aboutsummaryrefslogtreecommitdiff
path: root/libcrystfel/src/spectrum.c
blob: 5f126cf04c642020300a164e7bc0ba4437de9769 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
/*
 * spectrum.c
 *
 * A class representing a radiation spectrum
 *
 * Copyright © 2019-2021 Deutsches Elektronen-Synchrotron DESY,
 *                       a research centre of the Helmholtz Association.
 *
 * Authors:
 *   2019 Thomas White <taw@physics.org>
 *
 * This file is part of CrystFEL.
 *
 * CrystFEL is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * CrystFEL is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with CrystFEL.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

#include <libcrystfel-config.h>

#include <assert.h>
#include <gsl/gsl_sort.h>

#include "spectrum.h"
#include "utils.h"


/**
 * \file spectrum.h
 */


enum spectrumrep
{
	SPEC_HISTOGRAM,
	SPEC_GAUSSIANS
};

struct _spectrum
{
	enum spectrumrep rep;

	/* Gaussian representation */
	struct gaussian *gaussians;
	int n_gaussians;

	/* Histogram representation */
	double *k;
	double *pdf;
	int n_samples;
};


/**
 * Create a new \ref Spectrum.
 *
 * \returns The new spectrum, or NULL on failure.
 *
 */
Spectrum *spectrum_new()
{
	Spectrum *s;

	s = malloc(sizeof(Spectrum));
	if ( s == NULL ) return NULL;

	s->rep = SPEC_GAUSSIANS;

	s->gaussians = NULL;
	s->n_gaussians = 0;

	s->k = NULL;
	s->pdf = NULL;
	s->n_samples = 0;

	return s;
}


/**
 * \param s A \ref Spectrum
 *
 * Frees a \ref Spectrum.
 */
void spectrum_free(Spectrum *s)
{
	if ( s == NULL ) return;
	free(s->gaussians);
	free(s->k);
	free(s->pdf);
	free(s);
}


/**
 * \param s A \ref Spectrum
 *
 * \returns The number of Gaussians in the spectrum, or zero if \p s is not
 * currently represented as Gaussians.
 */
int spectrum_get_num_gaussians(Spectrum *s)
{
	if ( s->rep == SPEC_GAUSSIANS ) return s->n_gaussians;
	return 0;
}


/**
 * \param s A \ref Spectrum
 * \param n The index number of the required Gaussian
 *
 * Returns The \p n-th Gaussian in the spectrum.  The Gaussians are
 * returned in descending order of integrated intensity, indexed from zero.
 *
 * If \p n is greater than or equal to the number of Gaussians in the spectrum,
 * or if the spectrum is not represented as Gaussians, the returned Gaussian
 * will have zero area.
 *
 * \returns The \p n-th Gaussian.
 */
struct gaussian spectrum_get_gaussian(Spectrum *s, int n)
{
	struct gaussian g;
	if ( (s->rep != SPEC_GAUSSIANS) || (n >= s->n_gaussians) ) {
		g.kcen = 0.0;
		g.sigma = 0.0;
		g.area = 0.0;
	} else {
		g = s->gaussians[n];
	}
	return g;
}


/**
 * \param s A \ref Spectrum
 * \param k A wavenumber (in 1/metres)
 *
 * Retrieves the spectral density at wavenumber \p k.
 * This is a sample from a probability density function, so to calculate the
 * "amount of intensity" from this, you'll need to multiply the value by a
 * small width of k.
 *
 * \returns The density at \p k.
 */
double spectrum_get_density_at_k(Spectrum *s, double k)
{
	if ( s->rep == SPEC_HISTOGRAM ) {
		int i = 0;
		double frac;
		if ( k <= s->k[0] ) return 0.0;
		if ( k >= s->k[s->n_samples-1] ) return 0.0;
		/* k is definitely after the first sample, and definitely
		 * before the last one */
		while ( (i<s->n_samples) && (s->k[i] < k) ) i++;
		assert(i < s->n_samples);
		frac = (k - s->k[i-1]) / (s->k[i] - s->k[i-1]);
		return s->pdf[i-1] + frac * (s->pdf[i] - s->pdf[i-1]);
	}

