diff options
-rw-r--r-- | doc/matrix-notation.lyx | 868 | ||||
-rw-r--r-- | doc/matrix-notation.pdf | bin | 0 -> 156692 bytes |
2 files changed, 868 insertions, 0 deletions
diff --git a/doc/matrix-notation.lyx b/doc/matrix-notation.lyx new file mode 100644 index 00000000..7279be8f --- /dev/null +++ b/doc/matrix-notation.lyx @@ -0,0 +1,868 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass article +\use_default_options true +\maintain_unincluded_children false +\language english +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize a4paper +\use_geometry true +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date true +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\leftmargin 1cm +\topmargin 1cm +\rightmargin 1cm +\bottommargin 1cm +\headsep 0cm +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation skip +\defskip smallskip +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle empty +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Title +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +vskip -3em +\end_layout + +\end_inset + +CrystFEL matrix notation conventions +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +vskip -4em +\end_layout + +\begin_layout Plain Layout + + +\backslash +thispagestyle{empty} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +CrystFEL's UnitCell structure doesn't expose its contents as a matrix, only + as named components ( +\begin_inset Formula $a_{x}^{*}$ +\end_inset + +, +\begin_inset Formula $c_{y}$ +\end_inset + + an so on). + However, the arrangement of the transformation matrices given to functions + such as cell_transform_rational() are important. + This document aims to make the conventions explicit. + The notation used in CrystFEL follows that used in the International Tables + for Crystallography, volume A, chapter 5.1 ( +\begin_inset Quotes eld +\end_inset + +Transformations of the coordinate system (unit-cell transformations) +\begin_inset Quotes erd +\end_inset + +) and 11.1 ( +\begin_inset Quotes eld +\end_inset + +Point coordinates, symmetry operations and their symbols +\begin_inset Quotes erd +\end_inset + +). +\end_layout + +\begin_layout Itemize + +\emph on +cell_transform_gsl_direct +\emph default +, +\emph on +cell_transform_rational +\emph default + and +\emph on +cell_transform_intmat +\emph default + all do what is written in equation +\begin_inset CommandInset ref +LatexCommand ref +reference "eq:cell_transform" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +. + These functions all take a +\begin_inset Formula $\boldsymbol{\hat{P}}$ +\end_inset + + matrix. + The +\begin_inset Quotes eld +\end_inset + +intmat +\begin_inset Quotes erd +\end_inset + + and +\begin_inset Quotes eld +\end_inset + +rational +\begin_inset Quotes erd +\end_inset + + versions will additionally determine the centering of the resulting unit + cell (and hopefully eventually the lattice type and unique axis). +\end_layout + +\begin_layout Itemize + +\emph on +transform_indices +\emph default + does what is written in equation +\begin_inset CommandInset ref +LatexCommand ref +reference "eq:indices" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +. + It takes a vector of (reciprocal space) Miller indices and a +\begin_inset Formula $\boldsymbol{\hat{P}}$ +\end_inset + + matrix. +\end_layout + +\begin_layout Itemize +A SymOpList is essentially a list of +\begin_inset Formula $\boldsymbol{\hat{W}}^{-1}$ +\end_inset + + matrices, which, as shown below, behave like +\begin_inset Formula $\boldsymbol{\hat{P}}$ +\end_inset + + matrices. +\end_layout + +\begin_layout Itemize +transform_fractional_coords_rtnl takes a +\begin_inset Formula $\boldsymbol{\hat{P}}$ +\end_inset + + matrix and a column vector of fractional coordinates, calculates the +\begin_inset Formula $\boldsymbol{\hat{Q}}$ +\end_inset + + matrix and evaluates equation +\begin_inset CommandInset ref +LatexCommand ref +reference "eq:fractional-coord-transform-basis-change" +plural "false" +caps "false" +noprefix "false" + +\end_inset + + (NB +\series bold +not +\series default + equation +\begin_inset CommandInset ref +LatexCommand ref +reference "eq:fractional-coord-transform-symmetry" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +). + +\emph on +Implementation detail: +\emph default +it actually solves a matrix-vector equation rather than going all the way + to the inverted matrix. +\end_layout + +\begin_layout Itemize +transform_fractional_coords_rtnl_inverse takes a +\begin_inset Formula $\boldsymbol{\hat{P}}$ +\end_inset + + matrix and a column vector of fractional coordinates +\begin_inset Formula $\boldsymbol{v}$ +\end_inset + +, and does the reverse of transform_fractional_coords_rtnl. + That means it just has to evaluate +\begin_inset Formula $\boldsymbol{\hat{P}}\boldsymbol{v}$ +\end_inset + +. + This looks like equation +\begin_inset CommandInset ref +LatexCommand ref +reference "eq:fractional-coord-transform-symmetry" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +. +\end_layout + +\begin_layout Subsection* +Matrices of unit cell components +\end_layout + +\begin_layout Standard +When matrix calculations are performed in CrystFEL, which is usually only + inside certain libcrystfel functions, basis vectors +\begin_inset Formula $(\boldsymbol{a},\boldsymbol{b},\boldsymbol{c})$ +\end_inset + + are written as the columns of the matrix. +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\boldsymbol{\hat{M}}=\left(\begin{array}{ccc} +a_{x} & b_{x} & c_{x}\\ +a_{y} & b_{y} & c_{y}\\ +a_{z} & b_{z} & c_{z} +\end{array}\right) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Reciprocal basis vectors are written as the rows of the matrix. +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\boldsymbol{\hat{R}}=\left(\begin{array}{ccc} +a_{x}^{*} & a_{y}^{*} & a_{z}^{*}\\ +b_{x}^{*} & b_{y}^{*} & b_{z}^{*}\\ +c_{x}^{*} & c_{y}^{*} & c_{z}^{*} +\end{array}\right) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Real and reciprocal spaces are sometimes said to be +\begin_inset Quotes eld +\end_inset + +inverse transposes of each other +\begin_inset Quotes erd +\end_inset + +. + The components of the two matrices are already transposed with respect + to one another (one has vectors in columns, the other in rows). + Therefore +\begin_inset Formula $\boldsymbol{\hat{M}}=\boldsymbol{\hat{R}}^{-1}$ +\end_inset + + and +\begin_inset Formula $\boldsymbol{\hat{R}}=\boldsymbol{\hat{M}}^{-1}$ +\end_inset + +. +\end_layout + +\begin_layout Subsection* +Transformation of unit cell basis +\end_layout + +\begin_layout Standard +Given a transformation matrix +\begin_inset Formula $\boldsymbol{\hat{P}}$ +\end_inset + + which means +\begin_inset Formula $\boldsymbol{a}^{\prime}=\boldsymbol{a}-\boldsymbol{b}$ +\end_inset + +, +\begin_inset Formula $\boldsymbol{b}^{\prime}=\boldsymbol{b}$ +\end_inset + +, +\begin_inset Formula $\boldsymbol{c}^{\prime}=\boldsymbol{c}$ +\end_inset + +: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{equation} +\boldsymbol{\hat{M}}^{\prime}=\boldsymbol{\hat{M}}\boldsymbol{\hat{P}}=\left(\begin{array}{ccc} +a_{x} & b_{x} & c_{x}\\ +a_{y} & b_{y} & c_{y}\\ +a_{z} & b_{z} & c_{z} +\end{array}\right)\left(\begin{array}{ccc} +1 & 0 & 0\\ +\bar{1} & 1 & 0\\ +0 & 0 & 1 +\end{array}\right)\label{eq:cell_transform} +\end{equation} + +\end_inset + + +\end_layout + +\begin_layout Standard +Note that the +\begin_inset Quotes eld +\end_inset + +amount of old a,b,c to make new a +\begin_inset Quotes erd +\end_inset + + is found in the first column of the +\begin_inset Formula $\boldsymbol{\hat{P}}$ +\end_inset + + matrix, and so on. +\end_layout + +\begin_layout Subsection* +Transformation of reciprocal basis +\end_layout + +\begin_layout Standard +With the same transformation as before ( +\begin_inset Formula $\boldsymbol{a}^{\prime}=\boldsymbol{a}-\boldsymbol{b}$ +\end_inset + +, +\begin_inset Formula $\boldsymbol{b}^{\prime}=\boldsymbol{b}$ +\end_inset + +, +\begin_inset Formula $\boldsymbol{c}^{\prime}=\boldsymbol{c}$ +\end_inset + +), the reciprocal basis transforms as follows: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\boldsymbol{\hat{R}}^{\prime}=\left(\begin{array}{ccc} +a_{x}^{*} & a_{y}^{*} & a_{z}^{*}\\ +b_{x}^{*} & b_{y}^{*} & b_{z}^{*}\\ +c_{x}^{*} & c_{y}^{*} & c_{z}^{*} +\end{array}\right)^{\prime}=\boldsymbol{\hat{P}}^{-1}\boldsymbol{\hat{R}}=\boldsymbol{\hat{Q}}\boldsymbol{\hat{R}}=\left(\begin{array}{ccc} +1 & 0 & 0\\ +\bar{1} & 1 & 0\\ +0 & 0 & 1 +\end{array}\right)^{-1}\left(\begin{array}{ccc} +a_{x}^{*} & a_{y}^{*} & a_{z}^{*}\\ +b_{x}^{*} & b_{y}^{*} & b_{z}^{*}\\ +c_{x}^{*} & c_{y}^{*} & c_{z}^{*} +\end{array}\right)=\left(\begin{array}{ccc} +1 & 0 & 0\\ +1 & 1 & 0\\ +0 & 0 & 1 +\end{array}\right)\left(\begin{array}{ccc} +a_{x}^{*} & a_{y}^{*} & a_{z}^{*}\\ +b_{x}^{*} & b_{y}^{*} & b_{z}^{*}\\ +c_{x}^{*} & c_{y}^{*} & c_{z}^{*} +\end{array}\right) +\] + +\end_inset + + +\end_layout + +\begin_layout Subsection* +Miller indices (reciprocal space) under transformation of unit cell basis + (real-space) +\end_layout + +\begin_layout Standard +From ITA chapter 5.1, this is how the reflections would be re-labelled if + the axes were changed. + See later for how to apply symmetry operations. +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{equation} +\left(h^{\prime},k^{\prime},l^{\prime}\right)=\left(h^{\prime},k^{\prime},l^{\prime}\right)\boldsymbol{\hat{P}}=\left(h,k,l\right)\left(\begin{array}{ccc} +1 & 0 & 0\\ +\bar{1} & 1 & 0\\ +0 & 0 & 1 +\end{array}\right)=(h-k,k,l)\label{eq:indices} +\end{equation} + +\end_inset + + +\end_layout + +\begin_layout Subsection* +Fractional coordinates under transformation of unit cell basis +\end_layout + +\begin_layout Standard +Where u, v and w are fractional coordinates, i.e. + the cartesian coordinates are: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\boldsymbol{\hat{M}}\left(\begin{array}{c} +u\\ +v\\ +w +\end{array}\right)=\left(\begin{array}{ccc} +a_{x} & b_{x} & c_{x}\\ +a_{y} & b_{y} & c_{y}\\ +a_{z} & b_{z} & c_{z} +\end{array}\right)\left(\begin{array}{c} +u\\ +v\\ +w +\end{array}\right) +\] + +\end_inset + +From ITA chapter 5.1, the new coordinates are: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{equation} +\left(\begin{array}{c} +u^{\prime}\\ +v^{\prime}\\ +w^{\prime} +\end{array}\right)=\boldsymbol{\hat{P}}^{-1}\left(\begin{array}{c} +u\\ +v\\ +w +\end{array}\right)=\boldsymbol{\hat{Q}}\left(\begin{array}{c} +u\\ +v\\ +w +\end{array}\right)\label{eq:fractional-coord-transform-basis-change} +\end{equation} + +\end_inset + + +\end_layout + +\begin_layout Subsection* +Symmetry operations acting on fractional coordinates +\end_layout + +\begin_layout Standard +Following ITA chapter 11.1, the following matrix represents the symmetry + operation written as +\begin_inset Formula $-y,x,z$ +\end_inset + +, where for this time only, x,y and z are fractional coordinates: +\begin_inset Formula +\begin{equation} +\boldsymbol{\hat{W}}=\left(\begin{array}{ccc} +0 & \bar{1} & 0\\ +1 & 0 & 0\\ +0 & 0 & 1 +\end{array}\right)\label{eq:wmatrix} +\end{equation} + +\end_inset + + +\end_layout + +\begin_layout Standard +It transforms the fractional coordinates as follows: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{equation} +\left(\begin{array}{c} +u^{\prime}\\ +v^{\prime}\\ +w^{\prime} +\end{array}\right)=\boldsymbol{\hat{W}}\left(\begin{array}{c} +u\\ +v\\ +w +\end{array}\right)=\left(\begin{array}{ccc} +0 & \bar{1} & 0\\ +1 & 0 & 0\\ +0 & 0 & 1 +\end{array}\right)\left(\begin{array}{c} +u\\ +v\\ +w +\end{array}\right)\label{eq:fractional-coord-transform-symmetry} +\end{equation} + +\end_inset + + +\end_layout + +\begin_layout Standard +Note also that we're ignoring the translational part of the symmetry operation + (there isn't one in this case). +\end_layout + +\begin_layout Standard +Note that +\begin_inset Formula $\boldsymbol{\hat{W}}$ +\end_inset + + behaves like +\begin_inset Formula $\boldsymbol{\hat{P}}^{-1}$ +\end_inset + + above. + CrystFEL's +\begin_inset Quotes eld +\end_inset + +SymOpList +\begin_inset Quotes erd +\end_inset + + structure contains IntegerMatrix objects representing +\begin_inset Formula $\boldsymbol{\hat{W}}^{-1}$ +\end_inset + + matrices, also known as +\begin_inset Formula $\boldsymbol{\hat{P}}$ +\end_inset + + matrices. +\end_layout + +\begin_layout