diff options
author | Julius Volz <juliusv@google.com> | 2008-09-19 12:32:57 +0200 |
---|---|---|
committer | Simon Horman <horms@verge.net.au> | 2008-10-07 08:38:24 +1100 |
commit | cb7f6a7b716e801097b564dec3ccb58d330aef56 (patch) | |
tree | 92fa8fa5381e04576c43eab88874ab54ea670767 /net/netfilter/ipvs/Kconfig | |
parent | 8d5803bf6fbe5264000afc8c34bff08e8ecc023b (diff) |
IPVS: Move IPVS to net/netfilter/ipvs
Since IPVS now has partial IPv6 support, this patch moves IPVS from
net/ipv4/ipvs to net/netfilter/ipvs. It's a result of:
$ git mv net/ipv4/ipvs net/netfilter
and adapting the relevant Kconfigs/Makefiles to the new path.
Signed-off-by: Julius Volz <juliusv@google.com>
Signed-off-by: Simon Horman <horms@verge.net.au>
Diffstat (limited to 'net/netfilter/ipvs/Kconfig')
-rw-r--r-- | net/netfilter/ipvs/Kconfig | 239 |
1 files changed, 239 insertions, 0 deletions
diff --git a/net/netfilter/ipvs/Kconfig b/net/netfilter/ipvs/Kconfig new file mode 100644 index 00000000000..de6004de80b --- /dev/null +++ b/net/netfilter/ipvs/Kconfig @@ -0,0 +1,239 @@ +# +# IP Virtual Server configuration +# +menuconfig IP_VS + tristate "IP virtual server support (EXPERIMENTAL)" + depends on NETFILTER + ---help--- + IP Virtual Server support will let you build a high-performance + virtual server based on cluster of two or more real servers. This + option must be enabled for at least one of the clustered computers + that will take care of intercepting incoming connections to a + single IP address and scheduling them to real servers. + + Three request dispatching techniques are implemented, they are + virtual server via NAT, virtual server via tunneling and virtual + server via direct routing. The several scheduling algorithms can + be used to choose which server the connection is directed to, + thus load balancing can be achieved among the servers. For more + information and its administration program, please visit the + following URL: <http://www.linuxvirtualserver.org/>. + + If you want to compile it in kernel, say Y. To compile it as a + module, choose M here. If unsure, say N. + +if IP_VS + +config IP_VS_IPV6 + bool "IPv6 support for IPVS (DANGEROUS)" + depends on EXPERIMENTAL && (IPV6 = y || IP_VS = IPV6) + ---help--- + Add IPv6 support to IPVS. This is incomplete and might be dangerous. + + Say N if unsure. + +config IP_VS_DEBUG + bool "IP virtual server debugging" + ---help--- + Say Y here if you want to get additional messages useful in + debugging the IP virtual server code. You can change the debug + level in /proc/sys/net/ipv4/vs/debug_level + +config IP_VS_TAB_BITS + int "IPVS connection table size (the Nth power of 2)" + range 8 20 + default 12 + ---help--- + The IPVS connection hash table uses the chaining scheme to handle + hash collisions. Using a big IPVS connection hash table will greatly + reduce conflicts when there are hundreds of thousands of connections + in the hash table. + + Note the table size must be power of 2. The table size will be the + value of 2 to the your input number power. The number to choose is + from 8 to 20, the default number is 12, which means the table size + is 4096. Don't input the number too small, otherwise you will lose + performance on it. You can adapt the table size yourself, according + to your virtual server application. It is good to set the table size + not far less than the number of connections per second multiplying + average lasting time of connection in the table. For example, your + virtual server gets 200 connections per second, the connection lasts + for 200 seconds in average in the connection table, the table size + should be not far less than 200x200, it is good to set the table + size 32768 (2**15). + + Another note that each connection occupies 128 bytes effectively and + each hash entry uses 8 bytes, so you can estimate how much memory is + needed for your box. + +comment "IPVS transport protocol load balancing support" + +config IP_VS_PROTO_TCP + bool "TCP load balancing support" + ---help--- + This option enables support for load balancing TCP transport + protocol. Say Y if unsure. + +config IP_VS_PROTO_UDP + bool "UDP load balancing support" + ---help--- + This option enables support for load balancing UDP transport + protocol. Say Y if unsure. + +config IP_VS_PROTO_AH_ESP + bool + depends on UNDEFINED + +config IP_VS_PROTO_ESP + bool "ESP load balancing support" + select IP_VS_PROTO_AH_ESP + ---help--- + This option enables support for load balancing ESP (Encapsulation + Security Payload) transport protocol. Say Y if unsure. + +config IP_VS_PROTO_AH + bool "AH load balancing support" + select IP_VS_PROTO_AH_ESP + ---help--- + This option enables support for load balancing AH (Authentication + Header) transport protocol. Say Y if unsure. + +comment "IPVS scheduler" + +config IP_VS_RR + tristate "round-robin scheduling" + ---help--- + The robin-robin scheduling algorithm simply directs network + connections to different real servers in a round-robin manner. + + If you want to compile it in kernel, say Y. To compile it as a + module, choose M here. If unsure, say N. + +config IP_VS_WRR + tristate "weighted round-robin scheduling" + ---help--- + The