	if ( s->rep == SPEC_GAUSSIANS ) {
		double total = 0.0;
		int i;
		for ( i=0; i<s->n_gaussians; i++ ) {
			double a = s->gaussians[i].area;
			double b = s->gaussians[i].kcen;
			double c = s->gaussians[i].sigma;
			total += a*exp(-(k-b)*(k-b)/(2.0*c*c)) / (c*sqrt(2.0*M_PI));
		}
		return total;
	}

	return 0.0;
}


static double smallest_in_list(double *vals, int n_vals)
{
	int i;
	double v = +INFINITY;
	for ( i=0; i<n_vals; i++ ) {
		if ( vals[i] < v ) v = vals[i];
	}
	return v;
}


static double largest_in_list(double *vals, int n_vals)
{
	int i;
	double v = -INFINITY;
	for ( i=0; i<n_vals; i++ ) {
		if ( vals[i] > v ) v = vals[i];
	}
	return v;
}


static double gauss_low(struct gaussian *gauss, int n_gauss)
{
	int i;
	double v = +INFINITY;
	for ( i=0; i<n_gauss; i++ ) {
		double gv = gauss[i].kcen - 5.0*gauss[i].sigma;
		if ( gv < v ) v = gv;
	}
	return v;
}


static double gauss_high(struct gaussian *gauss, int n_gauss)
{
	int i;
	double v = -INFINITY;
	for ( i=0; i<n_gauss; i++ ) {
		double gv = gauss[i].kcen + 5.0*gauss[i].sigma;
		if ( gv > v ) v = gv;
	}
	return v;
}


/**
 * \param s A \ref Spectrum
 * \param kmin Location to store minimum k value
 * \param kmax Location to store maximum k value
 *
 * Sets \p kmin and \p kmax to the range of k values in the spectrum.  If the
 * spectrum is represented as Gaussians, the range returned will be enough to
 * contain at least 5 sigmas of all the Gaussians.
 *
 * The values will be returned in units of 1/m.
 */
void spectrum_get_range(Spectrum *s, double *kmin, double *kmax)
{
	if ( s->rep == SPEC_HISTOGRAM ) {
		*kmin = smallest_in_list(s->k, s->n_samples);
		*kmax = largest_in_list(s->k, s->n_samples);
	} else {
		assert(s->rep == SPEC_GAUSSIANS);
		*kmin = gauss_low(s->gaussians, s->n_gaussians);
		*kmax = gauss_high(s->gaussians, s->n_gaussians);
	}
}


static signed int cmp_gauss(const void *va, const void *vb)
{
	const struct gaussian *a = va;
	const struct gaussian *b = vb;
	if ( a->area > b->area ) return +1;
	return -1;
}


static void normalise_gaussians(struct gaussian *gauss, int n_gauss)
{
	int i;
	double total_area = 0.0;
	for ( i=0; i<n_gauss; i++ ) {
		total_area += gauss[i].area;
	}
	for ( i=0; i<n_gauss; i++ ) {
		gauss[i].area /= total_area;
	}
}


/**
 * \param s A \ref Spectrum
 * \param gs Pointer to array of \ref gaussian structures
 * \param n_gauss Number of Gaussians in \p gs
 *
 * Sets the spectrum in terms of a sum of Gaussians.
 *
 * The spectral density function will be normalised, so only the relative areas
 * under the curves are relevant.
 *
 * The input array will be copied, so you can safely free it after calling this
 * function.
 */
void spectrum_set_gaussians(Spectrum *s, struct gaussian *gs, int n_gauss)
{
	/* Free old contents (if any - may be NULL) */
	free(s->gaussians);
	free(s->k);
	free(s->pdf);

	s->gaussians = malloc(n_gauss * sizeof(struct gaussian));
	if ( s->gaussians == NULL ) return;

	memcpy(s->gaussians, gs, n_gauss*sizeof(struct gaussian));
	s->n_gaussians = n_gauss;
	s->rep = SPEC_GAUSSIANS;

	qsort(s->gaussians, s->n_gaussians, sizeof(struct gaussian), cmp_gauss);
	normalise_gaussians(s->gaussians, s->n_gaussians);
}


