aboutsummaryrefslogtreecommitdiff
path: root/src/sfac.c
blob: 436544c8f2ed3a0bec216434223c5770c11055f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
/*
 * sfac.c
 *
 * Scattering factors
 *
 * (c) 2006-2010 Thomas White <taw@physics.org>
 *
 * Part of CrystFEL - crystallography with a FEL
 *
 */


#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <complex.h>
#include <string.h>
#include <ctype.h>

#include "utils.h"
#include "sfac.h"


#define N_MEMO 1024


/* Look up f1 and f2 for this atom at this energy (in J/photon) */
static double complex get_f1f2(const char *n, double en)
{
	FILE *fh;
	char filename[64];
	char line[1024];
	char *rval;
	double last_E, last_f1, last_f2;
	static char *memo_n[N_MEMO];
	static int memo_eV[N_MEMO];
	static double complex memo_res[N_MEMO];
	static int n_memo = 0;
	int eV;
	int i;

	eV = (int)rint(J_to_eV(en));

	for ( i=0; i<n_memo; i++ ) {
		if ( (memo_eV[i] == eV) && (strcmp(memo_n[i], n) == 0) ) {
			return memo_res[i];
		}
	}

	snprintf(filename, 63, DATADIR"/crystfel/%s.nff", n);
	fh = fopen(filename, "r");
	if ( fh == NULL ) {
		ERROR("Couldn't open file '%s'\n", filename);
		return 0.0;
	}

	en = J_to_eV(en);

	/* Discard first line */
	fgets(line, 1023, fh);

	last_E = 0.0;
	last_f1 = 0.0;
	last_f2 = 0.0;
	do {

		int r;
		double E, f1, f2;
		float E_f, f1_f, f2_f;

		rval = fgets(line, 1023, fh);

		r = sscanf(line, "%f %f %f", &E_f, &f1_f, &f2_f);
		if ( r != 3 ) {
			STATUS("I couldn't understand a line in the f1f2 "
			       "tables\n");
			continue;
		}
		/* Promote to double precision */
		E = E_f;  f1 = f1_f;  f2 = f2_f;

		/* Find the first energy greater than the required value */
		if ( E < en ) {
			/* Store old values ready for interpolation*/
			last_E = E;
			last_f1 = f1;
			last_f2 = f2;
		} else {

			/* Perform (linear) interpolation */
			double f;
			double actual_f1, actual_f2;
			double complex res;

			f = (en - last_E) / (E - last_E);

			actual_f1 = last_f1 + f * (f1 - last_f1);
			actual_f2 = last_f2 + f * (f2 - last_f2);

			fclose(fh);

			res = actual_f1 + I*actual_f2;

			memo_n[n_memo] = strdup(n);
			memo_eV[n_memo] = eV;
			memo_res[n_memo++] = res;
			n_memo = n_memo % N_MEMO;

			return res;

		}

	} while ( rval != NULL );

	fclose(fh);

	ERROR("Couldn't find scattering factors for '%s' at %f eV!\n", n, en);

	return 0.0;
}


struct waas_kirf_factors {
	char *n;
	float a1;
	float a2;
	float a3;
	float a4;
	float a5;
	float b1;
	float b2;
	float b3;
	float b4;
	float b5;
	float c;
};

/* s = sin(theta)/lambda in metres^-1*/
static double get_waas_kirf(const char *n, double s)
{
	FILE *fh;
	char *rval;
	double f;
	float a1, a2, a3, a4, a5, c, b1, b2, b3, b4, b5;
	double s2;
	int i;
	static struct waas_kirf_factors waaskirfcache[N_MEMO];
	int found;
	static int n_waaskirfcache = 0;

	found = 0;
	for ( i=0; i<n_waaskirfcache; i++ ) {
		if ( strcmp(waaskirfcache[i].n, n) == 0 ) {

			found = 1;

