aboutsummaryrefslogtreecommitdiff
path: root/libcrystfel/src/symop.y
diff options
context:
space:
mode:
Diffstat (limited to 'libcrystfel/src/symop.y')
-rw-r--r--libcrystfel/src/symop.y106
1 files changed, 106 insertions, 0 deletions
diff --git a/libcrystfel/src/symop.y b/libcrystfel/src/symop.y
new file mode 100644
index 00000000..4aec791a
--- /dev/null
+++ b/libcrystfel/src/symop.y
@@ -0,0 +1,106 @@
+/*
+ * symop.y
+ *
+ * Parser for symmetry operations
+ *
+ * Copyright © 2019 Deutsches Elektronen-Synchrotron DESY,
+ * a research centre of the Helmholtz Association.
+ *
+ * Authors:
+ * 2019 Thomas White <taw@physics.org>
+ *
+ * This file is part of CrystFEL.
+ *
+ * CrystFEL is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * CrystFEL is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with CrystFEL. If not, see <http://www.gnu.org/licenses/>.
+ *
+ */
+
+%{
+ #include <stdio.h>
+
+ #include "rational.h"
+
+ extern int symoplex();
+ extern int symopparse(RationalMatrix *m);
+ void symoperror(RationalMatrix *m, const char *s);
+%}
+
+%define api.prefix {symop}
+
+%parse-param {RationalMatrix *m}
+
+%union {
+ RationalMatrix *m; /* Full rational matrix */
+ Rational rv[3]; /* Rational vector, e.g. '1/2h+3k' */
+ Rational r; /* Rational number */
+ int n; /* Just a number */
+}
+
+%token COMMA
+%token NUMBER
+%token OPENB CLOSEB
+%token H K L
+
+%left PLUS MINUS
+%left DIVIDE
+%precedence MUL
+%precedence NEG
+
+%type <m> symop
+%type <rv> axexpr
+%type <rv> part
+%type <n> NUMBER
+%type <r> fraction
+
+%%
+
+symop:
+ axexpr COMMA axexpr COMMA axexpr { rtnl_mtx_set(m, 0, 0, $1[0]);
+ rtnl_mtx_set(m, 0, 1, $1[1]);
+ rtnl_mtx_set(m, 0, 2, $1[2]);
+ rtnl_mtx_set(m, 1, 0, $3[0]);
+ rtnl_mtx_set(m, 1, 1, $3[1]);
+ rtnl_mtx_set(m, 1, 2, $3[2]);
+ rtnl_mtx_set(m, 2, 0, $5[0]);
+ rtnl_mtx_set(m, 2, 1, $5[1]);
+ rtnl_mtx_set(m, 2, 2, $5[2]);
+ }
+;
+
+axexpr:
+ part { int i; for ( i=0; i<3; i++ ) $$[i] = $1[i]; }
+| axexpr PLUS axexpr { int i; for ( i=0; i<3; i++ ) $$[i] = rtnl_add($1[i], $3[i]); }
+| axexpr MINUS axexpr { int i; for ( i=0; i<3; i++ ) $$[i] = rtnl_sub($1[i], $3[i]); }
+| MINUS axexpr %prec NEG { int i; for ( i=0; i<3; i++ ) $$[i] = rtnl_sub(rtnl_zero(), $2[i]); }
+| OPENB axexpr CLOSEB { int i; for ( i=0; i<3; i++ ) $$[i] = $2[i]; }
+| axexpr DIVIDE NUMBER { int i; for ( i=0; i<3; i++ ) $$[i] = rtnl_div($1[i], rtnl($3, 1)); }
+| NUMBER axexpr %prec MUL { int i; for ( i=0; i<3; i++ ) $$[i] = rtnl_mul($2[i], rtnl($1, 1)); }
+| fraction axexpr %prec MUL { int i; for ( i=0; i<3; i++ ) $$[i] = rtnl_mul($2[i], $1); }
+;
+
+part:
+ H { $$[0] = rtnl(1, 1); $$[1] = rtnl_zero(); $$[2] = rtnl_zero(); }
+| K { $$[1] = rtnl(1, 1); $$[0] = rtnl_zero(); $$[2] = rtnl_zero(); }
+| L { $$[2] = rtnl(1, 1); $$[0] = rtnl_zero(); $$[1] = rtnl_zero(); }
+;
+
+fraction:
+ NUMBER DIVIDE NUMBER { $$ = rtnl($1, $3); }
+;
+
+%%
+
+void symoperror(RationalMatrix *m, const char *s) {
+ printf("Error\n");
+}