/* Samples must already have been sorted */
static void normalise_pdf(double *k, double *pdf, int n)
{
	int i;
	double total_area = 0.0;
	double old_k = k[0];
	double old_pdf = pdf[0];
	for ( i=1; i<n; i++ ) {
		total_area += (pdf[i]+old_pdf)*(k[i]-old_k)/2.0;
		old_k = k[i];
		old_pdf = pdf[i];
	}

	for ( i=0; i<n; i++ ) {
		pdf[i] /= total_area;
	}
}


/**
 * \param s A \ref Spectrum
 * \param kvals Pointer to array of k values (in 1/m);
 * \param heights Pointer to array of spectral density samples
 * \param n Number of samples
 *
 * Sets the spectrum in terms of samples of the probability density function.
 * The spectral density function will be normalised.  The spectrum can have a
 * non-zero value only for k values in the range [kmin,kmax] (exclusive
 * interval), where kmin and kmax are the smallest and largest values in
 * \p kvals.
 *
 * The input arrays will be copied, so you can safely free them after calling
 * this function.
 */
void spectrum_set_pdf(Spectrum *s, double *kvals, double *heights, int n)
{
	size_t *perm;
	int i;

	/* Free old contents (if any - may be NULL) */
	free(s->gaussians);
	free(s->k);
	free(s->pdf);

	s->k = malloc(n * sizeof(double));
	if ( s->k == NULL ) return;

	s->pdf = malloc(n * sizeof(double));
	if ( s->pdf == NULL ) return;

	perm = malloc(n * sizeof(size_t));
	if ( perm == NULL ) return;

	gsl_sort_index(perm, kvals, 1, n);

	for ( i=0; i<n; i++ ) {
		s->k[i] = kvals[perm[i]];
		s->pdf[i] = heights[perm[i]];
	}
	free(perm);

	s->n_samples = n;
	s->rep = SPEC_HISTOGRAM;

	normalise_pdf(s->k, s->pdf, s->n_samples);
}


static int read_esrf_spectrum(FILE *fh, Spectrum *s)
{
	double *k = NULL;
	double *samp = NULL;
	int n_bins = 0;
	int max_bins = 0;

	while ( !feof(fh) ) {

		float energy, weight;
		if ( fscanf(fh, "%e %e\n", &energy, &weight) != 2 ) return 1;

		if ( n_bins == max_bins ) {
			max_bins += 64;
			k = srealloc(k, max_bins*sizeof(double));
			samp = srealloc(samp, max_bins*sizeof(double));
			if ( (k==NULL) || (samp==NULL) ) {
				free(k);
				free(samp);
				return 1;
			}
		}

		k[n_bins] = ph_eV_to_k(energy*1000.0);
		samp[n_bins] = weight;
		n_bins++;

	}

	spectrum_set_pdf(s, k, samp, n_bins);
	free(k);
	free(samp);

	return 0;
}


/**
 * \param filename Filename for the input file
 *
 * Loads the spectrum from \s filename.  Currently, only the ESRF spectrum file
 * format is supported.
 *
 * \returns A newly allocated \ref Spectrum, or NULL on error.
 */
Spectrum *spectrum_load(const char *filename)
{
	FILE *fh;
	Spectrum *s;
	char line[1024];

	fh = fopen(filename, "r");
	if ( fh == NULL ) return NULL;

	s = spectrum_new();
	if ( s == NULL ) {
		fclose(fh);
		return NULL;
	}

	if ( fgets(line, 1024, fh) != line ) {
		ERROR("Failed to read '%s'\n", filename);
		spectrum_free(s);
		fclose(fh);
		return NULL;
	}

	chomp(line);
	if ( strcmp(line, "# energy/keV current/A") == 0 ) {
		if ( read_esrf_spectrum(fh, s) ) {
			ERROR("Failed to read ESRF spectrum from %s\n",
			      filename);
			spectrum_free(s);
			fclose(fh);
			return NULL;
		}
	} else {
		ERROR("Spectrum format not recognised: %s\n", filename);
		fclose(fh);
		spectrum_free(s);
		return NULL;
	}

