
+ u32 icr = er32(ICR);
if (unlikely((!icr) || test_bit(__E1000_DOWN, &adapter->flags)))
return IRQ_NONE; /* Not our interrupt */
- /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
- * not set, then the adapter didn't send an interrupt */
- if (unlikely(hw->mac_type >= e1000_82571 &&
- !(icr & E1000_ICR_INT_ASSERTED)))
- return IRQ_NONE;
-
- /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
- * need for the IMC write */
-
if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
hw->get_link_status = 1;
- /* 80003ES2LAN workaround--
- * For packet buffer work-around on link down event;
- * disable receives here in the ISR and
- * reset adapter in watchdog
- */
- if (netif_carrier_ok(netdev) &&
- (hw->mac_type == e1000_80003es2lan)) {
- /* disable receives */
- rctl = er32(RCTL);
- ew32(RCTL, rctl & ~E1000_RCTL_EN);
- }
/* guard against interrupt when we're going down */
if (!test_bit(__E1000_DOWN, &adapter->flags))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
- if (unlikely(hw->mac_type < e1000_82571)) {
- /* disable interrupts, without the synchronize_irq bit */
- ew32(IMC, ~0);
- E1000_WRITE_FLUSH();
- }
+ /* disable interrupts, without the synchronize_irq bit */
+ ew32(IMC, ~0);
+ E1000_WRITE_FLUSH();
+
if (likely(napi_schedule_prep(&adapter->napi))) {
adapter->total_tx_bytes = 0;
adapter->total_tx_packets = 0;
@@ -3844,17 +3393,13 @@ static irqreturn_t e1000_intr(int irq, void *data)
static int e1000_clean(struct napi_struct *napi, int budget)
{
struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
- struct net_device *poll_dev = adapter->netdev;
- int tx_cleaned = 0, work_done = 0;
-
- adapter = netdev_priv(poll_dev);
+ int tx_clean_complete = 0, work_done = 0;
- tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
+ tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
- adapter->clean_rx(adapter, &adapter->rx_ring[0],
- &work_done, budget);
+ adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
- if (!tx_cleaned)
+ if (!tx_clean_complete)
work_done = budget;
/* If budget not fully consumed, exit the polling mode */
@@ -3925,7 +3470,9 @@ static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
* sees the new next_to_clean.
*/
smp_mb();
- if (netif_queue_stopped(netdev)) {
+
+ if (netif_queue_stopped(netdev) &&
+ !(test_bit(__E1000_DOWN, &adapter->flags))) {
netif_wake_queue(netdev);
++adapter->restart_queue;
}
@@ -3935,8 +3482,8 @@ static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
/* Detect a transmit hang in hardware, this serializes the
* check with the clearing of time_stamp and movement of i */
adapter->detect_tx_hung = false;
- if (tx_ring->buffer_info[i].time_stamp &&
- time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
+ if (tx_ring->buffer_info[eop].time_stamp &&
+ time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
(adapter->tx_timeout_factor * HZ))
&& !(er32(STATUS) & E1000_STATUS_TXOFF)) {
@@ -3958,7 +3505,7 @@ static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
readl(hw->hw_addr + tx_ring->tdt),
tx_ring->next_to_use,
tx_ring->next_to_clean,
- tx_ring->buffer_info[i].time_stamp,
+ tx_ring->buffer_info[eop].time_stamp,
eop,
jiffies,
eop_desc->upper.fields.status);
@@ -3999,25 +3546,13 @@ static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
return;
}
/* TCP/UDP Checksum has not been calculated */
- if (hw->mac_type <= e1000_82547_rev_2) {
- if (!(status & E1000_RXD_STAT_TCPCS))
- return;
- } else {
- if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
- return;
- }
+ if (!(status & E1000_RXD_STAT_TCPCS))
+ return;
+
/* It must be a TCP or UDP packet with a valid checksum */
if (likely(status & E1000_RXD_STAT_TCPCS)) {
/* TCP checksum is good */
skb->ip_summed = CHECKSUM_UNNECESSARY;
- } else if (hw->mac_type > e1000_82547_rev_2) {
- /* IP fragment with UDP payload */
- /* Hardware complements the payload checksum, so we undo it
- * and then put the value in host order for further stack use.
