aboutsummaryrefslogtreecommitdiff
path: root/libcrystfel/src/taketwo.c
blob: 7362a4c690dddd5abd20c29bf2d2525c089fbbd7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
/*
 * taketwo.c
 *
 * Rewrite of TakeTwo algorithm (Acta D72 (8) 956-965) for CrystFEL
 *
 * Copyright © 2016 Helen Ginn
 * Copyright © 2016 Deutsches Elektronen-Synchrotron DESY,
 *                  a research centre of the Helmholtz Association.
 *
 * Authors:
 *   2016 Helen Ginn <helen@strubi.ox.ac.uk>
 *   2016 Thomas White <taw@physics.org>
 *
 * This file is part of CrystFEL.
 *
 * CrystFEL is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * CrystFEL is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with CrystFEL.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>
#include <math.h>
#include <assert.h>

#include "cell-utils.h"
#include "index.h"
#include "taketwo.h"
#include "peaks.h"

/**
 * spotvec
 * @obsvec: an observed vector between two spots
 * @matches: array of matching theoretical vectors from unit cell
 * @match_num: number of matches
 * @distance: length of obsvec (do I need this?)
 * @her_rlp: pointer to first rlp position for difference vec
 * @his_rlp: pointer to second rlp position for difference vec
 *
 * Structure representing 3D vector between two potential Bragg peaks
 * in reciprocal space, and an array of potential matching theoretical
 * vectors from unit cell/centering considerations.
 **/
struct SpotVec
{
	struct rvec obsvec;
	struct rvec *matches;
	int match_num;
	double distance;
	struct rvec *her_rlp;
	struct rvec *his_rlp;
};


struct taketwo_private
{
	IndexingMethod indm;
	float          *ltl;
	UnitCell       *cell;
};


/* Maximum distance between two rlp sizes to consider info for indexing */
#define MAX_RECIP_DISTANCE (0.15*1e10)

/* Tolerance for two lengths in reciprocal space to be considered the same */
#define RECIP_TOLERANCE (0.0002*1e10)

/* Threshold for network members to consider a potential solution */
#define NETWORK_MEMBER_THRESHOLD (20)

/* Maximum network members (obviously a solution so should stop) */
#define MAX_NETWORK_MEMBERS (100)

/* Maximum dead ends for a single branch extension during indexing */
#define MAX_DEAD_ENDS (5)

/* Tolerance for two angles to be considered the same */
#define ANGLE_TOLERANCE (deg2rad(1.0))

/* Tolerance for rot_mats_are_similar */
#define TRACE_TOLERANCE (deg2rad(8.0))

/** TODO:
 *
 * - May need to be capable of playing with the tolerances/#defined stuff.
 * - Multiple lattices
 */


/* ------------------------------------------------------------------------
 * apologetic function
 * ------------------------------------------------------------------------*/

void apologise()
{
	printf("Error - could not allocate memory for indexing.\n");
}

/* ------------------------------------------------------------------------
 * functions concerning aspects of rvec which are very likely to be
 * incorporated somewhere else in CrystFEL and therefore may need to be
 * deleted and references connected to a pre-existing function. (Lowest level)
 * ------------------------------------------------------------------------*/

static struct rvec new_rvec(double new_u, double new_v, double new_w)
{
	struct rvec new_rvector;
	new_rvector.u = new_u;
	new_rvector.v = new_v;
	new_rvector.w = new_w;

	return new_rvector;
}


static struct rvec diff_vec(struct rvec from, struct rvec to)
{
	struct rvec diff = new_rvec(to.u - from.u,
	                     to.v - from.v,
	                     to.w - from.w);

	return diff;
}

static double sq_length(struct rvec vec)
{
	double sqlength = (vec.u * vec.u + vec.v * vec.v + vec.w * vec.w);

	return sqlength;
}


static double rvec_length(struct rvec vec)
{
	return sqrt(sq_length(vec));
}


static void normalise_rvec(struct rvec *vec)
{
        double length = rvec_length(*vec);
        vec->u /= length;
        vec->v /= length;
        vec->w /= length;
}


static double rvec_cosine(struct rvec v1, struct rvec v2)
{
	double dot_prod = v1.u * v2.u + v1.v * v2.v + v1.w * v2.w;
	double v1_length = rvec_length(v1);
	double v2_length = rvec_length(v2);

