1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
|
/*
* Copyright (c) 2008-2009 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "ath9k.h"
static inline u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
{
if (fbin == AR5416_BCHAN_UNUSED)
return fbin;
return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
}
void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
u32 shift, u32 val)
{
u32 regVal;
regVal = REG_READ(ah, reg) & ~mask;
regVal |= (val << shift) & mask;
REG_WRITE(ah, reg, regVal);
if (ah->config.analog_shiftreg)
udelay(100);
return;
}
int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
int16_t targetLeft, int16_t targetRight)
{
int16_t rv;
if (srcRight == srcLeft) {
rv = targetLeft;
} else {
rv = (int16_t) (((target - srcLeft) * targetRight +
(srcRight - target) * targetLeft) /
(srcRight - srcLeft));
}
return rv;
}
bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
u16 *indexL, u16 *indexR)
{
u16 i;
if (target <= pList[0]) {
*indexL = *indexR = 0;
return true;
}
if (target >= pList[listSize - 1]) {
*indexL = *indexR = (u16) (listSize - 1);
return true;
}
for (i = 0; i < listSize - 1; i++) {
if (pList[i] == target) {
*indexL = *indexR = i;
return true;
}
if (target < pList[i + 1]) {
*indexL = i;
*indexR = (u16) (i + 1);
return false;
}
}
return false;
}
bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
{
struct ath_softc *sc = ah->ah_sc;
return sc->bus_ops->eeprom_read(ah, off, data);
}
void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
u8 *pVpdList, u16 numIntercepts,
u8 *pRetVpdList)
{
u16 i, k;
u8 currPwr = pwrMin;
u16 idxL = 0, idxR = 0;
for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
numIntercepts, &(idxL),
&(idxR));
if (idxR < 1)
idxR = 1;
if (idxL == numIntercepts - 1)
idxL = (u16) (numIntercepts - 2);
if (pPwrList[idxL] == pPwrList[idxR])
k = pVpdList[idxL];
else
k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
(pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
(pPwrList[idxR] - pPwrList[idxL]));
pRetVpdList[i] = (u8) k;
currPwr += 2;
}
}
void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
struct ath9k_channel *chan,
struct cal_target_power_leg *powInfo,
u16 numChannels,
struct cal_target_power_leg *pNewPower,
u16 numRates, bool isExtTarget)
{
struct chan_centers centers;
u16 clo, chi;
int i;
int matchIndex = -1, lowIndex = -1;
u16 freq;
ath9k_hw_get_channel_centers(ah, chan, ¢ers);
freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
IS_CHAN_2GHZ(chan))) {
matchIndex = 0;
} else {
for (i = 0; (i < numChannels) &&
(powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
IS_CHAN_2GHZ(chan))) {
matchIndex = i;
break;
} else if ((freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
IS_CHAN_2GHZ(chan))) &&
(freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
IS_CHAN_2GHZ(chan)))) {
lowIndex = i - 1;
break;
}
}
if ((matchIndex == -1) && (lowIndex == -1))
matchIndex = i - 1;
}
if (matchIndex != -1) {
*pNewPower = powInfo[matchIndex];
} else {
clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
IS_CHAN_2GHZ(chan));
chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
IS_CHAN_2GHZ(chan));
for (i = 0; i < numRates; i++) {
pNewPower->tPow2x[i] =
(u8)ath9k_hw_interpolate(freq, clo, chi,
powInfo[lowIndex].tPow2x[i],
powInfo[lowIndex + 1].tPow2x[i]);
}
}
}
void ath9k_hw_get_target_powers(struct ath_hw *ah,
struct ath9k_channel *chan,
struct cal_target_power_ht *powInfo,
u16 numChannels,
struct cal_target_power_ht *pNewPower,
u16 numRates, bool isHt40Target)
{
struct chan_centers centers;
u16 clo, chi;
int i;
int matchIndex = -1, lowIndex = -1;
u16 freq;
ath9k_hw_get_channel_centers(ah, chan, ¢ers);
freq = isHt40Target ? centers.synth_center : centers.ctl_center;
if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
matchIndex = 0;
} else {
for (i = 0; (i < numChannels) &&
(powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
IS_CHAN_2GHZ(chan))) {
matchIndex = i;
break;
} else
if ((freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
IS_CHAN_2GHZ(chan))) &&
(freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
IS_CHAN_2GHZ(chan)))) {
lowIndex = i - 1;
break;
}
}
if ((matchIndex == -1) && (lowIndex == -1))
matchIndex = i - 1;
}
if (matchIndex != -1) {
*pNewPower = powInfo[matchIndex];
} else {
clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
IS_CHAN_2GHZ(chan));
chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
IS_CHAN_2GHZ(chan));
for (i = 0; i < numRates; i++) {
pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
clo, chi,
powInfo[lowIndex].tPow2x[i],
powInfo[lowIndex + 1].tPow2x[i]);
}
}
}
u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
bool is2GHz, int num_band_edges)
{
u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
int i;
for (i = 0; (i < num_band_edges) &&
(pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
twiceMaxEdgePower = pRdEdgesPower[i].tPower;
break;
} else if ((i > 0) &&
(freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
is2GHz))) {
if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
is2GHz) < freq &&
pRdEdgesPower[i - 1].flag) {
twiceMaxEdgePower =
pRdEdgesPower[i - 1].tPower;
}
break;
}
}
return twiceMaxEdgePower;
}
int ath9k_hw_eeprom_init(struct ath_hw *ah)
{
int status;
if (AR_SREV_9287(ah)) {
ah->eep_map = EEP_MAP_AR9287;
ah->eep_ops = &eep_AR9287_ops;
} else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
ah->eep_map = EEP_MAP_4KBITS;
ah->eep_ops = &eep_4k_ops;
} else {
ah->eep_map = EEP_MAP_DEFAULT;
ah->eep_ops = &eep_def_ops;
}
if (!ah->eep_ops->fill_eeprom(ah))
return -EIO;
status = ah->eep_ops->check_eeprom(ah);
return status;
}
|