aboutsummaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/DocBook/kernel-hacking.tmpl2
-rw-r--r--Documentation/MSI-HOWTO.txt6
-rw-r--r--Documentation/PCI/pci.txt4
-rw-r--r--Documentation/PCI/pcieaer-howto.txt11
-rw-r--r--Documentation/kernel-parameters.txt31
-rw-r--r--Documentation/markers.txt10
-rw-r--r--Documentation/sysrq.txt5
-rw-r--r--Documentation/tracepoints.txt101
-rw-r--r--Documentation/tracers/mmiotrace.txt5
9 files changed, 141 insertions, 34 deletions
diff --git a/Documentation/DocBook/kernel-hacking.tmpl b/Documentation/DocBook/kernel-hacking.tmpl
index 4c63e586416..ae15d55350e 100644
--- a/Documentation/DocBook/kernel-hacking.tmpl
+++ b/Documentation/DocBook/kernel-hacking.tmpl
@@ -1105,7 +1105,7 @@ static struct block_device_operations opt_fops = {
</listitem>
<listitem>
<para>
- Function names as strings (__FUNCTION__).
+ Function names as strings (__func__).
</para>
</listitem>
<listitem>
diff --git a/Documentation/MSI-HOWTO.txt b/Documentation/MSI-HOWTO.txt
index a51f693c154..256defd7e17 100644
--- a/Documentation/MSI-HOWTO.txt
+++ b/Documentation/MSI-HOWTO.txt
@@ -236,10 +236,8 @@ software system can set different pages for controlling accesses to the
MSI-X structure. The implementation of MSI support requires the PCI
subsystem, not a device driver, to maintain full control of the MSI-X
table/MSI-X PBA (Pending Bit Array) and MMIO address space of the MSI-X
-table/MSI-X PBA. A device driver is prohibited from requesting the MMIO
-address space of the MSI-X table/MSI-X PBA. Otherwise, the PCI subsystem
-will fail enabling MSI-X on its hardware device when it calls the function
-pci_enable_msix().
+table/MSI-X PBA. A device driver should not access the MMIO address
+space of the MSI-X table/MSI-X PBA.
5.3.2 API pci_enable_msix
diff --git a/Documentation/PCI/pci.txt b/Documentation/PCI/pci.txt
index 8d4dc6250c5..fd4907a2968 100644
--- a/Documentation/PCI/pci.txt
+++ b/Documentation/PCI/pci.txt
@@ -163,6 +163,10 @@ need pass only as many optional fields as necessary:
o class and classmask fields default to 0
o driver_data defaults to 0UL.
+Note that driver_data must match the value used by any of the pci_device_id
+entries defined in the driver. This makes the driver_data field mandatory
+if all the pci_device_id entries have a non-zero driver_data value.
+
Once added, the driver probe routine will be invoked for any unclaimed
PCI devices listed in its (newly updated) pci_ids list.
diff --git a/Documentation/PCI/pcieaer-howto.txt b/Documentation/PCI/pcieaer-howto.txt
index 16c251230c8..ddeb14beacc 100644
--- a/Documentation/PCI/pcieaer-howto.txt
+++ b/Documentation/PCI/pcieaer-howto.txt
@@ -203,22 +203,17 @@ to mmio_enabled.
3.3 helper functions
-3.3.1 int pci_find_aer_capability(struct pci_dev *dev);
-pci_find_aer_capability locates the PCI Express AER capability
-in the device configuration space. If the device doesn't support
-PCI-Express AER, the function returns 0.
-
-3.3.2 int pci_enable_pcie_error_reporting(struct pci_dev *dev);
+3.3.1 int pci_enable_pcie_error_reporting(struct pci_dev *dev);
pci_enable_pcie_error_reporting enables the device to send error
messages to root port when an error is detected. Note that devices
don't enable the error reporting by default, so device drivers need
call this function to enable it.