	double cos_theta = dot_prod / (v1_length * v2_length);

	return cos_theta;
}


static double rvec_angle(struct rvec v1, struct rvec v2)
{
	double cos_theta = rvec_cosine(v1, v2);
	double angle = acos(cos_theta);

	return angle;
}


static struct rvec rvec_cross(struct rvec a, struct rvec b)
{
	struct rvec c;

	c.u = a.v*b.w - a.w*b.v;
	c.v = -(a.u*b.w - a.w*b.u);
	c.w = a.u*b.v - a.v*b.u;

	return c;
}


/* ------------------------------------------------------------------------
 * functions called under the core functions, still specialised (Level 3)
 * ------------------------------------------------------------------------*/

static gsl_matrix *rotation_around_axis(struct rvec c, double th)
{
	double omc = 1.0 - cos(th);
	double s = sin(th);
	gsl_matrix *res = gsl_matrix_alloc(3, 3);

	gsl_matrix_set(res, 0, 0, cos(th) + c.u*c.u*omc);
	gsl_matrix_set(res, 0, 1, c.u*c.v*omc - c.w*s);
	gsl_matrix_set(res, 0, 2, c.u*c.w*omc + c.v*s);
	gsl_matrix_set(res, 1, 0, c.u*c.v*omc + c.w*s);
	gsl_matrix_set(res, 1, 1, cos(th) + c.v*c.v*omc);
	gsl_matrix_set(res, 1, 2, c.v*c.w*omc - c.u*s);
	gsl_matrix_set(res, 2, 0, c.w*c.u*omc - c.v*s);
	gsl_matrix_set(res, 2, 1, c.w*c.v*omc + c.u*s);
	gsl_matrix_set(res, 2, 2, cos(th) + c.w*c.w*omc);

	return res;
}


/* Rotate vector (vec1) around axis (axis) by angle theta. Find value of
 * theta for which the angle between (vec1) and (vec2) is minimised.
 * Behold! Finally an analytical solution for this one. Assuming
 * that @result has already been allocated. Will upload the maths to the
 * shared Google drive. */
static gsl_matrix *closest_rot_mat(struct rvec vec1, struct rvec vec2,
                                   struct rvec axis)
{
	/* Let's have unit vectors */
	normalise_rvec(&vec1);
	normalise_rvec(&vec2);
	normalise_rvec(&axis);

	/* Redeclaring these to try and maintain readability and
	 * check-ability against the maths I wrote down */
	double a = vec2.u; double b = vec2.v; double c = vec2.w;
	double p = vec1.u; double q = vec1.v; double r = vec1.w;
	double x = axis.u; double y = axis.v; double z = axis.w;

	/* Components in handwritten maths online when I upload it */
	double A = a*(p*x*x - p + x*y*q + x*z*r) +
	           b*(p*x*y + q*y*y - q + r*y*z) +
	           c*(p*x*z + q*y*z + r*z*z - r);

	double B = a*(y*r - z*q) + b*(p*z - r*x) + c*(q*x - p*y);

	double tan_theta = - B / A;

	/* Not sure why I always have to take the + M_PI solution. Work
	 * this one out. But it always works!? */
	double theta = atan(tan_theta) + M_PI;

	/* Return an identity matrix which has been rotated by
	 * theta around "axis" */
	return rotation_around_axis(axis, theta);
}


static double matrix_trace(gsl_matrix *a)
{
	int i;
	double tr = 0.0;

	assert(a->size1 == a->size2);
	for ( i=0; i<a->size1; i++ ) {
		tr += gsl_matrix_get(a, i, i);
	}
	return tr;
}


static int rot_mats_are_similar(gsl_matrix *rot1, gsl_matrix *rot2)
{
	double tr;
	gsl_matrix *sub;
	gsl_matrix *mul;

	sub = gsl_matrix_calloc(3, 3);
	gsl_matrix_memcpy(sub, rot1);
	gsl_matrix_sub(sub, rot2);  /* sub = rot1 - rot2 */

	mul = gsl_matrix_calloc(3, 3);
	gsl_blas_dgemm(CblasNoTrans, CblasTrans, 1.0, sub, sub, 0.0, mul);

