aboutsummaryrefslogtreecommitdiff
path: root/libcrystfel/src/diffraction.c
diff options
context:
space:
mode:
Diffstat (limited to 'libcrystfel/src/diffraction.c')
-rw-r--r--libcrystfel/src/diffraction.c463
1 files changed, 0 insertions, 463 deletions
diff --git a/libcrystfel/src/diffraction.c b/libcrystfel/src/diffraction.c
deleted file mode 100644
index 9532a6ce..00000000
--- a/libcrystfel/src/diffraction.c
+++ /dev/null
@@ -1,463 +0,0 @@
-/*
- * diffraction.c
- *
- * Calculate diffraction patterns by Fourier methods
- *
- * (c) 2006-2011 Thomas White <taw@physics.org>
- *
- * Part of CrystFEL - crystallography with a FEL
- *
- */
-
-
-#include <stdlib.h>
-#include <math.h>
-#include <stdio.h>
-#include <string.h>
-#include <complex.h>
-#include <assert.h>
-#include <fenv.h>
-
-#include "image.h"
-#include "utils.h"
-#include "cell.h"
-#include "diffraction.h"
-#include "beam-parameters.h"
-#include "symmetry.h"
-
-
-#define SAMPLING (4)
-#define BWSAMPLING (10)
-#define DIVSAMPLING (1)
-#define SINC_LUT_ELEMENTS (4096)
-
-
-static double *get_sinc_lut(int n)
-{
- int i;
- double *lut;
-
- lut = malloc(SINC_LUT_ELEMENTS*sizeof(double));
- lut[0] = n;
- if ( n == 1 ) {
- for ( i=1; i<SINC_LUT_ELEMENTS; i++ ) {
- lut[i] = 1.0;
- }
- } else {
- for ( i=1; i<SINC_LUT_ELEMENTS; i++ ) {
- double x, val;
- x = (double)i/SINC_LUT_ELEMENTS;
- val = fabs(sin(M_PI*n*x)/sin(M_PI*x));
- lut[i] = val;
- }
- }
-
- return lut;
-}
-
-
-static double interpolate_lut(double *lut, double val)
-{
- double i, pos, f;
- unsigned int low, high;
-
- pos = SINC_LUT_ELEMENTS * modf(fabs(val), &i);
- low = (int)pos; /* Discard fractional part */
- high = low + 1;
- f = modf(pos, &i); /* Fraction */
- if ( high == SINC_LUT_ELEMENTS ) high = 0;
-
- return (1.0-f)*lut[low] + f*lut[high];
-}
-
-
-static double lattice_factor(struct rvec q, double ax, double ay, double az,
- double bx, double by, double bz,
- double cx, double cy, double cz,
- double *lut_a, double *lut_b,
- double *lut_c)
-{
- struct rvec Udotq;
- double f1, f2, f3;
-
- Udotq.u = ax*q.u + ay*q.v + az*q.w;
- Udotq.v = bx*q.u + by*q.v + bz*q.w;
- Udotq.w = cx*q.u + cy*q.v + cz*q.w;
-
- f1 = interpolate_lut(lut_a, Udotq.u);
- f2 = interpolate_lut(lut_b, Udotq.v);
- f3 = interpolate_lut(lut_c, Udotq.w);
-
- return f1 * f2 * f3;
-}
-
-
-static double sym_lookup_intensity(const double *intensities,
- const unsigned char *flags,
- const SymOpList *sym,
- signed int h, signed int k, signed int l)
-{
- int i;
- double ret = 0.0;
-
- for ( i=0; i<num_equivs(sym, NULL); i++ ) {
-
- signed int he;
- signed int ke;
- signed int le;
- double f, val;
-
- get_equiv(sym, NULL, i, h, k, l, &he, &ke, &le);
-
- f = (double)lookup_flag(flags, he, ke, le);
- val = lookup_intensity(intensities, he, ke, le);
-
- ret += f*val;
-
- }
-
- return ret;
-}
-
-
-static double sym_lookup_phase(const double *phases,
- const unsigned char *flags, const SymOpList *sym,
- signed int h, signed int k, signed int l)
-{
- int i;
- double ret = 0.0;
-
- for ( i=0; i<num_equivs(sym, NULL); i++ ) {
-
- signed int he;
- signed int ke;
- signed int le;
- double f, val;
-
- get_equiv(sym, NULL, i, h, k, l, &he, &ke, &le);
-
- f = (double)lookup_flag(flags, he, ke, le);
- val = lookup_phase(phases, he, ke, le);
-
- ret += f*val;
-
- }
-
- return ret;
-}
-
-
-static double interpolate_linear(const double *ref, const unsigned char *flags,
- const SymOpList *sym, float hd,
- signed int k, signed int l)
-{
- signed int h;
- double val1, val2;
- float f;
-
- h = (signed int)hd;
- if ( hd < 0.0 ) h -= 1;
- f = hd - (float)h;
- assert(f >= 0.0);
-
