aboutsummaryrefslogtreecommitdiff
path: root/arch/sparc/kernel/smp.c
blob: 2be8121151977d4404cb0976ca445786ba5621b7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
/* smp.c: Sparc SMP support.
 *
 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
 * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
 */

#include <asm/head.h>

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/threads.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/seq_file.h>
#include <linux/cache.h>
#include <linux/delay.h>

#include <asm/ptrace.h>
#include <asm/atomic.h>

#include <asm/irq.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/oplib.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/cpudata.h>

volatile int smp_processors_ready = 0;
int smp_num_cpus = 1;
volatile unsigned long cpu_callin_map[NR_CPUS] __initdata = {0,};
unsigned char boot_cpu_id = 0;
unsigned char boot_cpu_id4 = 0; /* boot_cpu_id << 2 */
int smp_activated = 0;
volatile int __cpu_number_map[NR_CPUS];
volatile int __cpu_logical_map[NR_CPUS];

cpumask_t cpu_online_map = CPU_MASK_NONE;
cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
cpumask_t smp_commenced_mask = CPU_MASK_NONE;

/* The only guaranteed locking primitive available on all Sparc
 * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
 * places the current byte at the effective address into dest_reg and
 * places 0xff there afterwards.  Pretty lame locking primitive
 * compared to the Alpha and the Intel no?  Most Sparcs have 'swap'
 * instruction which is much better...
 */

/* Used to make bitops atomic */
unsigned char bitops_spinlock = 0;

void __init smp_store_cpu_info(int id)
{
	int cpu_node;

	cpu_data(id).udelay_val = loops_per_jiffy;

	cpu_find_by_mid(id, &cpu_node);
	cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
						     "clock-frequency", 0);
	cpu_data(id).prom_node = cpu_node;
	cpu_data(id).mid = cpu_get_hwmid(cpu_node);
	if (cpu_data(id).mid < 0)
		panic("No MID found for CPU%d at node 0x%08d", id, cpu_node);
}

void __init smp_cpus_done(unsigned int max_cpus)
{
	extern void smp4m_smp_done(void);
	unsigned long bogosum = 0;
	int cpu, num;

	for (cpu = 0, num = 0; cpu < NR_CPUS; cpu++)
		if (cpu_online(cpu)) {
			num++;
			bogosum += cpu_data(cpu).udelay_val;
		}

	printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
		num, bogosum/(500000/HZ),
		(bogosum/(5000/HZ))%100);

	BUG_ON(sparc_cpu_model != sun4m);
	smp4m_smp_done();
}

void cpu_panic(void)
{
	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
	panic("SMP bolixed\n");
}

struct linux_prom_registers smp_penguin_ctable __initdata = { 0 };

void smp_send_reschedule(int cpu)
{
	/* See sparc64 */
}

void smp_send_stop(void)
{
}

void smp_flush_cache_all(void)
{
	xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all));
	local_flush_cache_all();
}

void smp_flush_tlb_all(void)
{
	xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all));
	local_flush_tlb_all();
}

void smp_flush_cache_mm(struct mm_struct *mm)
{
	if(mm->context != NO_CONTEXT) {
		cpumask_t cpu_mask = mm->cpu_vm_mask;
		cpu_clear(smp_processor_id(), cpu_mask);
		if (!cpus_empty(cpu_mask))
			xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
		local_flush_cache_mm(mm);
	}
}

void smp_flush_tlb_mm(struct mm_struct *mm)
{
	if(mm->context != NO_CONTEXT) {
		cpumask_t cpu_mask = mm->cpu_vm_mask;
		cpu_clear(smp_processor_id(), cpu_mask);
		if (!cpus_empty(cpu_mask)) {
			xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
			if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
				mm->cpu_vm_mask = cpumask_of_cpu(smp_processor_id());
		}
		local_flush_tlb_mm(mm);
	}
}

void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
			   unsigned long end)
{
	struct mm_struct *mm = vma->vm_mm;

	if (mm->context != NO_CONTEXT) {
		cpumask_t cpu_mask = mm->cpu_vm_mask;
		cpu_clear(smp_processor_id(), cpu_mask);
		if (!cpus_empty(cpu_mask))
			xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end);
		local_flush_cache_range(vma, start, end);
	}
}

void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
			 unsigned long end)
{
	struct mm_struct *mm = vma->vm_mm;

