aboutsummaryrefslogtreecommitdiff
path: root/src/render.c
blob: 5b47775fd240725aaeb224e064ff7036b75b3a36 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
/*
 * render.c
 *
 * Render a high dynamic range buffer in some sensible way
 *
 * (c) 2006-2010 Thomas White <taw@physics.org>
 *
 * Part of CrystFEL - crystallography with a FEL
 *
 */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdlib.h>
#include <gdk-pixbuf/gdk-pixbuf.h>
#include <math.h>
#include <stdint.h>

#include "hdf5-file.h"
#include "render.h"
#include "peaks.h"
#include "filters.h"


static void *render_bin(int16_t *in, int inw, int inh,
                        int binning, int16_t *maxp)
{
	int16_t *data;
	int x, y;
	int w, h;
	int16_t max;

	w = inw / binning;
	h = inh / binning;      /* Some pixels might get discarded */

	data = malloc(w*h*sizeof(int16_t));
	max = 0;

	for ( x=0; x<w; x++ ) {
	for ( y=0; y<h; y++ ) {

		/* Big enough to hold large values */
		unsigned long long int total;
		size_t xb, yb;

		total = 0;
		for ( xb=0; xb<binning; xb++ ) {
		for ( yb=0; yb<binning; yb++ ) {

			total += in[binning*x+xb + (binning*y+yb)*(w*binning)];

		}
		}

		data[x+w*y] = total / (binning * binning);
		if ( data[x+w*y] > max ) max = data[x+w*y];

	}
	}

	*maxp = max;
	return data;
}


int16_t *render_get_image_binned(DisplayWindow *dw, int binning, int16_t *max)
{
	struct image *image;
	int16_t *data;

	if ( (dw->image == NULL) || (dw->image_dirty) ) {

		image = malloc(sizeof(struct image));
		if ( image == NULL ) return NULL;
		image->features = NULL;
		image->data = NULL;

		hdf5_read(dw->hdfile, image);
		dw->image_dirty = 0;
		clean_image(image);

		/* Deal with the old image, if existing */
		if ( dw->image != NULL ) {
			image->features = dw->image->features;
			if ( dw->image->data != NULL ) free(dw->image->data);
		}

		dw->image = image;

	}

	data = render_bin(dw->image->data, hdfile_get_width(dw->hdfile),
	                  hdfile_get_height(dw->hdfile), binning, max);

	return data;
}


#define RENDER_RGB							       \
									       \
	int s;								       \
	float p;							       \
									       \
	s = val / (max/6);						       \
	p = fmod(val, max/6);						       \
	p /= (max/6);							       \
									       \
	r = 0;	g = 0;	b = 0;						       \
									       \
	if ( (val < 0.0) || (val > max) ) {                                    \
		s = 0;                                                         \
		p = 0.0;                                                       \
	}                                                                      \
	switch ( s ) {							       \
		case 0 : {	/* Black to blue */			       \
			r = 0;		g = 0;			b = p*255;     \
			break;						       \
		}							       \
		case 1 : {	/* Blue to green */			       \
			r = 0;		g = 255*p;		b = (1-p)*255; \
			break;						       \
		}							       \
		case 2 : {	/* Green to red */			       \
			r =p*255;	g = (1-p)*255;		b = 0;	       \
			break;						       \
		}							       \
		case 3 : {	/* Red to Orange */			       \
			r = 255;	g = 127*p;		b = 0;	       \
			break;						       \
		}							       \
		case 4 : {	/* Orange to Yellow */			       \
			r = 255;	g = 127 + 127*p;	b = 0;	       \
			break;						       \
		}							       \
		case 5 : {	/* Yellow to White */			       \
			r = 255;	g = 255;		b = 255*p;     \
			break;						       \
		}							       \
		case 6 : {	/* Pixel has hit the maximum value */	       \
			r = 255;	g = 255;		b = 255;       \
			break;						       \
		}							       \
		default : {	/* Above saturation */			       \
			r = 255;	g = 255;		b = 255;       \
			break;						       \
		}							       \
	}