	fclose(fh);
	return s;
}


/**
 * \param wavelength Wavelength in metres
 * \param bandwidth Bandwidth as a fraction
 *
 * Generates a top-hat spectrum centered on 'wavelength', where the width of the
 * flat top is bandwidth/wavelength
 *
 * \returns A newly-allocated \ref Spectrum, or NULL on error.
 */
Spectrum *spectrum_generate_tophat(double wavelength, double bandwidth)
{
	Spectrum *s;
	double kvals[2];
	double samp[2];
	double kcen;

	s = spectrum_new();
	if ( s == NULL ) return NULL;

	kcen = 1.0/wavelength;
	kvals[0] = kcen - kcen*bandwidth/2.0;
	kvals[1] = kcen + kcen*bandwidth/2.0;
	samp[0] = 1.0;
	samp[1] = 1.0;
	spectrum_set_pdf(s, kvals, samp, 2);
	return s;
}


/**
 * \param wavelength Wavelength in metres
 * \param bandwidth Bandwidth as a fraction
 *
 * Generates a Gaussian spectrum centered on 'wavelength', where the standard
 * deviation of the Gaussian is bandwidth divided by wavelength (bandwidth
 * fraction times k value).
 *
 * \returns A newly-allocated \ref Spectrum, or NULL on error.
 */
Spectrum *spectrum_generate_gaussian(double wavelength, double bandwidth)
{
	Spectrum *s;
	struct gaussian g;

	s = spectrum_new();
	if ( s == NULL ) return NULL;

	g.kcen = 1.0/wavelength;
	g.sigma = bandwidth/wavelength;
	g.area = 1;
	spectrum_set_gaussians(s, &g, 1);

	return s;
}


/**
 * \param wavelength Wavelength in metres
 * \param bandwidth Bandwidth as a fraction of wavelength
 * \param spike_width The width of the SASE spikes, as a fraction of wavelength
 * \param rng A GSL random number generator
 *
 * Generates a SASE spectrum centered on 'wavelength', with 15 spikes of width
 * spike_width divided by wavelength (i.e. spike_width times k value).  The
 * spikes will be distributed within a width of k values of bandwidth divided
 * by wavelength (bandwidth times k-value).
 *
 * Note that CrystFEL is not an undulator simulation program.  This function
 * just simulates a rough idea of the kind of spiky spectrum resulting from the
 * SASE process.
 *
 * \returns A newly-allocated \ref Spectrum, or NULL on error.
 */
Spectrum *spectrum_generate_sase(double wavelength, double bandwidth,
                                 double spike_width, gsl_rng *rng)
{
	int i;
	Spectrum *s;
	struct gaussian g[15];

	s = spectrum_new();
	if ( s == NULL ) return NULL;

	for ( i=0; i<15; i++ ) {
		g[i].kcen = 1.0/wavelength + (gsl_rng_uniform_pos(rng)-0.5) * bandwidth/wavelength;
		g[i].sigma = spike_width/wavelength;
		g[i].area = gsl_rng_uniform(rng);
	}

	spectrum_set_gaussians(s, g, 15);

	return s;
}


/**
 * \param wavelength Wavelength in metres
 * \param bandwidth Bandwidth as a fraction of wavelength
 * \param separation Separation between peak centres, in m^-1
 *
 * Generates a two-colour spectrum with Gaussian peaks centered at wavenumbers
 * 1/wavelength ± separation/2.  Each peak will have a standard deviation of
 * bandwidth divided by wavelength (bandwidth fraction times k value).
 *
 * \returns A newly-allocated \ref Spectrum, or NULL on error.
 */
Spectrum *spectrum_generate_twocolour(double wavelength, double bandwidth,
                                      double separation)
{
	Spectrum *s;
	struct gaussian g[2];

	s = spectrum_new();
	if ( s == NULL ) return NULL;

	g[0].kcen = 1.0/wavelength - separation/2.0;
	g[0].sigma = bandwidth/wavelength;
	g[0].area = 1;

	g[1].kcen = 1.0/wavelength + separation/2.0;
	g[1].sigma = bandwidth/wavelength;
	g[1].area = 1;

	spectrum_set_gaussians(s, g, 2);

	return s;
}