			a1 = waaskirfcache[n_waaskirfcache].a1;
			a2 = waaskirfcache[n_waaskirfcache].a2;
			a3 = waaskirfcache[n_waaskirfcache].a3;
			a4 = waaskirfcache[n_waaskirfcache].a4;
			a5 = waaskirfcache[n_waaskirfcache].a5;
			b1 = waaskirfcache[n_waaskirfcache].b1;
			b2 = waaskirfcache[n_waaskirfcache].b2;
			b3 = waaskirfcache[n_waaskirfcache].b3;
			b4 = waaskirfcache[n_waaskirfcache].b4;
			b5 = waaskirfcache[n_waaskirfcache].b5;
			c = waaskirfcache[n_waaskirfcache].c;

			break;
		}
	}

	if ( !found ) {

		fh = fopen(DATADIR"/crystfel/f0_WaasKirf.dat", "r");
		if ( fh == NULL ) {
			ERROR("Couldn't open f0_WaasKirf.dat\n");
			return 0.0;
		}

		do {

			int r;
			char line[1024];
			char sp[1024];
			int Z;

			rval = fgets(line, 1023, fh);

			if ( (line[0] != '#') || (line[1] != 'S') ) continue;

			r = sscanf(line, "#S  %i  %s", &Z, sp);
			if ( (r != 2) || (strcmp(sp, n) != 0) ) continue;

			/* Skip two lines */
			fgets(line, 1023, fh);
			fgets(line, 1023, fh);

			/* Read scattering coefficients */
			rval = fgets(line, 1023, fh);
			r = sscanf(line,
			             "  %f  %f  %f  %f  %f  %f  %f %f %f %f %f",
			            &a1, &a2, &a3, &a4, &a5, &c,
			            &b1, &b2, &b3, &b4, &b5);
			if ( r != 11 ) {
				ERROR("Couldn't read scattering "
				      "factors (WaasKirf)\n");
				return 0.0;
			}

			break;

		} while ( rval != NULL );

		fclose(fh);

		waaskirfcache[n_waaskirfcache].a1 = a1;
		waaskirfcache[n_waaskirfcache].a2 = a2;
		waaskirfcache[n_waaskirfcache].a3 = a3;
		waaskirfcache[n_waaskirfcache].a4 = a4;
		waaskirfcache[n_waaskirfcache].a5 = a5;
		waaskirfcache[n_waaskirfcache].c = c;
		waaskirfcache[n_waaskirfcache].b1 = b1;
		waaskirfcache[n_waaskirfcache].b2 = b2;
		waaskirfcache[n_waaskirfcache].b3 = b3;
		waaskirfcache[n_waaskirfcache].b4 = b4;
		waaskirfcache[n_waaskirfcache].b5 = b5;
		waaskirfcache[n_waaskirfcache++].n = strdup(n);
		n_waaskirfcache = n_waaskirfcache % N_MEMO;  /* Unlikely */

	}

	s2 = pow(s/1e10, 2.0);  /* s2 is s squared in Angstroms^-2 */
	f = c + a1*exp(-b1*s2) + a2*exp(-b2*s2) + a3*exp(-b3*s2)
	      + a4*exp(-b4*s2) + a5*exp(-b5*s2);

	return f;
}


/* Get complex scattering factors for element 'n' at energy 'en' (J/photon),
 * at resolution 's' = sin(theta)/lambda (in m^-1) */
double complex get_sfac(const char *n, double s, double en)
{
	double complex f1f2;
	double fq;

	/* Anomalous part (point-like K-shell electrons only) */
	f1f2 = get_f1f2(n, en);

	/* Atomic form factor part (not complex-valued) */
	fq = get_waas_kirf(n, s) - get_waas_kirf(n, 0.0);

	return fq + f1f2;
}


static void centre_molecule(struct molecule *mol)
{
	int i;
	double tx = 0.0;
	double ty = 0.0;
	double tz = 0.0;
	double total = 0.0;