- */
- __sum16 sum = (__force __sum16)htons(csum);
- skb->csum = csum_unfold(~sum);
- skb->ip_summed = CHECKSUM_COMPLETE;
}
adapter->hw_csum_good++;
}
@@ -4814,20 +4349,6 @@ void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
pcix_set_mmrbc(adapter->pdev, mmrbc);
}
-s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
-{
- struct e1000_adapter *adapter = hw->back;
- u16 cap_offset;
-
- cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
- if (!cap_offset)
- return -E1000_ERR_CONFIG;
-
- pci_read_config_word(adapter->pdev, cap_offset + reg, value);
-
- return E1000_SUCCESS;
-}
-
void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
{
outl(value, port);
@@ -4850,33 +4371,27 @@ static void e1000_vlan_rx_register(struct net_device *netdev,
ctrl |= E1000_CTRL_VME;
ew32(CTRL, ctrl);
- if (adapter->hw.mac_type != e1000_ich8lan) {
- /* enable VLAN receive filtering */
- rctl = er32(RCTL);
- rctl &= ~E1000_RCTL_CFIEN;
- if (!(netdev->flags & IFF_PROMISC))
- rctl |= E1000_RCTL_VFE;
- ew32(RCTL, rctl);
- e1000_update_mng_vlan(adapter);
- }
+ /* enable VLAN receive filtering */
+ rctl = er32(RCTL);
+ rctl &= ~E1000_RCTL_CFIEN;
+ if (!(netdev->flags & IFF_PROMISC))
+ rctl |= E1000_RCTL_VFE;
+ ew32(RCTL, rctl);
+ e1000_update_mng_vlan(adapter);
} else {
/* disable VLAN tag insert/strip */
ctrl = er32(CTRL);
ctrl &= ~E1000_CTRL_VME;
ew32(CTRL, ctrl);
- if (adapter->hw.mac_type != e1000_ich8lan) {
- /* disable VLAN receive filtering */
- rctl = er32(RCTL);
- rctl &= ~E1000_RCTL_VFE;
- ew32(RCTL, rctl);
+ /* disable VLAN receive filtering */
+ rctl = er32(RCTL);
+ rctl &= ~E1000_RCTL_VFE;
+ ew32(RCTL, rctl);
- if (adapter->mng_vlan_id !=
- (u16)E1000_MNG_VLAN_NONE) {
- e1000_vlan_rx_kill_vid(netdev,
- adapter->mng_vlan_id);
- adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
- }
+ if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
+ e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
+ adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
}
}
@@ -4913,14 +4428,6 @@ static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
if (!test_bit(__E1000_DOWN, &adapter->flags))
e1000_irq_enable(adapter);
- if ((hw->mng_cookie.status &
- E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
- (vid == adapter->mng_vlan_id)) {
- /* release control to f/w */
- e1000_release_hw_control(adapter);
- return;
- }
-
/* remove VID from filter table */
index = (vid >> 5) & 0x7F;
vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
@@ -5031,16 +4538,13 @@ static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
}
if (hw->media_type == e1000_media_type_fiber ||
- hw->media_type == e1000_media_type_internal_serdes) {
+ hw->media_type == e1000_media_type_internal_serdes) {
/* keep the laser running in D3 */
ctrl_ext = er32(CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
ew32(CTRL_EXT, ctrl_ext);
}
- /* Allow time for pending master requests to run */
- e1000_disable_pciex_master(hw);
-
ew32(WUC, E1000_WUC_PME_EN);
ew32(WUFC, wufc);
} else {
@@ -5056,16 +4560,9 @@ static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
if (adapter->en_mng_pt)
*enable_wake = true;
- if (hw->phy_type == e1000_phy_igp_3)
- e1000_phy_powerdown_workaround(hw);
-
if (netif_running(netdev))
e1000_free_irq(adapter);
- /* Release control of h/w to f/w. If f/w is AMT enabled, this
- * would have already happened in close and is redundant. */
- e1000_release_hw_control(adapter);
-
pci_disable_device(pdev);
return 0;
@@ -5131,14 +4628,6 @@ static int e1000_resume(struct pci_dev *pdev)
netif_device_attach(netdev);
- /* If the controller is 82573 and f/w is AMT, do not set
- * DRV_LOAD until the interface is up. For all other cases,
- * let the f/w know that the h/w is now under the control
- * of the driver. */
- if (hw->mac_type != e1000_82573 ||
- !e1000_check_mng_mode(hw))
- e1000_get_hw_control(adapter);
-
return 0;
}
#endif
@@ -5174,7 +4663,7 @@ static void e1000_netpoll(struct net_device *netdev)
/**
* e1000_io_error_detected - called when PCI error is detected
* @pdev: Pointer to PCI device
- * @state: The current pci conneection state
+ * @state: The current pci connection state
*
* This function is called after a PCI bus error affecting
* this device has been detected.
@@ -5243,7 +4732,6 @@ static void e1000_io_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
e1000_init_manageability(adapter);
@@ -5255,15 +4743,6 @@ static void e1000_io_resume(struct pci_dev *pdev)
}
netif_device_attach(netdev);
-
- /* If the controller is 82573 and f/w is AMT, do not set
- * DRV_LOAD until the interface is up. For all other cases,
- * let the f/w know that the h/w is now under the control
- * of the driver. */
- if (hw->mac_type != e1000_82573 ||
- !e1000_check_mng_mode(hw))
- e1000_get_hw_control(adapter);
-
}
/* e1000_main.c */
diff --git a/drivers/net/e1000/e1000_param.c b/drivers/net/e1000/e1000_param.c
index 213437d1315..38d2741ccae 100644
--- a/drivers/net/e1000/e1000_param.c
+++ b/drivers/net/e1000/e1000_param.c
@@ -518,22 +518,6 @@ void __devinit e1000_check_options(struct e1000_adapter *adapter)
adapter->smart_power_down = opt.def;
}
}
- { /* Kumeran Lock Loss Workaround */
- opt = (struct e1000_option) {
- .type = enable_option,
- .name = "Kumeran Lock Loss Workaround",
- .err = "defaulting to Enabled",
- .def = OPTION_ENABLED
- };
-
- if (num_KumeranLockLoss > bd) {
- unsigned int kmrn_lock_loss = KumeranLockLoss[bd];
- e1000_validate_option(&kmrn_lock_loss, &opt, adapter);
- adapter->hw.kmrn_lock_loss_workaround_disabled = !kmrn_lock_loss;
- } else {
- adapter->hw.kmrn_lock_loss_workaround_disabled = !opt.def;
- }
- }
switch (adapter->hw.media_type) {
case e1000_media_type_fiber:
@@ -626,12 +610,6 @@ static void __devinit e1000_check_copper_options(struct e1000_adapter *adapter)
.p = dplx_list }}
};
- if (e1000_check_phy_reset_block(&adapter->hw)) {
- DPRINTK(PROBE, INFO,
- "Link active due to SoL/IDER Session. "
- "Speed/Duplex/AutoNeg parameter ignored.\n");
- return;
- }
if (num_Duplex > bd) {
dplx = Duplex[bd];
e1000_validate_option(&dplx, &opt, adapter);