- val1 = sym_lookup_intensity(ref, flags, sym, h, k, l);
- val2 = sym_lookup_intensity(ref, flags, sym, h+1, k, l);
-
- val1 = val1;
- val2 = val2;
-
- return (1.0-f)*val1 + f*val2;
-}
-
-
-static double interpolate_bilinear(const double *ref,
- const unsigned char *flags,
- const SymOpList *sym,
- float hd, float kd, signed int l)
-{
- signed int k;
- double val1, val2;
- float f;
-
- k = (signed int)kd;
- if ( kd < 0.0 ) k -= 1;
- f = kd - (float)k;
- assert(f >= 0.0);
-
- val1 = interpolate_linear(ref, flags, sym, hd, k, l);
- val2 = interpolate_linear(ref, flags, sym, hd, k+1, l);
-
- return (1.0-f)*val1 + f*val2;
-}
-
-
-static double interpolate_intensity(const double *ref,
- const unsigned char *flags,
- const SymOpList *sym,
- float hd, float kd, float ld)
-{
- signed int l;
- double val1, val2;
- float f;
-
- l = (signed int)ld;
- if ( ld < 0.0 ) l -= 1;
- f = ld - (float)l;
- assert(f >= 0.0);
-
- val1 = interpolate_bilinear(ref, flags, sym, hd, kd, l);
- val2 = interpolate_bilinear(ref, flags, sym, hd, kd, l+1);
-
- return (1.0-f)*val1 + f*val2;
-}
-
-
-static double complex interpolate_phased_linear(const double *ref,
- const double *phases,
- const unsigned char *flags,
- const SymOpList *sym,
- float hd,
- signed int k, signed int l)
-{
- signed int h;
- double val1, val2;
- float f;
- double ph1, ph2;
- double re1, re2, im1, im2;
- double re, im;
-
- h = (signed int)hd;
- if ( hd < 0.0 ) h -= 1;
- f = hd - (float)h;
- assert(f >= 0.0);
-
- val1 = sym_lookup_intensity(ref, flags, sym, h, k, l);
- val2 = sym_lookup_intensity(ref, flags, sym, h+1, k, l);
- ph1 = sym_lookup_phase(phases, flags, sym, h, k, l);
- ph2 = sym_lookup_phase(phases, flags, sym, h+1, k, l);
-
- val1 = val1;
- val2 = val2;
-
- /* Calculate real and imaginary parts */
- re1 = val1 * cos(ph1);
- im1 = val1 * sin(ph1);
- re2 = val2 * cos(ph2);
- im2 = val2 * sin(ph2);
-
- re = (1.0-f)*re1 + f*re2;
- im = (1.0-f)*im1 + f*im2;
-
- return re + im*I;
-}
-
-
-static double complex interpolate_phased_bilinear(const double *ref,
- const double *phases,
- const unsigned char *flags,
- const SymOpList *sym,
- float hd, float kd,
- signed int l)
-{
- signed int k;
- double complex val1, val2;
- float f;
-
- k = (signed int)kd;
- if ( kd < 0.0 ) k -= 1;
- f = kd - (float)k;
- assert(f >= 0.0);
-
- val1 = interpolate_phased_linear(ref, phases, flags, sym, hd, k, l);
- val2 = interpolate_phased_linear(ref, phases, flags, sym, hd, k+1, l);
-
- return (1.0-f)*val1 + f*val2;
-}
-
-
-static double interpolate_phased_intensity(const double *ref,
- const double *phases,
- const unsigned char *flags,
- const SymOpList *sym,
- float hd, float kd, float ld)
-{
- signed int l;
- double complex val1, val2;
- float f;
-
- l = (signed int)ld;
- if ( ld < 0.0 ) l -= 1;
- f = ld - (float)l;
- assert(f >= 0.0);
-
- val1 = interpolate_phased_bilinear(ref, phases, flags, sym,
- hd, kd, l);
- val2 = interpolate_phased_bilinear(ref, phases, flags, sym,
- hd, kd, l+1);
-
- return cabs((1.0-f)*val1 + f*val2);
-}
-
-
-/* Look up the structure factor for the nearest Bragg condition */
-static double molecule_factor(const double *intensities, const double *phases,
- const unsigned char *flags, struct rvec q,
- double ax, double ay, double az,
- double bx, double by, double bz,
- double cx, double cy, double cz,
- GradientMethod m, const SymOpList *sym)
-{
- float hd, kd, ld;
- signed int h, k, l;
- double r;
-
- hd = q.u * ax + q.v * ay + q.w * az;
- kd = q.u * bx + q.v * by + q.w * bz;
- ld = q.u * cx + q.v * cy + q.w * cz;
-
- /* No flags -> flat intensity distribution */
- if ( flags == NULL ) return 1.0e5;
-
- switch ( m ) {
- case GRADIENT_MOSAIC :