	/* Atoms are grouped by species for faster calculation */
	for ( i=0; i<mol->n_species; i++ ) {

		struct mol_species *spec;
		int j;

		spec = mol->species[i];

		for ( j=0; j<spec->n_atoms; j++ ) {

			double sfac = get_waas_kirf(spec->species, 0.0);

			tx += spec->x[j] * sfac;
			ty += spec->y[j] * sfac;
			tz += spec->z[j] * sfac;
			total += sfac;

		}

	}

	mol->xc = tx / total;
	mol->yc = ty / total;
	mol->zc = tz / total;

	for ( i=0; i<mol->n_species; i++ ) {

		struct mol_species *spec;
		int j;

		spec = mol->species[i];

		for ( j=0; j<spec->n_atoms; j++ ) {

			spec->x[j] -= mol->xc;
			spec->y[j] -= mol->yc;
			spec->z[j] -= mol->zc;

		}

	}

	STATUS("The atoms were shifted by %5.3f, %5.3f, %5.3f nm\n",
	       mol->xc*1e9, mol->yc*1e9, mol->zc*1e9);
}


/* Load PDB file into a memory format suitable for efficient(ish) structure
 * factor calculation */
struct molecule *load_molecule(const char *filename)
{
	struct molecule *mol;
	FILE *fh;
	char line[1024];
	char *rval;
	int i;

	mol = malloc(sizeof(struct molecule));
	if ( mol == NULL ) return NULL;
	mol->n_species = 0;
	mol->reflections = NULL;
	mol->cell = NULL;

	fh = fopen(filename, "r");
	if ( fh == NULL ) {
                ERROR("Couldn't open PDB file\n");
                return NULL;
        }

	do {

		int j, r;
		int done = 0;
		char xs[8];
		char ys[8];
		char zs[8];
		char occs[6];
		char Bs[6];
		char el[3];
		float xf, yf, zf, occf, Bf;
		double x, y, z, occ, B;

		rval = fgets(line, 1023, fh);

		/* Only interested in atoms */
		if ( (strncmp(line, "HETATM", 6) != 0)
		  && (strncmp(line, "ATOM  ", 6) != 0) ) continue;

		chomp(line);
		if ( strlen(line) != 80 ) {
			STATUS("Line does not have the correct length (%i):\n",
			       (int)strlen(line));
			STATUS("'%s'\n", line);
			continue;
		}

		/* Separate out fixed-width fields */
		memcpy(xs, line+30, 5);    xs[7] = '\0';
		memcpy(ys, line+38, 5);    ys[7] = '\0';
		memcpy(zs, line+46, 5);    zs[7] = '\0';
		memcpy(occs, line+54, 5);  occs[5] = '\0';
		memcpy(Bs, line+60, 5);    Bs[5] = '\0';
		memcpy(el, line+76, 2);    el[2] = '\0';

		/* Convert fields */
		r = sscanf(xs, "%f", &xf);
		r += sscanf(ys, "%f", &yf);
		r += sscanf(zs, "%f", &zf);
		r += sscanf(occs, "%f", &occf);
		r += sscanf(Bs, "%f", &Bf);
		if ( el[0] == ' ' ) {
			el[0] = el[1];
			el[1] = '\0';
		} else {
			el[1] = tolower(el[1]);
		}

		/* Promote to double precision */
		x = xf;  y = yf;  z = zf;  occ = occf;  B = Bf;

		for ( j=0; j<mol->n_species; j++ ) {

			struct mol_species *spec;
			int n;

			spec = mol->species[j];

			if ( strcmp(spec->species, el) != 0 ) continue;

			n = mol->species[j]->n_atoms;

			spec->x[n] = x*1.0e-10;  /* Convert to m */
			spec->y[n] = y*1.0e-10;
			spec->z[n] = z*1.0e-10;
			spec->occ[n] = occ;
			spec->B[n] = B*1.0e-20;  /* Convert to m^2 */
			mol->species[j]->n_atoms++;
			if ( mol->species[j]->n_atoms == MAX_ATOMS ) {
				ERROR("Too many atoms of type '%s'!\n", el);
				exit(1);
			}

			done = 1;