#define RENDER_MONO							       \
	float p;							       \
	p = (float)val / (float)max;					       \
	if ( val < 0.0 ) p = 0.0;                                              \
	if ( val > max ) p = 0.0;                                              \
	r = 255.0*p;	g = 255.0*p;	b = 255.0*p;


/* NB This function is shared between render_get_image() and
 * render_get_colour_scale() */
static void render_free_data(guchar *data, gpointer p)
{
	free(data);
}


static void show_marked_features(struct image *image, guchar *data,
                                 int w, int h, int binning)
{
	int i;

	if ( image->features == NULL ) return;

	for ( i=0; i<image_feature_count(image->features); i++ ) {

		struct imagefeature *f;
		int x, y;
		double th;

		f = image_get_feature(image->features, i);
		if ( f == NULL ) continue;

		x = f->x;  y = f->y;

		x /= binning;
		y /= binning;

		for ( th=0; th<2*M_PI; th+=M_PI/40.0 ) {

			int nx, ny;

			nx = x + 10.0*cos(th);
			ny = y + 10.0*sin(th);

			if ( nx < 0 ) continue;
			if ( ny < 0 ) continue;
			if ( nx >= w ) continue;
			if ( ny >= h ) continue;

			data[3*( nx+w*(h-1-ny) )+0] = 255;

		}
	}
}


/* Return a pixbuf containing a rendered version of the image after binning.
 * This pixbuf might be scaled later - hopefully mostly in a downward
 * direction. */
GdkPixbuf *render_get_image(DisplayWindow *dw)
{
	int mw, mh, w, h;
	guchar *data;
	int16_t *hdr;
	size_t x, y;
	int16_t max;

	mw = hdfile_get_width(dw->hdfile);
	mh = hdfile_get_height(dw->hdfile);
	w = mw / dw->binning;
	h = mh / dw->binning;

	/* High dynamic range version */
	hdr = render_get_image_binned(dw, dw->binning, &max);
	if ( hdr == NULL ) return NULL;

	/* Rendered (colourful) version */
	data = malloc(3*w*h);
	if ( data == NULL ) {
		free(hdr);
		return NULL;
	}

	max /= dw->boostint;
	if ( max <= 6 ) { max = 10; }
	/* These x,y coordinates are measured relative to the bottom-left
	 * corner */
	for ( y=0; y<h; y++ ) {
	for ( x=0; x<w; x++ ) {

		int val;
		guchar r, g, b;

		val = hdr[x+w*y];
		if ( !dw->monochrome ) {
			RENDER_RGB
		} else {
			RENDER_MONO
		}

		/* Stuff inside square brackets makes this pixel go to
		 * the expected location in the pixbuf (which measures
		 * from the top-left corner */
		data[3*( x+w*(h-1-y) )+0] = r;
		data[3*( x+w*(h-1-y) )+1] = g;
		data[3*( x+w*(h-1-y) )+2] = b;

	}
	}

	show_marked_features(dw->image, data, w, h, dw->binning);

	/* Finished with this */
	free(hdr);

	/* Create the pixbuf from the 8-bit display data */
	return gdk_pixbuf_new_from_data(data, GDK_COLORSPACE_RGB, FALSE, 8,
					w, h, w*3, render_free_data, NULL);
}

GdkPixbuf *render_get_colour_scale(size_t w, size_t h, int monochrome)
{
	guchar *data;
	size_t x, y;
	int max;

	data = malloc(3*w*h);
	if ( data == NULL ) return NULL;

	max = h;

	for ( y=0; y<h; y++ ) {

		guchar r, g, b;
		int val;

		val = y;
		if ( !monochrome ) {
			RENDER_RGB
		} else {
			RENDER_MONO
		}

		data[3*( 0+w*(h-1-y) )+0] = 0;
		data[3*( 0+w*(h-1-y) )+1] = 0;
		data[3*( 0+w*(h-1-y) )+2] = 0;
		for ( x=1; x<w; x++ ) {
			data[3*( x+w*(h-1-y) )+0] = r;
			data[3*( x+w*(h-1-y) )+1] = g;
			data[3*( x+w*(h-1-y) )+2] = b;
		}

	}

	return gdk_pixbuf_new_from_data(data, GDK_COLORSPACE_RGB, FALSE, 8,
					w, h, w*3, render_free_data, NULL);
}