1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
|
/*
* gpu_sim_check.c
*
* Check that GPU simulation agrees with CPU version
*
* (c) 2011 Thomas White <taw@physics.org>
*
* Part of CrystFEL - crystallography with a FEL
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include "../src/diffraction.h"
#include "../src/diffraction-gpu.h"
#include "../src/detector.h"
#include "../src/beam-parameters.h"
#include "../src/utils.h"
#include "../src/symmetry.h"
#ifdef HAVE_CLOCK_GETTIME
static double get_hires_seconds()
{
struct timespec tp;
clock_gettime(CLOCK_MONOTONIC, &tp);
return (double)tp.tv_sec + ((double)tp.tv_nsec/1e9);
}
#else
/* Fallback version of the above. The time according to gettimeofday() is not
* monotonic, so measuring intervals based on it will screw up if there's a
* timezone change (e.g. daylight savings) while the program is running. */
static double get_hires_seconds()
{
struct timeval tp;
gettimeofday(&tp, NULL);
return (double)tp.tv_sec + ((double)tp.tv_nsec/1e9);
}
#endif
int main(int argc, char *argv[])
{
struct gpu_context *gctx;
struct image gpu_image;
struct image cpu_image;
UnitCell *cell;
UnitCell *cell_raw;
struct detector *det;
struct beam_params *beam;
int i;
double gpu_min, gpu_max, gpu_tot;
double cpu_min, cpu_max, cpu_tot;
double dev, perc;
const double sep = 20.0;
double start, end;
double gpu_time, cpu_time;
SymOpList *sym;
gctx = setup_gpu(1, NULL, NULL, NULL, 0);
if ( gctx == NULL ) {
ERROR("Couldn't set up GPU.\n");
return 1;
}
cell_raw = cell_new_from_parameters(28.1e-9, 28.1e-9, 16.5e-9,
deg2rad(90.0), deg2rad(90.0), deg2rad(120.0));
cell = cell_rotate(cell_raw, random_quaternion());
gpu_image.width = 1024;
gpu_image.height = 1024;
cpu_image.width = 1024;
cpu_image.height = 1024;
det = calloc(1, sizeof(struct detector));
det->n_panels = 2;
det->panels = calloc(2, sizeof(struct panel));
det->panels[0].min_fs = 0;
det->panels[0].max_fs = 1023;
det->panels[0].min_ss = 0;
det->panels[0].max_ss = 511;
det->panels[0].fsx = 1;
det->panels[0].fsy = 0;
det->panels[0].ssx = 0;
det->panels[0].ssy = 1;
det->panels[0].xfs = 1;
det->panels[0].yfs = 0;
det->panels[0].xss = 0;
det->panels[0].yss = 1;
det->panels[0].cnx = -512.0;
det->panels[0].cny = -512.0-sep;
det->panels[0].clen = 100.0e-3;
det->panels[0].res = 9090.91;
det->panels[1].min_fs = 0;
det->panels[1].max_fs = 1023;
det->panels[1].min_ss = 512;
det->panels[1].max_ss = 1023;
det->panels[1].fsx = 1;
det->panels[1].fsy = 0;
det->panels[1].ssx = 0;
det->panels[1].ssy = 1;
det->panels[1].xfs = 1;
det->panels[1].yfs = 0;
det->panels[1].xss = 0;
det->panels[1].yss = 1;
det->panels[1].cnx = -512.0;
det->panels[1].cny = sep;
det->panels[1].clen = 100.0e-3;
det->panels[1].res = 9090.91;
cpu_image.det = det;
gpu_image.det = det;
beam = calloc(1, sizeof(struct beam_params));
beam->fluence = 1.0e15; /* Does nothing */
beam->beam_radius = 1.0e-6;
beam->photon_energy = 9000.0;
beam->bandwidth = 0.1 / 100.0;
beam->divergence = 0.0;
beam->dqe = 1.0;
beam->adu_per_photon = 1.0;
cpu_image.beam = beam;
gpu_image.beam = beam;
cpu_image.lambda = ph_en_to_lambda(eV_to_J(beam->photon_energy));
gpu_image.lambda = ph_en_to_lambda(eV_to_J(beam->photon_energy));
start = get_hires_seconds();
get_diffraction_gpu(gctx, &gpu_image, 8, 8, 8, cell);
end = get_hires_seconds();
gpu_time = end - start;
sym = get_pointgroup("1");
start = get_hires_seconds();
get_diffraction(&cpu_image, 8, 8, 8, NULL, NULL, NULL, cell,
GRADIENT_MOSAIC, sym);
end = get_hires_seconds();
cpu_time = end - start;
free_symoplist(sym);
STATUS("The GPU version was %5.2f times faster.\n", cpu_time/gpu_time);
gpu_min = +INFINITY; gpu_max = -INFINITY; gpu_tot = 0.0;
cpu_min = +INFINITY; cpu_max = -INFINITY; cpu_tot = 0.0;
dev = 0.0;
for ( i=0; i<1024*1024; i++ ) {
const double cpu = cpu_image.data[i];
const double gpu = gpu_image.data[i];
if ( cpu > cpu_max ) cpu_max = cpu;
if ( cpu < cpu_min ) cpu_min = cpu;
if ( gpu > gpu_max ) gpu_max = gpu;
if ( gpu < gpu_min ) gpu_min = gpu;
gpu_tot += gpu;
cpu_tot += cpu;
dev += fabs(gpu - cpu);
}
perc = 100.0*dev/cpu_tot;
STATUS("GPU: min=%8e, max=%8e, total=%8e\n", gpu_min, gpu_max, gpu_tot);
STATUS("CPU: min=%8e, max=%8e, total=%8e\n", cpu_min, cpu_max, cpu_tot);
STATUS("dev = %8e (%5.2f%% of CPU total)\n", dev, perc);
cell_free(cell);
free_detector_geometry(det);
free(beam);
if ( perc > 1.0 ) {
STATUS("Test failed! I'm writing cpu-sim.h5 and gpu-sim.h5"
" for you to inspect.\n");
hdf5_write("cpu-sim.h5", cpu_image.data, cpu_image.width,
cpu_image.height, H5T_NATIVE_FLOAT);
hdf5_write("gpu-sim.h5", gpu_image.data, gpu_image.width,
gpu_image.height, H5T_NATIVE_FLOAT);
return 1;
}
return 0;
}
|