		}

		if ( !done ) {

			/* Need to create record for this species */
			struct mol_species *spec;

			spec = malloc(sizeof(struct mol_species));

			memcpy(spec->species, el, 1+strlen(el));
			spec->x[0] = x*1.0e-10;  /* Convert to m */
			spec->y[0] = y*1.0e-10;
			spec->z[0] = z*1.0e-10;
			spec->occ[0] = occ;
			spec->B[0] = B*1.0e-20;  /* Convert to m^2 */
			spec->n_atoms = 1;

			mol->species[mol->n_species] = spec;
			mol->n_species++;

		}

	} while ( rval != NULL );

	fclose(fh);

	centre_molecule(mol);

	STATUS("There are %i species:\n", mol->n_species); fflush(stderr);
	for ( i=0; i<mol->n_species; i++ ) {
		STATUS("%3s : %6i\n", mol->species[i]->species,
		       mol->species[i]->n_atoms);
	}

	mol->cell = load_cell_from_pdb(filename);
	if ( mol->cell == NULL ) {
		ERROR("No unit cell found in PDB file\n");
		return NULL;
	}

	return mol;
}


void free_molecule(struct molecule *mol)
{
	int i;

	for ( i=0; i<mol->n_species; i++ ) {
		free(mol->species[i]);
	}

	free(mol->cell);
	free(mol);
}


double *get_reflections(struct molecule *mol, double en, double res,
                        double *phases, ReflItemList *items)
{
	double *reflections;
	double asx, asy, asz;
	double bsx, bsy, bsz;
	double csx, csy, csz;
	signed int h, k, l;
	const int do_thermal = 1;

	cell_get_reciprocal(mol->cell, &asx, &asy, &asz,
	                               &bsx, &bsy, &bsz,
	                               &csx, &csy, &csz);

	reflections = new_list_intensity();

	for ( h=-INDMAX; h<=INDMAX; h++ ) {
	for ( k=-INDMAX; k<=INDMAX; k++ ) {
	for ( l=-INDMAX; l<=INDMAX; l++ ) {

		double complex F = 0.0;
		int i;
		double s, oneoverd;

		/* We need sin(theta)/lambda = 1/2d */
		s = resolution(mol->cell, h, k, l);
		oneoverd = 2.0 * s;
		if ( oneoverd > res ) continue;

		/* Atoms are grouped by species for faster calculation */
		for ( i=0; i<mol->n_species; i++ ) {

			double complex sfac;
			double complex contrib = 0.0;
			struct mol_species *spec;
			int j;

			spec = mol->species[i];

			for ( j=0; j<spec->n_atoms; j++ ) {

				double ph, u, v, w;
				double complex cpart;

				u = h*asx + k*bsx + l*csx;
				v = h*asy + k*bsy + l*csy;
				w = h*asz + k*bsz + l*csz;

				ph = u*spec->x[j] + v*spec->y[j] + w*spec->z[j];

				/* Conversion from revolutions to radians */
				cpart = cexp(-2.0*M_PI*I*ph);
				if ( do_thermal ) {
					cpart *= exp(-2.0 * spec->B[j] * s * s);
				}
				contrib += cpart;

			}

			sfac = get_sfac(spec->species, s, en);
			F += sfac * contrib;

		}

		set_intensity(reflections, h, k, l, pow(cabs(F), 2.0));
		if ( phases != NULL ) set_phase(phases, h, k, l, carg(F));
		if ( items != NULL ) add_item(items, h, k, l);

	}
	progress_bar((k+INDMAX)+IDIM*(h+INDMAX), IDIM*IDIM-1,
	             "Calculating reflection intensities");
	}
	}

	return reflections;
}