	tr = matrix_trace(mul);
	gsl_matrix_free(mul);

	return tr < sqrt(4.0*(1.0-cos(TRACE_TOLERANCE)));;
}


static gsl_matrix *rotation_between_vectors(struct rvec a, struct rvec b)
{
	double th = rvec_angle(a, b);
	struct rvec c = rvec_cross(a, b);
	normalise_rvec(&c);
	return rotation_around_axis(c, th);
}


static gsl_vector *rvec_to_gsl(struct rvec v)
{
	gsl_vector *a = gsl_vector_alloc(3);
	gsl_vector_set(a, 0, v.u);
	gsl_vector_set(a, 1, v.v);
	gsl_vector_set(a, 2, v.w);
	return a;
}


struct rvec gsl_to_rvec(gsl_vector *a)
{
	struct rvec v;
	v.u = gsl_vector_get(a, 0);
	v.v = gsl_vector_get(a, 1);
	v.w = gsl_vector_get(a, 2);
	return v;
}


/* Code me in gsl_matrix language to copy the contents of the function
 * in cppxfel (IndexingSolution::createSolution). This function is quite
 * intensive on the number crunching side so simple angle checks are used
 * to 'pre-scan' vectors beforehand. */
static gsl_matrix *generate_rot_mat(struct rvec obs1, struct rvec obs2,
                                    struct rvec cell1, struct rvec cell2)
{
	gsl_matrix *rotateSpotDiffMatrix;
	gsl_matrix *secondTwizzleMatrix;
	gsl_matrix *fullMat;
	gsl_vector *cell2v = rvec_to_gsl(cell2);
	gsl_vector *cell2vr = gsl_vector_calloc(3);

	/* Rotate reciprocal space so that the first simulated vector lines up
	 * with the observed vector. */
	rotateSpotDiffMatrix = rotation_between_vectors(cell1, obs1);

	normalise_rvec(&obs1);

	/* Multiply cell2 by rotateSpotDiffMatrix --> cell2vr */
	gsl_blas_dgemv(CblasNoTrans, 1.0, rotateSpotDiffMatrix, cell2v,
	               0.0, cell2vr);

	/* Now we twirl around the firstAxisUnit until the rotated simulated
	 * vector matches the second observed vector as closely as possible. */
	secondTwizzleMatrix = closest_rot_mat(gsl_to_rvec(cell2vr),
	                                      obs2, obs1);

	/* We want to apply the first matrix and then the second matrix,
	 * so we multiply these. */
	fullMat = gsl_matrix_calloc(3, 3);
	gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0,
	               secondTwizzleMatrix, rotateSpotDiffMatrix, 0.0, fullMat);

	return fullMat;
}


static int obs_vecs_share_spot(struct SpotVec *her_obs, struct SpotVec *his_obs)
{
	/* FIXME: Disgusting... can I tone this down a bit? */
	if ( (her_obs->her_rlp == his_obs->her_rlp) ||
	     (her_obs->her_rlp == his_obs->his_rlp) ||
	     (her_obs->his_rlp == his_obs->her_rlp) ||
	     (her_obs->his_rlp == his_obs->his_rlp) ) {
		return 1;
	}

	return 0;
}


static int obs_shares_spot_w_array(struct SpotVec *obs_vecs, int test_idx,
                                   int *members, int num)
{
	int i;
	struct SpotVec *her_obs = &obs_vecs[test_idx];

	for ( i=0; i<num; i++ ) {
		struct SpotVec *his_obs = &obs_vecs[members[i]];

		int shares = obs_vecs_share_spot(her_obs, his_obs);

		if ( shares ) return 1;
	}

	return 0;
}


/** Note: this could potentially (and cautiously) converted to comparing
 * cosines rather than angles, to lose an "acos" but different parts of the
 * cosine graph are more sensitive than others, so may be a trade off... or not.
 */
static int obs_vecs_match_angles(struct SpotVec *her_obs,
                                 struct SpotVec *his_obs,
				 int *her_match_idx, int *his_match_idx)
{
	int i, j;

        *her_match_idx = -1;
        *his_match_idx = -1;

	/* calculate angle between observed vectors */
	double obs_angle = rvec_angle(her_obs->obsvec, his_obs->obsvec);