Subsection* +Symmetry operations acting on Miller indices (reciprocal space) +\end_layout + +\begin_layout Standard +Since +\begin_inset Formula $\boldsymbol{\hat{W}}^{-1}$ +\end_inset + + matrices are just +\begin_inset Formula $\boldsymbol{\hat{P}}$ +\end_inset + + matrices, simply change the +\begin_inset Formula $\boldsymbol{\hat{P}}$ +\end_inset + + into +\begin_inset Formula $\boldsymbol{\hat{W}}^{-1}$ +\end_inset + + in equation +\begin_inset CommandInset ref +LatexCommand ref +reference "eq:indices" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{equation} +\left(h^{\prime},k^{\prime},l^{\prime}\right)=\left(h,k,l\right)\boldsymbol{\hat{W}}^{-1}=\left(h^{\prime},k^{\prime},l^{\prime}\right)\left(\begin{array}{ccc} +0 & 1 & 0\\ +\bar{1} & 0 & 0\\ +0 & 0 & 1 +\end{array}\right)=(\bar{k},h,l)\label{eq:symmetry} +\end{equation} + +\end_inset + + +\end_layout + +\begin_layout Standard +In this case, the symmetry operation is a rotation, so the matrix inverse + is just the same as a matrix transpose. + However, don't get confused: the matrix appearing here is the inverse of + the one appearing in equation +\begin_inset CommandInset ref +LatexCommand ref +reference "eq:wmatrix" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +. +\end_layout + +\begin_layout Standard +Note that the +\begin_inset Quotes eld +\end_inset + +amount of old h, k and l to make new h +\begin_inset Quotes erd +\end_inset + + is found in the first column of the +\begin_inset Formula $\boldsymbol{\hat{W}}^{-1}$ +\end_inset + + matrix, and so on. +\end_layout + +\begin_layout Subsection* +Transforming symmetry operations +\end_layout + +\begin_layout Standard +Given a +\begin_inset Formula $\boldsymbol{\hat{P}}$ +\end_inset + + matrix which transforms the unit cell as written in equation +\begin_inset CommandInset ref +LatexCommand ref +reference "eq:cell_transform" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +, and a +\begin_inset Formula $\boldsymbol{\hat{W}}^{-1}$ +\end_inset + + matrix representing a symmetry operation, we seek to apply the symmetry + operation to the cell as it would appear after applying the transformation. + For example, let +\begin_inset Formula $\boldsymbol{\hat{P}}$ +\end_inset + + permute the cell axes, turning a +\begin_inset Quotes eld +\end_inset + +unique axis b +\begin_inset Quotes erd +\end_inset + + cell into a +\begin_inset Quotes eld +\end_inset + +unique axis c +\begin_inset Quotes erd +\end_inset + + one, and let +\begin_inset Formula $\boldsymbol{\hat{W}}^{-1}$ +\end_inset + + represent a twofold rotation around the c axis: +\end_layout + +\begin_layout Standard +To transform a set of Miller indices +\begin_inset Formula $(h,k,l)$ +\end_inset + +, first use +\begin_inset Formula $\boldsymbol{\hat{P}}$ +\end_inset + + to get the indices referred to the +\begin_inset Quotes eld +\end_inset + +unique axis c +\begin_inset Quotes erd +\end_inset + + setting using equation +\begin_inset CommandInset ref +LatexCommand ref +reference "eq:indices" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +, then apply the symmetry operation using equation +\begin_inset CommandInset ref +LatexCommand ref +reference "eq:symmetry" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +, and finally transform back to the original cell using equation +\begin_inset CommandInset ref +LatexCommand ref +reference "eq:indices" +plural "false" +caps "false" +noprefix "false" + +\end_inset + + and the inverse matrix: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +(h^{\prime},k^{\prime},l^{\prime})=(h,k,l)\boldsymbol{\hat{P}}\boldsymbol{\hat{W}}^{-1}\boldsymbol{\hat{P}}^{-1} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +The combined matrix +\begin_inset Formula $\boldsymbol{\hat{P}}\boldsymbol{\hat{W}}^{-1}\boldsymbol{\hat{P}}^{-1}$ +\end_inset + + represents a twofold rotation symmetry operation along the b axis instead + of c. +\end_layout + +\end_body +\end_document diff --git a/doc/matrix-notation.pdf b/doc/matrix-notation.pdf Binary files differnew file mode 100644 index 00000000..b8cb6501 --- /dev/null +++ b/doc/matrix-notation.pdf |