weighted robin-robin scheduling algorithm directs network + connections to different real servers based on server weights + in a round-robin manner. Servers with higher weights receive + new connections first than those with less weights, and servers + with higher weights get more connections than those with less + weights and servers with equal weights get equal connections. + + If you want to compile it in kernel, say Y. To compile it as a + module, choose M here. If unsure, say N. + +config IP_VS_LC + tristate "least-connection scheduling" + ---help--- + The least-connection scheduling algorithm directs network + connections to the server with the least number of active + connections. + + If you want to compile it in kernel, say Y. To compile it as a + module, choose M here. If unsure, say N. + +config IP_VS_WLC + tristate "weighted least-connection scheduling" + ---help--- + The weighted least-connection scheduling algorithm directs network + connections to the server with the least active connections + normalized by the server weight. + + If you want to compile it in kernel, say Y. To compile it as a + module, choose M here. If unsure, say N. + +config IP_VS_LBLC + tristate "locality-based least-connection scheduling" + ---help--- + The locality-based least-connection scheduling algorithm is for + destination IP load balancing. It is usually used in cache cluster. + This algorithm usually directs packet destined for an IP address to + its server if the server is alive and under load. If the server is + overloaded (its active connection numbers is larger than its weight) + and there is a server in its half load, then allocate the weighted + least-connection server to this IP address. + + If you want to compile it in kernel, say Y. To compile it as a + module, choose M here. If unsure, say N. + +config IP_VS_LBLCR + tristate "locality-based least-connection with replication scheduling" + ---help--- + The locality-based least-connection with replication scheduling + algorithm is also for destination IP load balancing. It is + usually used in cache cluster. It differs from the LBLC scheduling + as follows: the load balancer maintains mappings from a target + to a set of server nodes that can serve the target. Requests for + a target are assigned to the least-connection node in the target's + server set. If all the node in the server set are over loaded, + it picks up a least-connection node in the cluster and adds it + in the sever set for the target. If the server set has not been + modified for the specified time, the most loaded node is removed + from the server set, in order to avoid high degree of replication. + + If you want to compile it in kernel, say Y. To compile it as a + module, choose M here. If unsure, say N. + +config IP_VS_DH + tristate "destination hashing scheduling" + ---help--- + The destination hashing scheduling algorithm assigns network + connections to the servers through looking up a statically assigned + hash table by their destination IP addresses. + + If you want to compile it in kernel, say Y. To compile it as a + module, choose M here. If unsure, say N. + +config IP_VS_SH + tristate "source hashing scheduling" + ---help--- + The source hashing scheduling algorithm assigns network + connections to the servers through looking up a statically assigned + hash table by their source IP addresses. + + If you want to compile it in kernel, say Y. To compile it as a + module, choose M here. If unsure, say N. + +config IP_VS_SED + tristate "shortest expected delay scheduling" + ---help--- + The shortest expected delay scheduling algorithm assigns network + connections to the server with the shortest expected delay. The + expected delay that the job will experience is (Ci + 1) / Ui if + sent to the ith server, in which Ci is the number of connections + on the ith server and Ui is the fixed service rate (weight) + of the ith server. + + If you want to compile it in kernel, say Y. To compile it as a + module, choose M here. If unsure, say N. + +config IP_VS_NQ + tristate "never queue scheduling" + ---help--- + The never queue scheduling algorithm adopts a two-speed model. + When there is an idle server available, the job will be sent to + the idle server, instead of waiting for a fast one. When there + is no idle server available, the job will be sent to the server + that minimize its expected delay (The Shortest Expected Delay + scheduling algorithm). + + If you want to compile it in kernel, say Y. To compile it as a + module, choose M here. If unsure, say N. + +comment 'IPVS application helper' + +config IP_VS_FTP + tristate "FTP protocol helper" + depends on IP_VS_PROTO_TCP + ---help--- + FTP is a protocol that transfers IP address and/or port number in + the payload. In the virtual server via Network Address Translation, + the IP address and port number of real servers cannot be sent to + clients in ftp connections directly, so FTP protocol helper is + required for tracking the connection and mangling it back to that of + virtual service. + + If you want to compile it in kernel, say Y. To compile it as a + module, choose M here. If unsure, say N. + +endif # IP_VS |