	/* calculate angle between all potential theoretical vectors */

	for ( i=0; i<her_obs->match_num; i++ ) {
	for ( j=0; j<his_obs->match_num; j++ ) {

		struct rvec *her_match = &her_obs->matches[i];
		struct rvec *his_match = &his_obs->matches[j];

		double theory_angle = rvec_angle(*her_match, *his_match);

		/* is this angle a match? */

		double angle_diff = fabs(theory_angle - obs_angle);

		if ( angle_diff < ANGLE_TOLERANCE ) {
			*her_match_idx = i;
			*his_match_idx = j;
			return 1;
		}
	}
	}

	return 0;
}


static int obs_angles_match_array(struct SpotVec *obs_vecs, int test_idx,
                                  int *obs_members, int *match_members, int num)
{
	/* note: this is just a preliminary check to reduce unnecessary
	 * computation later down the line, but is not entirely accurate.
	 * For example, I have not checked that the 'matching cell vector'
	 * is identical - too much faff.
	 **/

	int i;
	struct SpotVec *her_obs = &obs_vecs[test_idx];

	for ( i=0; i<num; i++ ) {
		struct SpotVec *his_obs = &obs_vecs[obs_members[i]];

		/* placeholders, but results are ignored */
		int idx1, idx2;

		/* check our test vector matches existing network member */
		int matches = obs_vecs_match_angles(her_obs, his_obs,
						    &idx1, &idx2);

                if (idx2 != match_members[i]) return 0;
	}

	return 1;
}


/* ------------------------------------------------------------------------
 * core functions regarding the meat of the TakeTwo algorithm (Level 2)
 * ------------------------------------------------------------------------*/

static signed int find_next_index(gsl_matrix *rot, struct SpotVec *obs_vecs,
                                  int obs_vec_count, int *obs_members,
                                  int *match_members, int start, int member_num,
                                  int *match_found)
{
	int i;

	for ( i=start; i<obs_vec_count; i++ ) {

		/* first we check for a shared spot - harshest condition */
		int shared = obs_shares_spot_w_array(obs_vecs, i, obs_members,
		                                     member_num);

		if ( !shared ) continue;

		/* now we check that angles between all vectors match */
		int matches = obs_angles_match_array(obs_vecs, i, obs_members,
		                                     match_members, member_num);

		if ( !matches ) continue;

		/* final test: does the corresponding rotation matrix
		 * match the others? NOTE: have not tested to see if
		 * every combination of test/existing member has to be checked
		 * so for now, just sticking to the first two...
		 */

		/* need to grab the matching vector index */

		int member_idx, test_idx;

                /* FIXME: this may be a source of a problem */
		obs_vecs_match_angles(&obs_vecs[obs_members[0]], &obs_vecs[i],
		                      &member_idx, &test_idx);

                *match_found = test_idx;
		struct rvec test_match = obs_vecs[i].matches[test_idx];

		int j;

		/* if ok is set to 0, give up on this vector before
		 * checking the next value of j
		 */
		int ok = 1;

		for ( j=0; j<2; j++ ) {

			gsl_matrix *test_rot = gsl_matrix_calloc(3, 3);
			struct rvec member_match;
			int j_idx = obs_members[j];

			member_match = obs_vecs[j].matches[match_members[j]];
			test_rot = generate_rot_mat(obs_vecs[j_idx].obsvec,
			                            obs_vecs[i].obsvec,
			                            member_match,
			                            test_match);

			ok = rot_mats_are_similar(rot, test_rot);
			if ( !ok ) break;
		}

		if ( !ok ) continue;

		/* successful branch - return to calling function...*/

		return i;
	}

	/* give up. */

	return -1;
}


static int grow_network(gsl_matrix *rot, struct SpotVec *obs_vecs,
                        int obs_vec_count, int obs_idx1, int obs_idx2,
                        int match_idx1, int match_idx2)
{
	/* indices of members of the self-consistent network of vectors */
	int obs_members[MAX_NETWORK_MEMBERS];
        int match_members[MAX_NETWORK_MEMBERS];

	/* initialise the ones we know already */
	obs_members[0] = obs_idx1;
	obs_members[1] = obs_idx2;
	match_members[0] = match_idx1;
	match_members[1] = match_idx2;
	int member_num = 2;