-3.3.3 int pci_disable_pcie_error_reporting(struct pci_dev *dev);
+3.3.2 int pci_disable_pcie_error_reporting(struct pci_dev *dev);
pci_disable_pcie_error_reporting disables the device to send error
messages to root port when an error is detected.
-3.3.4 int pci_cleanup_aer_uncorrect_error_status(struct pci_dev *dev);
+3.3.3 int pci_cleanup_aer_uncorrect_error_status(struct pci_dev *dev);
pci_cleanup_aer_uncorrect_error_status cleanups the uncorrectable
error status register.
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt
index 0f1544f6740..53ba7c7d82b 100644
--- a/Documentation/kernel-parameters.txt
+++ b/Documentation/kernel-parameters.txt
@@ -101,6 +101,7 @@ parameter is applicable:
X86-64 X86-64 architecture is enabled.
More X86-64 boot options can be found in
Documentation/x86_64/boot-options.txt .
+ X86 Either 32bit or 64bit x86 (same as X86-32+X86-64)
In addition, the following text indicates that the option:
@@ -1588,7 +1589,7 @@ and is between 256 and 4096 characters. It is defined in the file
See also Documentation/paride.txt.
pci=option[,option...] [PCI] various PCI subsystem options:
- off [X86-32] don't probe for the PCI bus
+ off [X86] don't probe for the PCI bus
bios [X86-32] force use of PCI BIOS, don't access
the hardware directly. Use this if your machine
has a non-standard PCI host bridge.
@@ -1596,9 +1597,9 @@ and is between 256 and 4096 characters. It is defined in the file
hardware access methods are allowed. Use this
if you experience crashes upon bootup and you
suspect they are caused by the BIOS.
- conf1 [X86-32] Force use of PCI Configuration
+ conf1 [X86] Force use of PCI Configuration
Mechanism 1.
- conf2 [X86-32] Force use of PCI Configuration
+ conf2 [X86] Force use of PCI Configuration
Mechanism 2.
noaer [PCIE] If the PCIEAER kernel config parameter is
enabled, this kernel boot option can be used to
@@ -1618,37 +1619,37 @@ and is between 256 and 4096 characters. It is defined in the file
this option if the kernel is unable to allocate
IRQs or discover secondary PCI buses on your
motherboard.
- rom [X86-32] Assign address space to expansion ROMs.
+ rom [X86] Assign address space to expansion ROMs.
Use with caution as certain devices share
address decoders between ROMs and other
resources.
- norom [X86-32,X86_64] Do not assign address space to
+ norom [X86] Do not assign address space to
expansion ROMs that do not already have
BIOS assigned address ranges.
- irqmask=0xMMMM [X86-32] Set a bit mask of IRQs allowed to be
+ irqmask=0xMMMM [X86] Set a bit mask of IRQs allowed to be
assigned automatically to PCI devices. You can
make the kernel exclude IRQs of your ISA cards
this way.
- pirqaddr=0xAAAAA [X86-32] Specify the physical address
+ pirqaddr=0xAAAAA [X86] Specify the physical address
of the PIRQ table (normally generated
by the BIOS) if it is outside the
F0000h-100000h range.
- lastbus=N [X86-32] Scan all buses thru bus #N. Can be
+ lastbus=N [X86] Scan all buses thru bus #N. Can be
useful if the kernel is unable to find your
secondary buses and you want to tell it
explicitly which ones they are.
- assign-busses [X86-32] Always assign all PCI bus
+ assign-busses [X86] Always assign all PCI bus
numbers ourselves, overriding
whatever the firmware may have done.
- usepirqmask [X86-32] Honor the possible IRQ mask stored
+ usepirqmask [X86] Honor the possible IRQ mask stored
in the BIOS $PIR table. This is needed on
some systems with broken BIOSes, notably
some HP Pavilion N5400 and Omnibook XE3
notebooks. This will have no effect if ACPI
IRQ routing is enabled.