- fesetround(1); /* Round to nearest */
- h = (signed int)rint(hd);
- k = (signed int)rint(kd);
- l = (signed int)rint(ld);
- if ( abs(h) > INDMAX ) r = 0.0;
- else if ( abs(k) > INDMAX ) r = 0.0;
- else if ( abs(l) > INDMAX ) r = 0.0;
- else r = sym_lookup_intensity(intensities, flags, sym, h, k, l);
- break;
- case GRADIENT_INTERPOLATE :
- r = interpolate_intensity(intensities, flags, sym, hd, kd, ld);
- break;
- case GRADIENT_PHASED :
- r = interpolate_phased_intensity(intensities, phases, flags,
- sym, hd, kd, ld);
- break;
- default:
- ERROR("This gradient method not implemented yet.\n");
- exit(1);
- }
-
- return r;
-}
-
-
-void get_diffraction(struct image *image, int na, int nb, int nc,
- const double *intensities, const double *phases,
- const unsigned char *flags, UnitCell *cell,
- GradientMethod m, const SymOpList *sym)
-{
- unsigned int fs, ss;
- double ax, ay, az;
- double bx, by, bz;
- double cx, cy, cz;
- float klow, khigh, bwstep;
- double *lut_a;
- double *lut_b;
- double *lut_c;
- double divxlow, divylow, divxstep, divystep;
-
- cell_get_cartesian(cell, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz);
-
- /* Allocate (and zero) the "diffraction array" */
- image->data = calloc(image->width * image->height, sizeof(float));
-
- /* Needed later for Lorentz calculation */
- image->twotheta = malloc(image->width * image->height * sizeof(double));
-
- klow = 1.0/(image->lambda*(1.0 + image->beam->bandwidth/2.0));
- khigh = 1.0/(image->lambda*(1.0 - image->beam->bandwidth/2.0));
- bwstep = (khigh-klow) / BWSAMPLING;
-
- divxlow = -image->beam->divergence/2.0;
- divylow = -image->beam->divergence/2.0;
- divxstep = image->beam->divergence / DIVSAMPLING;
- divystep = image->beam->divergence / DIVSAMPLING;
-
- lut_a = get_sinc_lut(na);
- lut_b = get_sinc_lut(nb);
- lut_c = get_sinc_lut(nc);
-
- for ( fs=0; fs<image->width; fs++ ) {
- for ( ss=0; ss<image->height; ss++ ) {
-
- int fs_step, ss_step, kstep;
- int divxval, divyval;
- int idx = fs + image->width*ss;
-
- for ( fs_step=0; fs_step<SAMPLING; fs_step++ ) {
- for ( ss_step=0; ss_step<SAMPLING; ss_step++ ) {
- for ( kstep=0; kstep<BWSAMPLING; kstep++ ) {
- for ( divxval=0; divxval<DIVSAMPLING; divxval++ ) {
- for ( divyval=0; divyval<DIVSAMPLING; divyval++ ) {
-
- double k;
- double intensity;
- double f_lattice, I_lattice;
- double I_molecule;
- struct rvec q, qn;
- double twotheta;
- const double dfs = (double)fs
- + ((double)fs_step / SAMPLING);
- const double dss = (double)ss
- + ((double)ss_step / SAMPLING);
-
- double xdiv = divxlow + divxstep*(double)divxval;
- double ydiv = divylow + divystep*(double)divyval;
-
- /* Calculate k this time round */
- k = klow + (double)kstep * bwstep;
-
- qn = get_q(image, dfs, dss, &twotheta, k);
-
- /* x divergence */
- q.u = qn.u*cos(xdiv) +qn.w*sin(xdiv);
- q.v = qn.v;
- q.w = -qn.u*sin(xdiv) +qn.w*cos(xdiv);
-
- qn = q;
-
- /* y divergence */
- q.v = qn.v*cos(ydiv) +qn.w*sin(ydiv);
- q.w = -qn.v*sin(ydiv) +qn.w*cos(ydiv);
-
- f_lattice = lattice_factor(q, ax, ay, az,
- bx, by, bz,
- cx, cy, cz,
- lut_a, lut_b, lut_c);
-
- I_molecule = molecule_factor(intensities,
- phases, flags, q,
- ax,ay,az,bx,by,bz,cx,cy,cz,
- m, sym);
-
- I_lattice = pow(f_lattice, 2.0);
- intensity = I_lattice * I_molecule;
-
- image->data[idx] += intensity;
-
- if ( fs_step + ss_step + kstep == 0 ) {
- image->twotheta[idx] = twotheta;
- }
-
- }
- }
- }
- }
- }
-
- image->data[idx] /= (SAMPLING*SAMPLING*BWSAMPLING
- *DIVSAMPLING*DIVSAMPLING);
-
-
- }
- progress_bar(fs, image->width-1, "Calculating diffraction");
- }
-
- free(lut_a);
- free(lut_b);
- free(lut_c);
-}