	/* counter for dead ends which must not exceed MAX_DEAD_ENDS
	 * before it is reset in an additional branch */
	int dead_ends = 0;

	/* we can start from after the 2nd observed vector in the seed */
	int start = obs_idx2 + 1;

	while ( 1 ) {

                int match_found = -1;
		signed int next_index = find_next_index(rot, obs_vecs, obs_vec_count,
	                                         obs_members, match_members,
	                                         start, member_num,
	                                         &match_found);

		if ( member_num < 2 ) return 0;

		if ( next_index < 0 ) {
			/* If there have been too many dead ends, give up
			 * on indexing altogether.
			 **/
			if ( dead_ends > MAX_DEAD_ENDS ) break;

			/* We have not had too many dead ends. Try removing
			   the last member and continue. */
			start = obs_members[member_num - 1] + 1;
			member_num--;
			dead_ends++;

			continue;
		}

		/* we have elongated membership - so reset dead_ends counter */
		dead_ends = 0;

		obs_members[member_num] = next_index;
		match_members[member_num] = match_found;
		
		start = next_index + 1;
		member_num++;

		/* If member_num is high enough, we want to return a yes */
		if ( member_num > NETWORK_MEMBER_THRESHOLD ) break;
	}

	/* Deal with this shit after coffee */

	return ( member_num > NETWORK_MEMBER_THRESHOLD );
}


static int find_seed_and_network(struct SpotVec *obs_vecs, int obs_vec_count,
                                 gsl_matrix **rotation)
{
	/* loop round pairs of vectors to try and find a suitable
	 * seed to start building a self-consistent network of vectors
	 */
	int i, j;

	for ( i=0; i<obs_vec_count-1; i++ ) {
	for ( j=i+1; j<obs_vec_count; j++ ) {

		/** Check to see if there is a shared spot - opportunity
		  * for optimisation by generating a look-up table
		  * by spot instead of by vector.
		  */
		int shared = obs_vecs_share_spot(&obs_vecs[i], &obs_vecs[j]);

		if ( !shared ) continue;

		/* cell vector "matches" index for i, j respectively */
		int i_idx = -1;
		int j_idx = -1;

		/* Check to see if any angles match from the cell vectors */
		int match = 0;
		match = obs_vecs_match_angles(&obs_vecs[i], &obs_vecs[j],
		                              &i_idx, &j_idx);
		if ( !match ) continue;

		/* We have a seed! Generate a matrix based on this solution */
		gsl_matrix *rot_mat = gsl_matrix_calloc(3, 3);

		rot_mat = generate_rot_mat(obs_vecs[i].obsvec,
		                           obs_vecs[j].obsvec,
		                           obs_vecs[i].matches[i_idx],
		                           obs_vecs[j].matches[j_idx]);

		/* try to expand this rotation matrix to a larger network */

		int success = grow_network(rot_mat, obs_vecs, obs_vec_count,
		                           i, j, i_idx, j_idx);

		/* return this matrix or free it and try again */
		if ( success ) {
			*rotation = rot_mat;
			return 1;
		} else {
			gsl_matrix_free(rot_mat);
		}
	}
	} /* yes this } is meant to be here */

	return 0;
}


static int match_obs_to_cell_vecs(struct rvec *cell_vecs, int cell_vec_count,
                                  struct SpotVec *obs_vecs, int obs_vec_count)
{
	int i, j;

	/* Now I'm definitely bending the indentation rules! */
	for ( i=0; i<obs_vec_count; i++ ) {
		int count = 0;

	for ( j=0; j<cell_vec_count; j++ ) {

		/* get distance for unit cell vector */
		double cell_length = rvec_length(cell_vecs[j]);
		double obs_length = obs_vecs[i].distance;