- noacpi [X86-32] Do not use ACPI for IRQ routing
+ noacpi [X86] Do not use ACPI for IRQ routing
or for PCI scanning.
- use_crs [X86-32] Use _CRS for PCI resource
+ use_crs [X86] Use _CRS for PCI resource
allocation.
routeirq Do IRQ routing for all PCI devices.
This is normally done in pci_enable_device(),
@@ -1677,6 +1678,12 @@ and is between 256 and 4096 characters. It is defined in the file
reserved for the CardBus bridge's memory
window. The default value is 64 megabytes.
+ pcie_aspm= [PCIE] Forcibly enable or disable PCIe Active State Power
+ Management.
+ off Disable ASPM.
+ force Enable ASPM even on devices that claim not to support it.
+ WARNING: Forcing ASPM on may cause system lockups.
+
pcmv= [HW,PCMCIA] BadgePAD 4
pd. [PARIDE]
diff --git a/Documentation/markers.txt b/Documentation/markers.txt
index d9f50a19fa0..089f6138fcd 100644
--- a/Documentation/markers.txt
+++ b/Documentation/markers.txt
@@ -50,10 +50,12 @@ Connecting a function (probe) to a marker is done by providing a probe (function
to call) for the specific marker through marker_probe_register() and can be
activated by calling marker_arm(). Marker deactivation can be done by calling
marker_disarm() as many times as marker_arm() has been called. Removing a probe
-is done through marker_probe_unregister(); it will disarm the probe and make
-sure there is no caller left using the probe when it returns. Probe removal is
-preempt-safe because preemption is disabled around the probe call. See the
-"Probe example" section below for a sample probe module.
+is done through marker_probe_unregister(); it will disarm the probe.
+marker_synchronize_unregister() must be called before the end of the module exit
+function to make sure there is no caller left using the probe. This, and the
+fact that preemption is disabled around the probe call, make sure that probe
+removal and module unload are safe. See the "Probe example" section below for a
+sample probe module.
The marker mechanism supports inserting multiple instances of the same marker.
Markers can be put in inline functions, inlined static functions, and
diff --git a/Documentation/sysrq.txt b/Documentation/sysrq.txt
index 49378a9f2b5..10a0263ebb3 100644
--- a/Documentation/sysrq.txt
+++ b/Documentation/sysrq.txt
@@ -95,8 +95,9 @@ On all - write a character to /proc/sysrq-trigger. e.g.:
'p' - Will dump the current registers and flags to your console.
-'q' - Will dump a list of all running hrtimers.
- WARNING: Does not cover any other timers
+'q' - Will dump per CPU lists of all armed hrtimers (but NOT regular
+ timer_list timers) and detailed information about all
+ clockevent devices.
'r' - Turns off keyboard raw mode and sets it to XLATE.
diff --git a/Documentation/tracepoints.txt b/Documentation/tracepoints.txt
new file mode 100644
index 00000000000..5d354e16749
--- /dev/null
+++ b/Documentation/tracepoints.txt
@@ -0,0 +1,101 @@
+ Using the Linux Kernel Tracepoints
+
+ Mathieu Desnoyers
+
+
+This document introduces Linux Kernel Tracepoints and their use. It provides
+examples of how to insert tracepoints in the kernel and connect probe functions
+to them and provides some examples of probe functions.
+
+
+* Purpose of tracepoints
+
+A tracepoint placed in code provides a hook to call a function (probe) that you
+can provide at runtime. A tracepoint can be "on" (a probe is connected to it) or
+"off" (no probe is attached). When a tracepoint is "off" it has no effect,
+except for adding a tiny time penalty (checking a condition for a branch) and
+space penalty (adding a few bytes for the function call at the end of the
+instrumented function and adds a data structure in a separate section). When a
+tracepoint is "on", the function you provide is called each time the tracepoint
+is executed, in the execution context of the caller. When the function provided
+ends its execution, it returns to the caller (continuing from the tracepoint
+site).