	if (mm->context != NO_CONTEXT) {
		cpumask_t cpu_mask = mm->cpu_vm_mask;
		cpu_clear(smp_processor_id(), cpu_mask);
		if (!cpus_empty(cpu_mask))
			xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end);
		local_flush_tlb_range(vma, start, end);
	}
}

void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
{
	struct mm_struct *mm = vma->vm_mm;

	if(mm->context != NO_CONTEXT) {
		cpumask_t cpu_mask = mm->cpu_vm_mask;
		cpu_clear(smp_processor_id(), cpu_mask);
		if (!cpus_empty(cpu_mask))
			xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page);
		local_flush_cache_page(vma, page);
	}
}

void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
{
	struct mm_struct *mm = vma->vm_mm;

	if(mm->context != NO_CONTEXT) {
		cpumask_t cpu_mask = mm->cpu_vm_mask;
		cpu_clear(smp_processor_id(), cpu_mask);
		if (!cpus_empty(cpu_mask))
			xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
		local_flush_tlb_page(vma, page);
	}
}

void smp_reschedule_irq(void)
{
	set_need_resched();
}

void smp_flush_page_to_ram(unsigned long page)
{
	/* Current theory is that those who call this are the one's
	 * who have just dirtied their cache with the pages contents
	 * in kernel space, therefore we only run this on local cpu.
	 *
	 * XXX This experiment failed, research further... -DaveM
	 */
#if 1
	xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
#endif
	local_flush_page_to_ram(page);
}

void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
{
	cpumask_t cpu_mask = mm->cpu_vm_mask;
	cpu_clear(smp_processor_id(), cpu_mask);
	if (!cpus_empty(cpu_mask))
		xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
	local_flush_sig_insns(mm, insn_addr);
}

extern unsigned int lvl14_resolution;

/* /proc/profile writes can call this, don't __init it please. */
static DEFINE_SPINLOCK(prof_setup_lock);

int setup_profiling_timer(unsigned int multiplier)
{
	int i;
	unsigned long flags;

	/* Prevent level14 ticker IRQ flooding. */
	if((!multiplier) || (lvl14_resolution / multiplier) < 500)
		return -EINVAL;

	spin_lock_irqsave(&prof_setup_lock, flags);
	for_each_cpu(i) {
		load_profile_irq(i, lvl14_resolution / multiplier);
		prof_multiplier(i) = multiplier;
	}
	spin_unlock_irqrestore(&prof_setup_lock, flags);

	return 0;
}

void __init smp_prepare_cpus(unsigned int max_cpus)
{
	extern void smp4m_boot_cpus(void);
	int i, cpuid, ncpus, extra;

	BUG_ON(sparc_cpu_model != sun4m);
	printk("Entering SMP Mode...\n");

	ncpus = 1;
	extra = 0;
	for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
		if (cpuid == boot_cpu_id)
			continue;
		if (cpuid < NR_CPUS && ncpus++ < max_cpus)
			cpu_set(cpuid, phys_cpu_present_map);
		else
			extra++;
	}
	if (max_cpus >= NR_CPUS && extra)
		printk("Warning: NR_CPUS is too low to start all cpus\n");

	smp_store_cpu_info(boot_cpu_id);

	smp4m_boot_cpus();
}

void __devinit smp_prepare_boot_cpu(void)
{
	int cpuid = hard_smp_processor_id();

	if (cpuid >= NR_CPUS) {
		prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
		prom_halt();
	}
	if (cpuid != 0)
		printk("boot cpu id != 0, this could work but is untested\n");

	current_thread_info()->cpu = cpuid;
	cpu_set(cpuid, cpu_online_map);
	cpu_set(cpuid, phys_cpu_present_map);
}

int __devinit __cpu_up(unsigned int cpu)
{
	extern int smp4m_boot_one_cpu(int);
	int ret;

	ret = smp4m_boot_one_cpu(cpu);

	if (!ret) {
		cpu_set(cpu, smp_commenced_mask);
		while (!cpu_online(cpu))
			mb();
	}
	return ret;
}

void smp_bogo(struct seq_file *m)
{
	int i;
	
	for_each_online_cpu(i) {
		seq_printf(m,
			   "Cpu%dBogo\t: %lu.%02lu\n",
			   i,
			   cpu_data(i).udelay_val/(500000/HZ),
			   (cpu_data(i).udelay_val/(5000/HZ))%100);
	}
}

void smp_info(struct seq_file *m)
{
	int i;

	seq_printf(m, "State:\n");
	for_each_online_cpu(i)
		seq_printf(m, "CPU%d\t\t: online\n", i);
}