		/* check if this matches the observed length */
		double dist_diff = fabs(cell_length - obs_length);

		if ( dist_diff > RECIP_TOLERANCE ) {
			continue;
		}

		/* we have a match, add to array! */

		count++;
		int new_size = count*sizeof(struct rvec);
		struct rvec *temp_matches;
		temp_matches = realloc(obs_vecs[i].matches, new_size);

		if ( temp_matches == NULL ) {
			return 0;
		} else {
			obs_vecs[i].matches = temp_matches;
			temp_matches[count - 1] = cell_vecs[j];
			obs_vecs[i].match_num = count;
		}
	}
	}

	return 1;
}


static int gen_observed_vecs(struct rvec *rlps, int rlp_count,
                             struct SpotVec **obs_vecs, int *obs_vec_count)
{
	int i, j;
	int count = 0;

	/* maximum distance squared for comparisons */
	double max_sq_length = pow(MAX_RECIP_DISTANCE, 2);

	for ( i=0; i<rlp_count-1; i++ ) {
		for ( j=i+1; j<rlp_count; j++ ) {

			/* calculate difference vector between rlps */
			struct rvec diff = diff_vec(rlps[i], rlps[j]);

			/* are these two far from each other? */
			double sqlength = sq_length(diff);

			if ( sqlength > max_sq_length ) continue;

			count++;

			struct SpotVec *temp_obs_vecs;
			temp_obs_vecs = realloc(*obs_vecs,
			                        count*sizeof(struct SpotVec));

			if ( temp_obs_vecs == NULL ) {
				return 0;
			} else {
				*obs_vecs = temp_obs_vecs;

				/* initialise all SpotVec struct members */

				struct SpotVec spot_vec;
				spot_vec.obsvec = diff;
				spot_vec.distance = sqrt(sqlength);
				spot_vec.matches = NULL;
				spot_vec.match_num = 0;
				spot_vec.her_rlp = &rlps[i];
				spot_vec.his_rlp = &rlps[j];

				(*obs_vecs)[count - 1] = spot_vec;
			}
		}
	}

	*obs_vec_count = count;

	return 1;
}


static int gen_theoretical_vecs(UnitCell *cell, struct rvec **cell_vecs,
                                int *vec_count)
{
	double a, b, c, alpha, beta, gamma;
	int h_max, k_max, l_max;
	double asx, asy, asz;
	double bsx, bsy, bsz;
	double csx, csy, csz;

	cell_get_parameters(cell, &a, &b, &c, &alpha, &beta, &gamma);

	/* find maximum Miller (h, k, l) indices for a given resolution */
	h_max = MAX_RECIP_DISTANCE * a;
	k_max = MAX_RECIP_DISTANCE * b;
	l_max = MAX_RECIP_DISTANCE * c;

	int h, k, l;
	int count = 0;

	cell_get_reciprocal(cell, &asx, &asy, &asz,
	                          &bsx, &bsy, &bsz,
	                          &csx, &csy, &csz);

	for ( h=-h_max; h<=+h_max; h++ ) {
	for ( k=-k_max; k<=+k_max; k++ ) {
	for ( l=-l_max; l<=+l_max; l++ ) {

		struct rvec cell_vec;

		/* Exclude systematic absences from centering concerns */
		if ( forbidden_reflection(cell, h, k, l) ) continue;

		cell_vec.u = h*asx + k*bsx + l*csx;
		cell_vec.v = h*asy + k*bsy + l*csy;
		cell_vec.w = h*asz + k*bsz + l*csz;

		/* add this to our array - which may require expanding */
		count++;

		struct rvec *temp_cell_vecs;
		temp_cell_vecs = realloc(*cell_vecs, count*sizeof(struct rvec));

		if ( temp_cell_vecs == NULL ) {
			return 0;
		} else {
			*cell_vecs = temp_cell_vecs;
			(*cell_vecs)[count - 1] = cell_vec;
		}
	}
	}
	}

	*vec_count = count;

	return 1;
}


/* ------------------------------------------------------------------------
 * cleanup functions - called from run_taketwo().
 * ------------------------------------------------------------------------*/

static void cleanup_taketwo_cell_vecs(struct rvec *cell_vecs)
{
	free(cell_vecs);
}


static void cleanup_taketwo_obs_vecs(struct SpotVec *obs_vecs,
                                    int obs_vec_count)
{
	int i;
	for ( i=0; i<obs_vec_count; i++ ) {
		free(obs_vecs[i].matches);
	}

	free(obs_vecs);
}


/* ------------------------------------------------------------------------
 * external functions - top level functions (Level 1)
 * ------------------------------------------------------------------------*/