+
+You can put tracepoints at important locations in the code. They are
+lightweight hooks that can pass an arbitrary number of parameters,
+which prototypes are described in a tracepoint declaration placed in a header
+file.
+
+They can be used for tracing and performance accounting.
+
+
+* Usage
+
+Two elements are required for tracepoints :
+
+- A tracepoint definition, placed in a header file.
+- The tracepoint statement, in C code.
+
+In order to use tracepoints, you should include linux/tracepoint.h.
+
+In include/trace/subsys.h :
+
+#include <linux/tracepoint.h>
+
+DEFINE_TRACE(subsys_eventname,
+ TPPTOTO(int firstarg, struct task_struct *p),
+ TPARGS(firstarg, p));
+
+In subsys/file.c (where the tracing statement must be added) :
+
+#include <trace/subsys.h>
+
+void somefct(void)
+{
+ ...
+ trace_subsys_eventname(arg, task);
+ ...
+}
+
+Where :
+- subsys_eventname is an identifier unique to your event
+ - subsys is the name of your subsystem.
+ - eventname is the name of the event to trace.
+- TPPTOTO(int firstarg, struct task_struct *p) is the prototype of the function
+ called by this tracepoint.
+- TPARGS(firstarg, p) are the parameters names, same as found in the prototype.
+
+Connecting a function (probe) to a tracepoint is done by providing a probe
+(function to call) for the specific tracepoint through
+register_trace_subsys_eventname(). Removing a probe is done through
+unregister_trace_subsys_eventname(); it will remove the probe sure there is no
+caller left using the probe when it returns. Probe removal is preempt-safe
+because preemption is disabled around the probe call. See the "Probe example"
+section below for a sample probe module.
+
+The tracepoint mechanism supports inserting multiple instances of the same
+tracepoint, but a single definition must be made of a given tracepoint name over
+all the kernel to make sure no type conflict will occur. Name mangling of the
+tracepoints is done using the prototypes to make sure typing is correct.
+Verification of probe type correctness is done at the registration site by the
+compiler. Tracepoints can be put in inline functions, inlined static functions,
+and unrolled loops as well as regular functions.
+
+The naming scheme "subsys_event" is suggested here as a convention intended
+to limit collisions. Tracepoint names are global to the kernel: they are
+considered as being the same whether they are in the core kernel image or in
+modules.
+
+
+* Probe / tracepoint example
+
+See the example provided in samples/tracepoints/src
+
+Compile them with your kernel.
+
+Run, as root :
+modprobe tracepoint-example (insmod order is not important)
+modprobe tracepoint-probe-example
+cat /proc/tracepoint-example (returns an expected error)
+rmmod tracepoint-example tracepoint-probe-example
+dmesg
diff --git a/Documentation/tracers/mmiotrace.txt b/Documentation/tracers/mmiotrace.txt
index a4afb560a45..5bbbe209622 100644
--- a/Documentation/tracers/mmiotrace.txt
+++ b/Documentation/tracers/mmiotrace.txt
@@ -36,7 +36,7 @@ $ mount -t debugfs debugfs /debug
$ echo mmiotrace > /debug/tracing/current_tracer
$ cat /debug/tracing/trace_pipe > mydump.txt &
Start X or whatever.
-$ echo "X is up" > /debug/tracing/marker
+$ echo "X is up" > /debug/tracing/trace_marker
$ echo none > /debug/tracing/current_tracer
Check for lost events.
@@ -59,9 +59,8 @@ The 'cat' process should stay running (sleeping) in the background.
Load the driver you want to trace and use it. Mmiotrace will only catch MMIO
accesses to areas that are ioremapped while mmiotrace is active.
-[Unimplemented feature:]
During tracing you can place comments (markers) into the trace by
-$ echo "X is up" > /debug/tracing/marker
+$ echo "X is up" > /debug/tracing/trace_marker
This makes it easier to see which part of the (huge) trace corresponds to
which action. It is recommended to place descriptive markers about what you
do.