1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
|
/*
* geometry.h
*
* Geometry of diffraction
*
* (c) 2006-2010 Thomas White <taw@physics.org>
*
* Part of CrystFEL - crystallography with a FEL
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include "utils.h"
#include "cell.h"
#include "image.h"
#include "peaks.h"
#define MAX_HITS (1024)
struct reflhit *find_intersections(struct image *image, UnitCell *cell,
double divergence, double bandwidth,
int *n, int output)
{
double asx, asy, asz;
double bsx, bsy, bsz;
double csx, csy, csz;
struct reflhit *hits;
int np = 0;
int hmax, kmax, lmax;
double mres;
signed int h, k, l;
hits = malloc(sizeof(struct reflhit)*MAX_HITS);
if ( hits == NULL ) {
*n = 0;
return NULL;
}
cell_get_reciprocal(cell, &asx, &asy, &asz,
&bsx, &bsy, &bsz,
&csx, &csy, &csz);
mres = 1.0 / 8.0e-10; /* 8 Angstroms */
hmax = mres / modulus(asx, asy, asz);
kmax = mres / modulus(bsx, bsy, bsz);
lmax = mres / modulus(csx, csy, csz);
for ( h=-hmax; h<hmax; h++ ) {
for ( k=-kmax; k<kmax; k++ ) {
for ( l=-lmax; l<lmax; l++ ) {
double xl, yl, zl;
double ds_sq, dps_sq;
double delta, divfact;
double llow, lhigh;
double xd, yd, cl;
double xda, yda;
int p;
int found = 0;
if ( (h==0) && (k==0) && (l==0) ) continue;
llow = image->lambda - image->lambda*bandwidth/2.0;
lhigh = image->lambda + image->lambda*bandwidth/2.0;
/* Get the coordinates of the reciprocal lattice point */
zl = h*asz + k*bsz + l*csz;
if ( zl < 0.0 ) continue; /* Do this check very early */
xl = h*asx + k*bsx + l*csx;
yl = h*asy + k*bsy + l*csy;
ds_sq = modulus_squared(xl, yl, zl); /* d*^2 */
delta = divergence/image->lambda;
dps_sq = ds_sq + pow(delta, 2.0); /* d'*^2 */
/* In range? */
divfact = 2.0 * delta * sqrt(xl*xl + yl*yl);
if ( ds_sq - 2.0*zl/llow > 0.0 ) continue;
if ( ds_sq - 2.0*zl/lhigh < 0.0 ) continue;
/* Work out which panel this peak would fall on */
for ( p=0; p<image->det->n_panels; p++ ) {
/* Camera length for this panel */
cl = image->det->panels[p].clen;
/* Coordinates of peak relative to central beam, in m */
xd = cl*xl / (ds_sq/(2.0*zl) - zl);
yd = cl*yl / (ds_sq/(2.0*zl) - zl);
/* Convert to pixels */
xd *= image->det->panels[p].res;
yd *= image->det->panels[p].res;
/* Add the coordinates of the central beam */
xda = xd + image->det->panels[p].cx;
yda = yd + image->det->panels[p].cy;
/* Now, is this on this panel? */
if ( xda < image->det->panels[p].min_x ) continue;
if ( xda > image->det->panels[p].max_x ) continue;
if ( yda < image->det->panels[p].min_y ) continue;
if ( yda > image->det->panels[p].max_y ) continue;
/* Woohoo! */
found = 1;
break;
}
if ( !found ) continue;
hits[np].h = h;
hits[np].k = k;
hits[np].l = l;
hits[np].x = xda;
hits[np].y = yda;
np++;
if ( output ) {
printf("%i %i %i 0.0 (at %f,%f)\n", h, k, l, xda, yda);
}
}
}
}
*n = np;
return hits;
}
double integrate_all(struct image *image, struct reflhit *hits, int n)
{
double itot = 0.0;
int i;
for ( i=0; i<n; i++ ) {
float x, y, intensity;
if ( integrate_peak(image, hits[i].x, hits[i].y, &x, &y,
&intensity, 0, 0) ) continue;
itot += intensity;
}
return itot;
}
|