/**
 * @cell: target unit cell
 * @rlps: spot positions on detector back-projected into recripocal
 * space depending on detector geometry etc.
 * @rlp_count: number of rlps in rlps array.
 * @rot: pointer to be given an assignment (hopefully) if indexing is
 * successful.
 **/
static UnitCell *run_taketwo(UnitCell *cell, struct rvec *rlps, int rlp_count)
{
	int cell_vec_count = 0;
	struct rvec *cell_vecs = NULL;
	UnitCell *result;
	int obs_vec_count = 0;
	struct SpotVec *obs_vecs = NULL;
	int success = 0;
	gsl_matrix *solution = NULL;

	success = gen_theoretical_vecs(cell, &cell_vecs, &cell_vec_count);
	if ( !success ) return NULL;

	success = gen_observed_vecs(rlps, rlp_count, &obs_vecs, &obs_vec_count);
	if ( !success ) return NULL;

	success = match_obs_to_cell_vecs(cell_vecs, cell_vec_count,
	                                 obs_vecs, obs_vec_count);

	if ( !success ) return NULL;

	cleanup_taketwo_cell_vecs(cell_vecs);

	find_seed_and_network(obs_vecs, obs_vec_count, &solution);
	if ( solution == NULL ) return NULL;

	result = transform_cell_gsl(cell, solution);

	cleanup_taketwo_obs_vecs(obs_vecs, obs_vec_count);

	return result;
}


/* CrystFEL interface hooks */

int taketwo_index(struct image *image, IndexingPrivate *ipriv)
{
	Crystal *cr;
	UnitCell *cell;
	struct rvec *rlps;
	int n_rlps = 0;
	int i;
	struct taketwo_private *tp = (struct taketwo_private *)ipriv;

	rlps = malloc((image_feature_count(image->features)+1)*sizeof(struct rvec));
	for ( i=0; i<image_feature_count(image->features); i++ ) {
		struct imagefeature *pk = image_get_feature(image->features, i);
		if ( pk == NULL ) continue;
		rlps[n_rlps].u = pk->rx;
		rlps[n_rlps].v = pk->ry;
		rlps[n_rlps].w = pk->rz;
		n_rlps++;
	}
	rlps[n_rlps].u = 0.0;
	rlps[n_rlps].v = 0.0;
	rlps[n_rlps++].w = 0.0;

	cell = run_taketwo(tp->cell, rlps, n_rlps);
	if ( cell == NULL ) return 0;

	cr = crystal_new();
	if ( cr == NULL ) {
		ERROR("Failed to allocate crystal.\n");
		return 0;
	}

	crystal_set_cell(cr, cell);

	if ( tp->indm & INDEXING_CHECK_PEAKS ) {
		if ( !peak_sanity_check(image, &cr, 1) ) {
			cell_free(cell);
			crystal_free(cr);
			return 0;
		}
	}

	image_add_crystal(image, cr);

	return 1;
}


IndexingPrivate *taketwo_prepare(IndexingMethod *indm, UnitCell *cell,
                                 struct detector *det, float *ltl)
{
	struct taketwo_private *tp;

	/* Flags that TakeTwo knows about */
	*indm &= INDEXING_METHOD_MASK | INDEXING_CHECK_PEAKS
	       | INDEXING_USE_LATTICE_TYPE | INDEXING_USE_CELL_PARAMETERS
	       | INDEXING_CONTROL_FLAGS;

	if ( !( (*indm & INDEXING_USE_LATTICE_TYPE)
	     && (*indm & INDEXING_USE_CELL_PARAMETERS)) )
	{
		ERROR("TakeTwo indexing requires cell and lattice type "
		      "information.\n");
		return NULL;
	}

	if ( cell == NULL ) {
		ERROR("TakeTwo indexing requires a unit cell.\n");
		return NULL;
	}

	tp = malloc(sizeof(struct taketwo_private));
	if ( tp == NULL ) return NULL;

	tp->ltl = ltl;
	tp->cell = cell;
	tp->indm = *indm;

	return (IndexingPrivate *)tp;
}


void taketwo_cleanup(IndexingPrivate *pp)
{
	struct taketwo_private *tp = (struct taketwo_private *)pp;
	free(tp);
}